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Abstract—We study light transport in ordered, partially
ordered, and completely random one-dimensional (1-D) systems.
In a periodic structure, there are three types of passbands with
different origins. When disorder is introduced to a periodic
system, the passbands change differently, depending on their
origins. The transmissivity and decay length in the passbands near
the band edges decrease drastically. The stopbands are widened.
The introduction of randomness to a periodic structure enhances
light localization in frequency regions in which it is delocalized in
a periodic structure. In a completely random system, a resonant
cavity is formed by two stacks of multiple layers which serve as
two highly reflective broadband mirrors. We calculate the size
and the quality factor of 1-D random cavities. With an increase in
the degree of disorder, the lasing threshold in such a cavity first
decreases, then increases. The lasing frequency spreads from the
band edge toward the stopband center.

Index Terms—Cavity resonator, electromagnetic propagation in
random media, electromagnetic scattering by periodic structure,
electromagnetic scattering by random media, random laser,
random media.

I. INTRODUCTION

T HE RECENT discovery of a random laser [1]–[3], a laser
made of a random medium, has received considerable

interest. Random media, i.e., dielectric media with a random
spatial variation of the refractive index, can confine light in a
very small region. It is possible to make a laser in such a random
medium that does not require a pre-defined physical cavity.
To better understand the phenomenon and further investigate
how the cavity is formed, we conduct a systematic study of the
impact of the material and geometric properties of a random
medium on the performance of random lasers.

In contrast to a periodic dielectric structure is a system where
the dielectric particles are randomly distributed. The interfer-
ence of scattered light ultimately leads to light localization [4],
[5]. Therefore, light propagation can be inhibited in a disor-
dered system [6], [7]. To achieve light localization in a three-di-
mensional (3-D) disordered system, the Ioffe–Regel criterion
should be satisfied: , where is the wavevector and
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is the transport mean free path. John first suggested that the
Ioffe–Regel criterion could be more easily met in photonic crys-
tals with some disorder [8]. The density of states is nearly zero
near the band edges. When the frequency of the light is near
a photonic band edge, the Ioffe–Regel criterion is replaced by

, where is the “crystal momentum” and is
much smaller than . Therefore, introducing some order to a
disordered system helps light localization.

Light transport in a disordered medium is closely related to
that in an ordered medium. In this paper, we study how the
light transport behavior evolves when a one-dimensional (1-D)
system changes continuously from a perfectly ordered structure
to a highly disordered structure. Specifically, we calculate the
transmissivity, decay length and mode linewidth in 1-D systems
that are ordered, partially ordered, and highly disordered.

There have been many theoretical studies of periodic-on-av-
erage 1-D systems [9]–[14]. However, most studies were
limited to the case of weak disorder and the interplay of
the photonic bandgap (PBG) and light localization was not
emphasized. In this paper, we focus on the effect of the
PBG on a random medium. We start with an ordered array
of particles having the same diameter. Then we either keep
the particle diameter constant and randomize the distance
between particles, or randomize the particle diameter and keep
the distance between particles constant. Both cases belong
to partially ordered systems. Finally, we randomize both the
particle diameter and the distance between particles to obtain
fully disordered structures.

In our study of the optical properties of 1-D dielectric media
which transit from an ordered distribution to a disordered distri-
bution, we found that the transmissivity and decay length near
the passband edges are very sensitive to disorder. With the in-
troduction of disorder to a periodic structure, the transmissivity
and decay length in the passbands near the band edges decreases
drastically. The stopbands are widened. Therefore, the introduc-
tion of randomness to a periodic structure enhances light lo-
calization in frequency regions in which it is delocalized in a
periodic structure. In the highly disordered cases, the partially
random system shows the remnant resonant peaks in the trans-
mission spectrum due to the fixed particle size or gap size. The
complete random system shows uniform transmission across the
entire frequency region except the long-wavelength limit.

We study how resonant cavities are formed in 1-D random
media and what parameters affect the properties of these random
cavities (such as cavity size and lifetime). For the completely
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random system, we calculate the localization length of light and
the statistics of the resonant mode linewidth in each individual
sample.

This paper is organized as follows. Section II describes
the random structures and the method of our calculation. In
Sections III–V, we discuss the effect of disorder on the PBG
and its optical properties in media which transit from order
to disorder. Specifically, Section III is a brief review of PBG
physics. Section IV is a study of partially ordered 1-D systems.
Section V discusses completely random 1-D systems. In
Section VI, we study the formation and size of resonant cavities
in random media. In Section VII, we study the linewidth of
random cavity modes and their statistics in the random system.
Finally, in Section VIII, we present our conclusions.

II. M ODEL OF RANDOM MEDIA

In this paper, our 1-D random medium model is comprised of
dielectric slabs in air having random thicknessand spacing
. Here, a slab is a 1-D representation of a particle.and

have the mean values and , respectively. We assume
and , where is a random number

distributed uniformly between0.5 and 0.5, and
give the amplitude of randomness, and is the refractive
index of the dielectric slabs (air).

For a periodic system, . There are two types of
partially ordered systems.

1) Random spacing, where the particle size is uniform, but
the spacing between particles is random. Here ,

.
2) Random particle size, where the particle size is random-

ized, while the spacing between particles remains con-
stant. Here and .

Both systems are partially random systems, because some pa-
rameter is kept constant. For a completely random system, both
the particle size and the spacing between particles are random.
Here, and .

The ratio of the average particle sizeto the average spacing
gives the filling factor of the system. As the filling factor in-

creases, the medium becomes more compact. We further divide
random media into three categories in terms of the compactness:
1) Dense ( ), where the majority is dielectric ma-
terial; 2) loose ( ), where the majority is air; and
3) half-filled ( ), where the optical path lengths
in particles and air gaps are about the same.

We use the transfer matrix method to calculate optical trans-
mission through a 1-D system [15]. The typical transmission
spectrum for a specific random structure consists of many res-
onant peaks. Those peaks are washed out after the transmis-
sion spectra are averaged over an ensemble of random struc-
tures. The transmission spectra that we present in this paper
are averaged over 1000 random structures. We numerically find
that averaging over 1000 realizations of the random structure is
enough to obtain the ensemble-averaged values. The ensemble
average gives some general characteristics of the random dielec-
tric media. However, we would like to point out that in the study
of the physical phenomena on which the fine features specific

(a)

(b)

Fig. 1. (a) Transmission spectrum plot. Solid line: the ten unit cells with cell
size� = a + b, a = 100 nm; b = 400 nm; n = 3, n = 1, where! =
2�c=2(n a+ n b). Dotted line: the single dielectric layera = 100 nmn =
3. Dashed line: the single gap layerb = 400 nm,n = 1. The resonant peaks
of single dielectric or gap layer overlap with the passband of the ten-unit cell.
This indicates there are two types of passband: the dielectric band and the air
band. When the two bands coincide, we call it a combined band. (b) Dispersion
relationK � ! of periodic structure. The19 (= 2N � 1) dots indicate the
resonant modes of the ten-unit cell. The frequency of the resonant mode was
modified by the dispersion curve.

to individual structures have a significant effect, the ensemble
average should not be applied.

III. PERIODIC STRUCTURE

Light transport in 1-D periodic structures has been exten-
sively studied and well understood. Standard treatment can be
found in [15] and [16] and the main results in [16]–[18]. To com-
pare with random structures in later sections, we will summarize
the important aspect of periodic structures obtained by standard
transfer matrix method.

A 1-D periodic structure of interest here is made of alternating
dielectric layers A and B. In the following discussion, layer A
has a refractive index and a thickness nm.
Layer B has a refractive index and a thickness

nm. We define a unit cell as one pair of layer A and layer
B. The optical path length through a unit cell is

. The fundamental resonant frequency for a unit cell is
, where is equal to the round-trip optical length

in the unit cell.
Fig. 1(a) plots the transmission spectrum when the number of

dielectric slabs is equal to ten. The frequency is normal-
ized to . The frequency regimes with nearly zero transmis-
sivity represent the stopbands for light propagation. The center
frequencies of the stopbands are denoted by , where

is a positive integer. The spectral width of the stopbands is
proportional to the contrast of the refractive indices, indicated
by . Between two adjacent stopbands are
the passbands. There are two sets of passbands. One set is called
particle-related passbands, which are centered on the resonant
frequencies of a single particle , where .
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(a)

(b)

Fig. 2. (a) Transmission spectrum of ten-unit cells ended with air (solid
line) and single dielectric layer (dash line). The resonant peak in the
overlapped dielectric-like passband is modified by the resonant effect of
the single dielectric layer.! = 2�c=2(n a + n ), ! = 2�c=2n a,
a = 100 nm; b = 400 nm; n = 3, n = 1. (b) Transmission spectrum
of ten-unit cell ended with dielectric materials (solid line) and single gap
layer (dash line). The resonant peaks in the overlapped gap-like passband are
modified by the resonant effect of the single air gap layer.! = 2�c=2n b.

Fig. 3. Ensemble averaged transmission spectrum plots. (a) Partial random
system of type I, random gap thicknessb, fixed dielectric layer thicknessa .
There are ten layers in the system with averaged gap size�b = b . (b) Partial
random system of type II, random dielectric layer thicknessa, fixed gap
thicknessb . There are ten layers in the system with averaged dielectric
thickness�a = a . (c) Complete random system, random dielectric layer
thicknessa, random gap thicknessb. There are ten layers in the system with
averaged�a = a and�b = b . Here, thea ; b ; n ; n parameters are the same
as the Fig. 2 periodic system.

The other set is called gap-related passbands, which are cen-
tered on the resonant frequencies of a single air gap, where

. Within a particle-related passbands, the light
field is concentrated inside the particles. Within the gap-related
passbands, the light field is concentrated inside the air gaps. As
shown in Fig. 1(a), some stopbands are closed and two adja-
cent passbands of different types merge. We call such a pass-
band a combined passband. It occurs at the frequency that is a
common multiple of , , and . With the parameters, we
use ( ), the lowest order combined passband cen-
ters at 7 ( ).

Fig. 1(b) shows the dispersion relation for the lowest seven
passbands of the periodic structure. The transmission eigen-
modes (TEMs) of an sample, plotted as black dots, cor-
respond to the resonant peaks of the passbands in the transmis-
sion spectrum. The number of transmission eigenmodes within
a particle-related or gap-related passband is equal to .
A combined passband has modes. These transmission
eigenmodes are not equally spaced in frequency. Toward the
edges of the passbands, the transmission eigenmodes get closer
to each other. The spectral linewidth of the TEM near the pass-
band edges is smaller than that of the TEM near the passband
center. The envelope function for the TEM closest to the edge
of a passband has only one maximum. The second closest TEM
has two intensity maxima. As the frequency of a TEM moves
closer to the center frequency of a passband, its intensity tends
to distribute more evenly across the entire medium.

As shown in Fig. 2(a), the transmission peaks in the par-
ticle-related passbands are less pronounced than those in the
gap-related passbands. This is caused by the boundary effect.
The periodic structure is surrounded by air. The transmissivity
in the particle-related passbands is modified by the transmis-
sivity through a single particle. Fig. 2(b) shows the transmis-
sion spectrum when the periodic structure is surrounded by the
dielectric material of refractive index . The transmissivity of
the gap-related passbands is modified by the transmissivity of a
single air gap surrounded by the dielectric material. Thus, the
transmission peaks in the gap-related passbands become less
pronounced.

Even though light within a stopband hardly transmits through
a periodic structure, it penetrates into the structure. The penetra-
tion depth is characterized by the decay length [19], [20]. It is
defined as the distance over which the light intensity is reduced
to of its input value. The decay length is the shortest at the
center of the stopbands. As the frequency approaches the edges
of the stopbands, the decay length increases. With the refrac-
tive index ratio , the decay length in 80 of the
stopbands is shorter than the period of the structure. Our calcu-
lation shows that the decay length decreases as the filling factor
increases.

IV. PARTIALLY ORDEREDSYSTEM

In this section, we will study two partially ordered 1-D
systems. In the first, the spacing between particles is ran-
domized, while the particle size is kept constant. Namely,

nm, , nm,
with a uniform distribution. Fig. 3(a) shows

the transmission spectra with various degrees of randomness
. The frequency is normalized to . The introduction

of randomness to a perfectly ordered structure decreases the
transmissivity in the passbands drastically and increases the
transmissivity in the stopbands slightly. As a result, the stop-
bands are widened. The transmission peaks in the passbands
disappear after ensemble averaging. The randomization of the
air gap thickness eventually removes the gap-related passbands.
However, the particle-related passbands survive, even in the
presence of a large degree of disorder (e.g., ). Their
spectral width decreases but eventually saturates to a finite
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(a)

(b)

Fig. 4. (a) Schematic diagram of the resonant transmission in the partial
random system. Top: type I, random gap layer with fixed dielectric thickness.
The transmissivity is 100% in the resonant mode. Middle: type II, random
dielectric layer with fixed gap thickness. The transmitivity is smaller than 1 due
to the reflection from the end boundary. Bottom: type II embedded in dielectric
materials. There is 100% transmissivity in the resonant mode. (b) Plot of the
ensemble averaged transmission spectrum of partial random system of type II
with 90% randomness with ten layers in the system. Dashed line: the sample
embedded in the air. Solid line: the sample embedded in the dielectric materials.

value. The maximum transmissivity within a particle-related
passband remains unity. Our calculation shows that the en-
semble-averaged transmissivity of a particle-related passband
approaches as increases, where is the transmissivity
of a single particle. Therefore, the partially ordered system
behaves like independent filters in series without multiple
interference among them. At the resonant frequencies of a
single particle surrounded by air, the transmissivity through a
single particle is also unity. As illustrated in the top diagram of
Fig. 4(a), when the light transmits 100% through one particle
due to Fabry–Perot resonance, it also transmits 100% through
the next particle, which has the same size and resonance as the
first one. Thus, the transmissivity through the entire structure
is unity, regardless of the degree of disorder in the particle
spacing.

Next, we randomize the particle size but keep the particle
spacing constant. Namely, , nm,

nm. Similar behavior is found in the trans-
mission spectra shown in Fig. 3(b). The frequencyis nor-
malized to . As increases, the particle-related passbands
diminish and eventually disappear. However, the gap-related
passbands survive due to the constant spacing between parti-
cles. The maximum transmissivity in a gap-related passband de-
creases slightly from unity. As illustrated in the middle diagram
of Fig. 4(a), the decrease results from the reflections at the two
boundaries of the system. Because the partially ordered system
is surrounded by air, the transmissivity of a gap-related passband
is equal to the product of multiples of the transmissivity of
an air gap and the transmissivity of two surfaces. If the sample
is surrounded by the dielectric material with refractive index
instead of air, as illustrated in the bottom diagram of Fig. 4(a),
the maximum transmissivity of the gap-related passbands re-
mains unity, regardless of the degree of disorderFig. 4(b).

In the above two types of partially ordered systems, the
combined passbands always remain. When the particle size
is randomized, light in the combined passbands can still
transmit through the system due to the resonant effect of the
air gaps with constant thickness. When the particle spacing is
randomized, the resonant transmission through the particles of
uniform size keeps the combined passbands remaining.

As a partially ordered structure gets bigger (the number of di-
electric layers increases), the spectral width of the remaining
passbands decreases. This can be explained by the effect of mul-
tiple filtering. As the number of filters increases, the passbands
become narrower.

V. COMPLETELY RANDOM SYSTEM

From the above results for partially ordered 1-D systems, we
realize that in order to have a completely random 1-D system,
we must randomize both the particle size and spacing. In the
present case, , nm. ,
and nm. For simplicity, we set in our calcu-
lation. Fig. 3(c) plots the transmission spectrum of a completely
random system. Unlike a partially ordered system, all passbands
diminish and eventually disappear as the degree of the random-
ness increases. Higher order passbands are
more sensitive to disorder. The transmissivity of higher order
passbands decreases more rapidly when randomness is intro-
duced. The transmissivity in the stopbands increases slightly
as the randomness increases. In the presence of large random-
ness, the band structures in the transmission spectrum disap-
pear, and the transmissivity is nearly zero everywhere except in
the zeroth-order passband. The wavelength of light in the ze-
roth–order passband is much larger than the particle size, so
that light simply passes through the medium without much scat-
tering. In this limit, the media behaves as if it is homogeneous.
Therefore, the transmissivity in the zeroth-order passband re-
mains high. Since all the light with frequency above the edge
of the zeroth-order passband is reflected, a completely random
medium behaves like a wideband mirror.

Next, we calculate the decay length in a completely random
system. The decay length is an important parameter for light lo-
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(a)

(b)

Fig. 5. (a) Ensemble averaged decay length versus frequency! for
different degree of randomness (� = 10%, 20%, 30%, 90%) in the type
of complete random system with ten layers! = 2�c=2(n a + n ),
a = 100 nm; b = 300 nmn = 3, n = 1. (b) Ensemble averaged decay
length versus randomness� at different bands for a complete random system
with ten layers.!=! = 1:0 (forbidden gap center),!=! = 1:2 (forbidden
gap),!=! = 1:33 (bandgap edge),!=! = 1:34 (slightly above bandgap
edge),!=! = 2:0.

calization. Here, we set nm, nm. Since
, we have . Thus, all the passbands are

combined passbands. Fig. 5(a) plots the decay length as a func-
tion of frequency for various degree of randomness. As in-
creases, the decay length in the passbands decreases, while the
decay length in the stopbands slightly increases. In the case of
large randomness, the decay length is nearly constant in the en-
tire frequency regime except the zeroth-order passband. To il-
lustrate this result more clearly, we plot in Fig. 5(b) the decay
length as a function of . The decay length is calculated at the
following frequencies: (at the center of the first stop-
band), (in between the center and edge of the first
stopband), (at the edge of the first stopband),

(slightly above the edge of the first stopband, in-
side the first passband), and (at the center of the first
passband). As increases, the decay length in the passband de-

creases, while the decay length in the stopband increases. Right
at the band edge, the decay length does not change much as

varies. When reaches 0.9, the decay length shows no fre-
quency dependence.

The above results are obtained for the half-filled medium
( ). Next, we increase the filling factor of the
random medium, while keeping the randomness of the particle
size equal to that of the particle spacing ( ). Because
the refractive index of the particles is larger than the refractive
index of the air gap, the fluctuation of the optical path length in
the particles ( ) is larger than that in the air gaps ( ).
The dense medium has more particles; thus, its overall random-
ness is larger than that of a loose medium, and the decay length
decreases with an increase of the filling factor.

When the randomness is introduced to a periodic structure,
some modes appear in the stopbands. They open up the chan-
nels for light propagation through the system. The frequencies
of the modes depend on the random structures [21]–[23]. In dif-
ferent random structures, the modes have different frequencies.
After ensemble averaging, discrete modes disappear. However,
the transmissivity in the stopbands increases, as does the decay
length. In the presence of small randomness, the modes in the
stopbands are close to the band edges. Thus, only the decay
length near the stopband edges increases. When the amplitude
of randomness becomes larger, more modes appear in the stop-
bands and the frequency approaches the central frequencies of
the stopbands. As a result, the decay length close to the center
of the stopbands starts to increase.

In a periodic structure, the modes in the passbands are formed
by constructive interference in the forward direction. When dis-
order is introduced to the system, the constructive interference is
destroyed and the modes in the passbands diminish. Hence, the
transmissivity decreases, so does the decay length. The modes
closer to the passband edges are more sensitive to the disorder.
In the presence of disorder, the modes closer to the passband
edges diminish quickly, while the modes near the center of the
passbands are less affected. Therefore, the decay length near the
passband edges drops quickly with the increase of randomness.
In the higher order passbands, the decrease of decay length is
even faster. This is because passbands with higher order reso-
nance are more sensitive to disorder.

VI. RANDOM CAVITY SIZE

In a conventional laser, a laser cavity is formed by two highly
reflective mirrors, as illustrated in Fig. 6(a). Light bounces back
and forth between them. In the case of 1-D random media, a
cavity can be formed by distributed feedback of light from two
separate spatial regions. The introduction of defects or disorder
in a random medium will increase the probability of forming a
resonant cavity. How is a cavity formed in such random media
with many random defects? How large is the cavity and how
good is the cavity? These questions will be answered in this and
the following sections.

In a random system, light can experience significant reflec-
tion from multiple dielectric layers of random thickness due to
wave interference effects. As shown schematically in Fig. 6(b),
a random cavity is formed by two stacks (the right-hand side
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(a)

(b)

Fig. 6. Resonant mode of laser cavity (a) Conventional lasers. (b) Random
media.

and the left-hand side) of multiple layers of random thickness
and spacing, which serve as two highly reflective mirrors.

The number of disordered layers needed to form mirrors of
high reflectivity will determine how large the random cavity size
is. Light inside the random cavity penetrates into the mirrors on
both sides for a certain distance. The penetration length is de-
fined as the distance over which the light intensity decays to
of that of the incident light. This is also called the decay length.
The decay length is a measure of how far the photons travel into
the media. When the scattering is strong, light cannot propa-
gate far and has a short decay length. In other words, the decay
length is an indication of the strength of photon trapping. The
decay length determines the number of random layers needed
to form mirrors of high reflectivity and also the size of the res-
onant cavity mode in the random medium.

The ensemble-averaged transmissivity decays exponentially
with the sample length. We can extract the decay length by
curve-fitting the transmission with the exponentially decay
function of distance , where is the decay
length. In our calculations, we obtain transmission as a function
of medium length. The transmissivity is ensemble averaged
over 1000 samples.

The decay length versus frequency of the completely random
1-D system with refractive index ratio is
plotted in Fig. 5(a). Different lines indicate different degrees of
randomness of the system. When the randomness is small, the
stopband and passband regions can be clearly distinguished. The
decay length in the stopband region is much smaller than that in
the passband region. As the randomness increases, the decay
length in the passband decreases. Photons in this frequency re-
gion are less likely to travel far. They are more likely to be
trapped in the random medium. While in the stopband, the decay
length increases as the randomness of the system increases. This
is because the introduction of disorder in the system reduces the
coherent interference. However, the decay length is still rela-
tively small compared with that in the passband region. When
the randomness is large , the decay length is almost flat

over the entire frequency regime except in the first stopband.
The decay length is on the order of one wavelength.

Complete light localization occurs if photons always return to
the point of origin. The degree of light localization depends on
the sample length. In a 1-D structure, there are only two escape
channels for the scattered light, forward or backward. As long
as the sample size is much larger than the decay length, light
will most likely return to the original point. Therefore, for 1-D
random media, strong light localization occurs when the sample
size is larger than the decay length.

To reduce the photon localization length and random cavity
size, we can either use a dense medium or increase the refrac-
tive index of the system. For practical applications, it is impor-
tant to find the optimal operation region that has strong con-
finement and low lasing threshold. It is also important to know
what system parameters will affect the localization length and
the cavity size. We will study the 1-D disordered system with
different filling factor and different refractive index.

The localization length for random systems of different filling
factor is plotted in Fig. 7(a). The filling factor is defined as

. This definition of the filling factor gives
the portion of the optical path in the particles versus the en-
tire sample. The plot shows that the localization length will ap-
proach a constant value at short wavelength. When the wave-
length is much shorter than the gap distance, the minimum scat-
tering length is the averaged inter-particle distance.

The normalized localization length (localization
length/wavelength) is plotted in Fig. 7(b). This ratio indi-
cates the degree of photon localization. For samples of a
different filling factor, the minimum ratio of localization length
to wavelength occurs at different frequency. When the filling
factor is 1:1, the minimum ratio of localization length over
wavelength occurs near the center of the first stopband. This
is because the interference effects between the particles and
within the particles coincide at this frequency.

Fig. 7(c) shows that the minimum localization length occurs
at the first stopband when the filling factor is 1:1. As the filling
factor deviates from the 1:1 ratio, the minimum localization oc-
curs at higher frequency region.

In Fig. 8, we plot the localization length for systems with dif-
ferent refractive index contrast. The localization length is nor-
malized to the wavelength. In this plot, the minimum localiza-
tion length is about for the case of . As the refractive
index increases, the normalized localization length decreases
and vice versa.

VII. CAVITY QUALITY FACTOR AND LASING THRESHOLD

In a 1-D random system, the bandgap effect persists in the
presence of weak disorder. When the randomness is small, the
decay length is short in the stopband. Because the density of
states is very low in the stopband, it is most likely to find the
cavity modes near the band edge. On the other hand, when the
randomness is large, the density of states increases in the stop-
band, but the decay length in the stopband also increases. It is
more likely to have modes in the stopband.

Furthermore, experimental measurement of random lasing is
carried out in a single sample. Its behavior is different from the
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(a)

(b)

(c)

Fig. 7. Random media with different filling factors. The filling factors (n a :

n b ) are 1:10 for dotted line, 1:1 for solid line, and 10:1 for dashed line.
(a) Localization length/a versus!=! . (b) Localization length/� versus!=! .
(c) ! at minimum localization versus filling factor.

ensemble-averaged behavior of the random media. To compare
with experimental data, it is important to understand the reso-
nant modes in individual samples.

Fig. 8. Localization/� versus !=! for different refractive index. The
refractive index isn = 2 for the dotted line,n = 2:2 for the solid line, and
n = 3 for the dashed line.

The transmission spectrum of a single sample is plotted in
Fig. 9(a). This sample is a completely random system with de-
gree of randomness . The sample length is larger than
the decay length. Light is localized in this sample. The sharp
lines indicate the resonant cavity modes in the sample. The spec-
tral linewidth reflects the quality factor of the random cavity
which determines the lasing threshold. By increasing the spec-
tral resolution, the linewidth of the resonant modes could be
found in the transmission spectrum. However, when the sepa-
ration of central frequencies of two resonant modes is smaller
than their linewidth, their transmission peaks are overlapped in
the transmission spectrum. It is then difficult to separate these
two modes to obtain their linewidth.

Thus, we use a different and more efficient method to ex-
tract the spectral linewidth of cavity modes. The frequency and
linewidth of the resonant mode in a dielectric medium can be
found by solving for the eigenmodes of the dielectric system.
A resonant mode is an eigenmode of the system. For the peri-
odic structure, in the passband there are resonant modes
corresponding to the eigenmodes of the-layer system.
Similarly, in the random media, we can find the resonant modes
by solving for its eigenmodes.

In a system of finite size, photons in a resonant mode can
leak out of the system. This loss gives a nonzero linewidth for
the resonant mode. We call these leaky resonant modes quasi-
states. In the transfer matrix method, a quasi-state satisfies the
boundary conditions that there is no input light into the system,
but there may be outgoing wave.

The propagation of light in 1-D random media can be calcu-

lated by a transfer matrix . Input and output light

are related by the transfer matrix

(1)

A quasi-mode corresponds to zero input light, e.g., ,
. Therefore, (1) becomes

(2)

Fig. 9(b) illustrates the boundary conditions for a quasi-state.
Such conditions require . In order to satisfy ,
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(a) (b)

Fig. 9. (a) Transmission spectrum of a single sample. (b) Quasi-state leaky mode.

Fig. 10. Linewidth distribution for first lasing mode [(b) and (d)] and all possible modes (density of state) [(a) and (c)]. (a), (b) Number density versus!.
(c), (d) Mean linewidth versus!.

the eigenfrequency must have an imaginary part. The
imaginary part of corresponds to the linewidth of the
quasi-state.

We compared the result of a periodic structure obtained
with the above method to the direct calculation of full-width at
half maximum (FWHM) of the transmission peaks. There is a
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Fig. 10. (Continued.)Linewidth distribution for first lasing mode [(f), and (g)] and all possible modes (density of state) [(e), and (f)]. (e), (f) Normalized
second-order variance versus!. (g), (h) Normalized third-order variance versus!.

one-to-one correspondence of the quasi-states of the system and
the transmission peaks of the periodic structure. The linewidth
of the quasi-states matches the FWHM of the transmission
peaks.

We apply this method to find quasi-states in individual sam-
ples. We find that the frequency and the linewidth of quasi-states
also match the frequency and the FWHM of the transmission
peaks in the transmission spectrum.

To obtain the general behavior of the quasi-states in the
random system, in Fig. 10 we plot the ensemble averaged
linewidth of the quasi-states in the random system versus
frequency. The frequency is normalized to. The system
is a completely random system consisting of ten dielectric
layers and nine air gap layers. The refractive index ratio is

. We take 4000 random configurations for
each value of randomness.

We obtain the density of states from the distribution of all
these resonant modes in the 4000 random configurations. In
each sample, among all the modes, we pick up the mode with
the minimum linewidth (maximum quality factor). This mode
has lowest loss and will lase first in this particular sample with
increase of optical gain. The statistics of these modes with min-
imum linewidth (first lasing modes) gives the distribution of
lasing threshold of the random system.

In Fig. 10, we plot the statistics of both the first lasing modes
and all modes (density of states) versus frequency. In Fig. 10(a)
and (b), we plot the distribution of the first lasing modes and
the density of states. This plot indicates how the modes are
distributed in the frequency domain. In Fig. 10(c) and (d), we
plot the mean linewidth of the first lasing modes and all modes
versus frequency. In Fig. 10(e) and (f), we plot the normal-
ized second-order variance , where is the av-
erage linewidth. This plot tells the width of the distribution.
In Fig. 10(g) (h), we plot the normalized third-order variance

. This value tells whether the linewidth distribu-
tion is symmetric with respect to mean linewidth. Symmetric
distribution gives zero value of normalized third-order variance.

From Fig. 10(b), the first lasing modes are located mostly at
the band edge when the randomness is small. As the randomness
increases, the lasing mode moves toward the stopband center,
the density of states in the passband decreases and the density
of states in the stopband increases [see Fig. 10(a)].

From Fig. 10(d) the lasing threshold decreases for the modes
located in passband and decreases in the stopband as the ran-
domness increases. In Fig. 10(c), the frequency dependence of
the mean linewidth is similar to that of localization length and
transmissivity. In the stopband, when the degree of randomness
in the system is small, the linewidth is almost zero in center of
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the stopband. Only near the band edge, the linewidth has a small
value. When the randomness of the system increases, the value
of the linewidth increases in the stopband. This means that there
is a higher probability of finding a cavity mode inside the stop-
band and the linewidth increases as the randomness increases in
the system.

In the passband, the linewidth is large when the randomness is
small. As the randomness of the system increases, the linewidth
decreases and the quality of cavity modes increases; i.e., the
modes in the passband become less lossy and have a lower lasing
threshold. When the randomness is very large, the linewidth of
quasi-states is the same across all frequencies. Thus the lasing
modes can be found at any frequency.

We also calculate the variance of linewidth of the lasing
modes as shown in Fig. 10(e) and (f). The normalized
second-order variance gives the fluctuation of lasing threshold.
As the randomness of the system increases, the distribution
of lasing threshold becomes wider. In the stopband region,
the distribution of lasing threshold is wider than that in the
passband region when the randomness is small. When the
randomness is large, the distribution of lasing threshold is about
the same in all frequency regions.

Fig. 10(g) and (h) plot the normalized third-order variance.
The third-order variance tells whether the distribution of
linewidth is symmetric with respect to the averaged linewidth
value. As the randomness increases, the distribution of the
lasing threshold becomes less symmetric. The distribution of
linewidth for all quasi-states is asymmetric in the stopband, but
symmetric in the passband. As the randomness of the system
increases, the distribution of the linewidth for all quasi-states
becomes more asymmetric.

We compare the linewidth of quasi-states in a random system
with the linewidth of the mode near the edge of passband of
a periodic structure and the linewidth of a single defect state
in a periodic system. The results indicate that the single-defect
system has the smallest linewidth when the defect is located in
the center of the stopband. But in a highly disordered system,
the minimum linewidth of the quasi-states is comparable to that
of the single defect mode. The lasing threshold in the highly
disordered system can be close to that of the single-defect mode.

In Fig. 11, we plot the lasing threshold versus disorder in the
completely random system with filling factor 1:1. The lasing
threshold first decreases then increases as the disorderness in-
creases. The minimum lasing threshold occurs not in a perfectly
ordered system or completely disordered system, but in a system
with certain degree of disorder.

VIII. C ONCLUSION

Our calculations for 1-D periodic structures show that there
are three types of passbands: particle-related passbands, gap-
related passbands, and combined passbands. The particle re-
lated passbands originate from the Fabry–Perot resonance of
a single particle and the gap-related passbands come from the
Fabry–Perot resonance of a single air gap. At common mul-
tiples of single-particle and single-gap resonant frequencies, a
particle-related passband and a gap-related passband merge and
form a combined passband. When randomness is introduced

Fig. 11. Minimum lasing threshold versus randomness in the system of
completely random system with a 50% filling factor.

to a periodic system, the behavior of a passband depends on
its origin. For example, when the spacing between particles is
randomized but the particle size remains uniform, the gap-re-
lated passbands diminish and eventually disappear at a large de-
gree of disorder. But the particle-related passbands survive and
the maximum transmissivity of particle-related passbands re-
mains unity, no matter how large the randomness is. We explain
this result with the single-particle resonance. When the particle
size is randomized but the particle spacing is kept constant, the
particle-related passbands disappear, but the gap-related pass-
bands remain. In both cases, the combined passbands remain.
The reason that some passbands survive is that some degree of
order remains in the random structure. When both the particle
size and spacing are randomized, all three types of passbands di-
minish and eventually disappear. The complete random medium
behaves like a broadband mirror through the entire frequency
region.

In such a random system, light can experience high reflec-
tion from the multiple dielectric layers of random thickness and
random spacing. With two stacks of those multiple layers of high
reflectivity which serve as two highly reflective mirrors, light
will be confined in between and a resonant cavity is formed.
Light inside the random cavity penetrates both sides of the mir-
rors for certain distance. This penetration length gives the size
of the random cavity. This value also determines the number of
layers needed to trap the photons inside. We found that the op-
timal region of strong localization occurs in the sample of 50%
filling factor.

We calculate the spectral linewidth and lasing threshold of
quasi-states in the 1-D random system. The statistics of all
quasi-states gives the frequency dependence of the density of
states. In each sample, we pick the mode with the smallest
linewidth or highest quality factor. This mode will lase first.
The statistics of linewidth of the first lasing modes gives
the distribution of the lasing threshold. Both statistics of the
lasing threshold and the density of states show strong bandgap
effect. In a weakly disordered system, the lasing mode is
located near the band edge and the density of states becomes
nonzero but small inside the stopband. As the randomness
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increases, the first lasing mode moves toward the stopband
center and the density of states increases in the stopband. In
the highly disordered system, the mean value of the lasing
threshold is uniform through the entire frequency region and
the distribution of lasing threshold is asymmetric with respect
to the mean value of the threshold. The spatial mode profile
of the first lasing mode is highly localized in the middle of
the sample. The minimum lasing threshold occurs at certain
degree of disorder. The results of this paper are restricted to 1-D
system. Localization behaviors in higher dimensional systems
are dramatically different [24] and deserve further study.
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