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Cavity Formation and Light Propagation in
Partially Ordered and Completely Random
One-Dimensional Systems
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Abstract—We study light transport in ordered, partially [ is the transport mean free path. John first suggested that the
ordered, and completely random one-dimensional (1-D) systems. |offe—Regel criterion could be more easily met in photonic crys-
In a periodic structure, there are three types of passbands with 55 with some disorder [8]. The density of states is nearly zero
different origins. When disorder is introduced to a periodic the band ed When the f f the light i
system, the passbands change differently, depending on their N€ar e. and edges. en the requenpyg .e ight Is near
origins. The transmissivity and decay length in the passbands near @ photonic band edge, the loffe-Regel criterion is replaced by
the band edges decrease drastically. The stopbands are widenedkc yst! < 1, whereke,ys IS the “crystal momentum” and is
The introduction of randomness to a periodic structure enhances much smaller thark. Therefore, introducing some order to a
light localization in frequency regions in which it is delocalized in disordered system helps light localization.

a periodic structure. In a completely random system, a resonant Light t ti disordered di is cl | lated t
cavity is formed by two stacks of multiple layers which serve as ight fransport in a disordered medium IS closely related 1o

two highly reflective broadband mirrors. We calculate the size that in an ordered medium. In this paper, we study how the
and the quality factor of 1-D random cavities. With an increase in  light transport behavior evolves when a one-dimensional (1-D)
the degree of disorder, the lasing threshold in such a cavity first system changes continuously from a perfectly ordered structure
decreases, then increases. The lasing frequency spreads from theq 4 highly disordered structure. Specifically, we calculate the
band edge toward the stopband center. S . ) .
_ _ - transmissivity, decay length and mode linewidth in 1-D systems
Index Terms—Cavity resonator, electromagnetic propagationin - that are ordered, partially ordered, and highly disordered.
random media, electromagnetic scattering by periodic structure, There have been many theoretical studies of periodic-on-av-
electromagnetic scattering by random media, random laser, .
random media. erage 1-D systems [9]-[14]. However, most studies were
limited to the case of weak disorder and the interplay of
the photonic bandgap (PBG) and light localization was not
. INTRODUCTION emphasized. In this paper, we focus on the effect of the

HE RECENT discovery of a random laser [1]-[3], alasdfBG on a random medium. We start with an ordered array

T made of a random medium, has received considera9kparticles having the same diameter. Then we either keep
interest. Random media, i.e., dielectric media with a randoif¢ Particle diameter constant and randomize the distance
spatial variation of the refractive index, can confine light in §etween particles, or randomize the particle diameter and keep
very small region. Itis possible to make a laser in such aranddh§ distance between particles constant. Both cases belong
medium that does not require a pre-defined physical cavitf. partially ordered systems. Finally, we randomize both the
To better understand the phenomenon and further investiga?étide diameter and the distance between particles to obtain
how the cavity is formed, we conduct a systematic study of tiilly disordered structures. _ _ _ _
impact of the material and geometric properties of a random!n our study of the optical properties of 1-D dielectric media
medium on the performance of random lasers. which transit from an ordered distribution to a disordered distri-

In contrast to a periodic dielectric structure is a system whepgtion, we found that the transmissivity and decay length near
the dielectric particles are randomly distributed. The interfef?® passband edges are very sensitive to disorder. With the in-
ence of scattered light ultimately leads to light localization [4}roduction of disorder to a periodic structure, the transmissivity
[5]. Therefore, light propagation can be inhibited in a diso@nd d_ecay length in the passban_ds near the band edge; decreases
dered system [6], [7]. To achieve light localization in a three-gfirastically. The stopbands are widened. Therefore, the introduc-
mensional (3-D) disordered system, the loffe—Regel criteridign of randomness to a periodic structure enhances light lo-

should be satisfiedk! < 1, wherek is the wavevector and calization in frequency regions in which it is delocalized in a
periodic structure. In the highly disordered cases, the partially
random system shows the remnant resonant peaks in the trans-
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random system, we calculate the localization length of lightand 1.0
the statistics of the resonant mode linewidth in each individual 0.8
sample. T 06
This paper is organized as follows. Section Il describes =~ %*
the random structures and the method of our calculation. In
Sections IlI-V, we discuss the effect of disorder on the PBG }
and its optical properties in media which transit from order 0
to disorder. Specifically, Section 1l is a brief review of PBG
physics. Section IV is a study of partially ordered 1-D systems.
Section V discusses completely random 1-D systems. In o
Section VI, we study the formation and size of resonant cavities =, 1
in random media. In Section VII, we study the linewidth of . 5]
random cavity modes and their statistics in the random system. ]

Finally, in Section VIII, we present our conclusions. 0.5
0.0

3.0

Il. MODEL OF RANDOM MEDIA

In this paper, our 1-D random medium model is comprised ofy. 1. (a) Transmission spectrum plot. Solid line: the ten unit cells with cell
dielectric slabs in air having random thicknessind spacing SizeA = a +b,a =100 nm, b =400 nm, n, = 3, n, = 1, wherew, =

; _ : : 27we/2(nq.a + n,b). Dotted line: the single dielectric layer= 100 nmn, =
b. Here, a slab is a 1-D representation of & partml@‘ndb 3. Dashed line: the single gap layler= 400 nm, n, = 1. The resonant peaks

have the mean valueg andbo, respectively. We assume=  of single dielectric or gap layer overlap with the passband of the ten-unit cell.
ao(l+20aT) andb = bo(l +2gb7~), wherer is arandom number This indicates there are two types of passband: the dielectric band and the air

by : band. When the two bands coincide, we call it a combined band. (b) Dispersion
distributed uniformly betweer0.5and 0.5) < o, andoy, < 1 relation X' — w of periodic structure. Th&9 (= 2N — 1) dots indicate the

give the amplitude of randomness, and(n;) is the refractive resonant modes of the ten-unit cell. The frequency of the resonant mode was

index of the dielectric slabs (air). modified by the dispersion curve.
For a periodic systens;,, = o, = 0. There are two types of
partially ordered systems. to individual structures have a significant effect, the ensemble

1) Random spacing, where the particle size is uniform, baverage should not be applied.
the spacing between particles is random. Here= 0,

o, > 0.

2) Random particle size, where the particle size is random-
ized, while the spacing between particles remains con-|ight transport in 1-D periodic structures has been exten-
stant. Herer, > 0 andoy, = 0. sively studied and well understood. Standard treatment can be

Both systems are partially random systems, because somefpand in[15] and [16] and the main results in [16]-[18]. To com-
rameter is kept constant. For a completely random system, bp#re with random structures in later sections, we will summarize
the particle size and the spacing between particles are randtime.important aspect of periodic structures obtained by standard
Here,o, > 0 ando, > 0. transfer matrix method.

The ratio of the average patrticle sizgto the average spacing A 1-D periodic structure of interest here is made of alternating
by gives the filling factor of the system. As the filling factor in-dielectric layers A and B. In the following discussion, layer A
creases, the medium becomes more compact. We further diides a refractive index, = 3 and a thickness = 100 nm.
random media into three categories in terms of the compactndsayer B has a refractive index, = 1 and a thicknes$ =
1) Denset,ao/nbo > 1), where the majority is dielectric ma- 400 nm. We define a unit cell as one pair of layer A and layer
terial; 2) loose . ao/nsbo < 1), where the majority is air; and B. The optical path length through a unit celllis = (n.a +
3) half-filled (n,a/nybo ~ 1), where the optical path lengthsn;b). The fundamental resonant frequency for a unit celbis=
in particles and air gaps are about the same. 27/ Ao, Wherew, = 21, is equal to the round-trip optical length

We use the transfer matrix method to calculate optical traris-the unit cell.
mission through a 1-D system [15]. The typical transmission Fig. 1(a) plots the transmission spectrum when the number of
spectrum for a specific random structure consists of many relelectric slabsV is equal to ten. The frequenay is normal-
onant peaks. Those peaks are washed out after the transimisd tow,. The frequency regimes with nearly zero transmis-
sion spectra are averaged over an ensemble of random steidity represent the stopbands for light propagation. The center
tures. The transmission spectra that we present in this pafreguencies of the stopbands are denoted hy= mw,, where
are averaged over 1000 random structures. We numerically fimdis a positive integer. The spectral width of the stopbands is
that averaging over 1000 realizations of the random structurepi®portional to the contrast of the refractive indices, indicated
enough to obtain the ensemble-averaged values. The enserbglén, — n;)/(n. + ny). Between two adjacent stopbands are
average gives some general characteristics of the random diethe-passbands. There are two sets of passbands. One setis called
tric media. However, we would like to point out that in the studparticle-related passbands, which are centered on the resonant
of the physical phenomena on which the fine features specifiequencies of a single partictew,, wherew, = 2wc/2n,a.

I1l. PERIODIC STRUCTURE
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3 _we. 3 Fig. 1(b) shows the dispersion relation for the lowest seven
passbands of the periodic structure. The transmission eigen-
’ ! respond to the resonant peaks of the passbands in the transmis-
sion spectrum. The number of transmission eigenmodes within
5
e A combined passband ha®y — 1 modes. These transmission
eigenmodes are not equally spaced in frequency. Toward the
i edges of the passbands, the transmission eigenmodes get closer
/1Y to each other. The spectral linewidth of the TEM near the pass-
. band edges is smaller than that of the TEM near the passband
) center. The envelope function for the TEM closest to the edge
. : of a passband has only one maximum. The second closest TEM
% oo, ¢ has two intensity maxima. As the frequency of a TEM moves
(b) closer to the center frequency of a passband, its intensity tends
Fig. 2. (a) Transmission spectrum of ten-unit cells ended with air (solf® distribute more evenly across the entire medium.
line) and single dielectric layer (dash line). The resonant peak in the As shown in Fig. 2(a), the transmission peaks in the par-
overlapped dielectric-like passband is modified by the resonant effect gfa_related passbands are less pronounced than those in the
the single dielectric layerw, = 2wc/2(n.a + ny), wo = 27c/2n,a, o
a =100 nm b = 400 nm. n, = 3,n, = 1. (b) Transmission spectrum gap-related passbands. This is caused by the boundary effect.
of ten-unit cell ended with dielectric materials (solid line) and single gaPthe periodic structure is surrounded by air. The transmissivity
layer (dash line). The resonant peaks in the overlapped gap-like passbanq@rghe particle-related passbands is modified by the transmis-
modified by the resonant effect of the single air gap layer= 2mc/2n;b. .. . . . .
sivity through a single particle. Fig. 2(b) shows the transmis-
sion spectrum when the periodic structure is surrounded by the
dielectric material of refractive index,. The transmissivity of
the gap-related passbands is modified by the transmissivity of a
single air gap surrounded by the dielectric material. Thus, the
transmission peaks in the gap-related passbands become less
pronounced.
Even though light within a stopband hardly transmits through
a periodic structure, it penetrates into the structure. The penetra-
tion depth is characterized by the decay length [19], [20]. It is
defined as the distance over which the light intensity is reduced
to 1/e of its input value. The decay length is the shortest at the
center of the stopbands. As the frequency approaches the edges
of the stopbands, the decay length increases. With the refrac-
tive index ration, /n, = 3, the decay length iR~ 80% of the
stopbands is shorter than the period of the structure. Our calcu-
lation shows that the decay length decreases as the filling factor
increases.

Fig. 3. Ensemble averaged transmission spectrum plots. (a) Partial random
system of type |, random gap thickndssfixed dielectric layer thickness, .

There are ten layers in the system with averaged gapbsizeb, . (b) Partial IV. PARTIALLY ORDERED SYSTEM
random system of type Il, random dielectric layer thicknessfixed gap

thicknessb,. There are ten layers in the system with averaged dielectric |n this section, we will study two partially ordered 1-D

thicknessa = ag. (¢) Complete random system, random dielectric laye . . . .
thicknessa, random gap thickneds There are ten layers in the system withgyStemS- In the first, the spacing between particles is ran-

averagedi = a, andb = b. Here, thexo, by, n., ns parameters are the samedomized, while the particle size is kept constant. Namely,
as the Fig. 2 periodic system. a = ap = 400 nm, b = bo(l + ngr), by = 100 nm,

r = (—=0.5,0.5) with a uniform distribution. Fig. 3(a) shows
The other set is called gap-related passbands, which are dhe-transmission spectra with various degrees of randomness
tered on the resonant frequencies of a single ainrgap, where o;,. The frequencyw is normalized tow,. The introduction
wp = 2me/2n,b. Within a particle-related passbands, the lightf randomness to a perfectly ordered structure decreases the
field is concentrated inside the particles. Within the gap-relaté@nsmissivity in the passbands drastically and increases the
passbands, the light field is concentrated inside the air gaps.tfensmissivity in the stopbands slightly. As a result, the stop-
shown in Fig. 1(a), some stopbands are closed and two adjands are widened. The transmission peaks in the passbands
cent passbands of different types merge. We call such a patisappear after ensemble averaging. The randomization of the
band a combined passband. It occurs at the frequency that &ragap thickness eventually removes the gap-related passbands.
common multiple ofvy, w,, andw,. With the parameters, we However, the particle-related passbands survive, even in the
use (qa/nyb = 3/4), the lowest order combined passband cepresence of a large degree of disorder (erg.= 0.9). Their
ters at o (= 3w, = 4wy). spectral width decreases but eventually saturates to a finite
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modes (TEMs) of alv = 10 sample, plotted as black dots, cor-
4 6 7 ¢ a particle-related or gap-related passband is equal te 1.
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Next, we randomize the particle size but keep the particle
spacing constant. Namely, = ao(1 + 20,7), ap = 300 nm,

& . . b = by = 400 nm. Similar behavior is found in the trans-
A andon A mission spectra shown in Fig. 3(b). The frequencys nor-
malized tow,. As o, increases, the particle-related passbands
diminish and eventually disappear. However, the gap-related
passbands survive due to the constant spacing between parti-
cles. The maximum transmissivity in a gap-related passband de-
creases slightly from unity. As illustrated in the middle diagram
of Fig. 4(a), the decrease results from the reflections at the two
B Randion B boundaries of the system. Because the partially ordered system
is surrounded by air, the transmissivity of a gap-related passband
is equal to the product d¥ —1 multiples of the transmissivity of
an air gap and the transmissivity of two surfaces. If the sample
is surrounded by the dielectric material with refractive indgx
; ; - instead of air, as illustrated in the bottom diagram of Fig. 4(a),
B Randon B the maximum transmissivity of the gap-related passbands re-

(@) mains unity, regardless of the degree of disordgeFig. 4(b).

In the above two types of partially ordered systems, the
combined passbands always remain. When the particle size
is randomized, light in the combined passbands can still
transmit through the system due to the resonant effect of the
air gaps with constant thickness. When the particle spacing is
randomized, the resonant transmission through the particles of
uniform size keeps the combined passbands remaining.

As a partially ordered structure gets bigger (the number of di-
electric layergV increases), the spectral width of the remaining
passbands decreases. This can be explained by the effect of mul-
tiple filtering. As the number of filters increases, the passbands
become narrower.

100%  100% _100%

V. COMPLETELY RANDOM SYSTEM

(b)
Fig. 4. (a) Schematic diagram of the resonant transmission in the pariglglize that in order to have a completely random 1-D system,

From the above results for partially ordered 1-D systems, we
The. wtanemiseiiy 15 100% in the resonant mode. Middie: type 11 randode MUSt randomize both the particle size and spacing. In the
dielectric layer with fixed gap thickness. The transmitivity is smaller than 1 dyeresent case, = ao(1420,7), ap = 400 nm.b = bo(14+2047),
to the_reﬂection fr_om the end boundary. B_ottom: type Il embedded in dielectré'g—]dbo = 100 nm. For simplicity, we sefr, = o} in our calcu-
materials. There is 100% transmissivity in the resonant mode. (b) Plot of - . .
ensemble averaged transmission spectrum of partial random system of ty;jgnon' Fig. 3(c) plots the transmission spectrum of a completely
with 90% randomness with ten layers in the system. Dashed line: the sami@dom system. Unlike a partially ordered system, all passbands
embedded in the air. Solid line: the sample embedded in the dielectric materigfiminish and eventually disappear as the degree of the random-
nesso (= o, = o3) increases. Higher order passbands are
more sensitive to disorder. The transmissivity of higher order
value. The maximum transmissivity within a particle-relategassbands decreases more rapidly when randomness is intro-
passband remains unity. Our calculation shows that the eluced. The transmissivity in the stopbands increases slightly
semble-averaged transmissivity of a particle-related passbasdthe randomness increases. In the presence of large random-
approaches? asoy increases, wherg, is the transmissivity ness, the band structures in the transmission spectrum disap-
of a single particle. Therefore, the partially ordered systepear, and the transmissivity is nearly zero everywhere exceptin
behaves likeN independent filters in series without multiplethe zeroth-order passband. The wavelength of light in the ze-
interference among them. At the resonant frequencies ofrath—order passband is much larger than the particle size, so
single particle surrounded by air, the transmissivity throughthat light simply passes through the medium without much scat-
single particle is also unity. As illustrated in the top diagram déring. In this limit, the media behaves as if it is homogeneous.
Fig. 4(a), when the light transmits 100% through one particleherefore, the transmissivity in the zeroth-order passband re-
due to Fabry—Perot resonance, it also transmits 100% throughins high. Since all the light with frequency above the edge
the next particle, which has the same size and resonance asofttbe zeroth-order passband is reflected, a completely random
first one. Thus, the transmissivity through the entire structumedium behaves like a wideband mirror.
is unity, regardless of the degree of disorder in the particle Next, we calculate the decay length in a completely random
spacing. system. The decay length is an important parameter for light lo-
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creases, while the decay length in the stopband increases. Right
at the band edge, the decay length does not change much as
o varies. Wherv reaches 0.9, the decay length shows no fre-
guency dependence.

The above results are obtained for the half-filled medium
(nqag = mnpbg). Next, we increase the filling factor of the
random medium, while keeping the randomness of the particle
size equal to that of the particle spacing, (= o). Because
the refractive index of the patrticles is larger than the refractive
index of the air gap, the fluctuation of the optical path length in
the particles 4,0,) is larger than that in the air gaps;ps).

The dense medium has more particles; thus, its overall random-
ness is larger than that of a loose medium, and the decay length

o e e decreases with an increase of the filling factor.

0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 45 When the randomness is introduced to a periodic structure,
(,)/(,)0 some modes appear in the stopbands. They open up the chan-

nels for light propagation through the system. The frequencies

@) of the modes depend on the random structures [21]-[23]. In dif-

e ferent random structures, the modes have different frequencies.
—o—olo=1.2 After ensemble averaging, discrete modes disappear. However,
—A— =133 the transmissivity in the stopbands increases, as does the decay
N TV oloy=1.34 length. In the presence of small randomness, the modes in the
% N b oe=20 stopbands are close to the band edges. Thus, only the decay
A, ‘\ length near the stopband edges increases. When the amplitude
\‘Skw): of randomness becomes larger, more modes appear in the stop-
— bands and the frequency approaches the central frequencies of

/ the stopbands. As a result, the decay length close to the center

/ of the stopbands starts to increase.

o A In a periodic structure, the modes in the passbands are formed
nn-n-monE by constructive interference in the forward direction. When dis-
o0 o2 o4 o6 o8 7o order is introduced to the system, the construc.tivg interference is
' ' ' ' ' ' destroyed and the modes in the passbands diminish. Hence, the
randomness ¢ transmissivity decreases, so does the decay length. The modes
(b) closer to the passband edges are more sensitive to the disorder.
Fig. 5. (a) Ensemble averaged decay length versus frequencior N the presence of disorder, the modes closer to the passband
different degree of randomness (= 10%, 20%, 30%, 90%) in the type edges diminish quickly, while the modes near the center of the
gfzcolrzg'it; rg‘”:do??a Osrl"ﬁ:‘;m 2’”; fleb” :'ai’?‘zsb) = sjﬁ%g{ezgfé(rla;eél éza'caypassbands are less affected. Therefore, the decay length near the
length versus randomnessat different bands for a complete random systenP@ssband edges drops quickly with the increase of randomness.
with ten layersw/w, = 1.0 (forbidden gap center)y/wo = 1.2 (forbidden  In the higher order passbands, the decrease of decay length is
ggg)ev)“if o — 1,33 (bandgap edge)y/wo = 1.34 (slightly above bandgap even faster. This is because passbands with higher order reso-
e nance are more sensitive to disorder.

Decay length &/(2n a +2n.b )

0.1

S
1
e

Decay length &/(2n_a +2n.b )
P\

o
g

calization. Here, we sety = 100 nm, by = 300 nm. Since
ng,ag = nybg, We havew, = wy. Thus, all the passbands are
combined passbands. Fig. 5(a) plots the decay length as a fundn a conventional laser, a laser cavity is formed by two highly
tion of frequency for various degree of randomnesas o in-  reflective mirrors, as illustrated in Fig. 6(a). Light bounces back
creases, the decay length in the passbands decreases, whilanideforth between them. In the case of 1-D random media, a
decay length in the stopbands slightly increases. In the caseca¥ity can be formed by distributed feedback of light from two
large randomness, the decay length is nearly constant in the ggparate spatial regions. The introduction of defects or disorder
tire frequency regime except the zeroth-order passband. Taitl-a random medium will increase the probability of forming a
lustrate this result more clearly, we plot in Fig. 5(b) the decagsonant cavity. How is a cavity formed in such random media
length as a function of. The decay length is calculated at thevith many random defects? How large is the cavity and how
following frequenciesw = wq (at the center of the first stop- good is the cavity? These questions will be answered in this and
band),w = 1.2 wyg (in between the center and edge of the firdghe following sections.

stopband)w = 1.33 wy (at the edge of the first stopband), In a random system, light can experience significant reflec-
w = 1.34 wy (slightly above the edge of the first stopband, intion from multiple dielectric layers of random thickness due to
side the first passband), and= 2.0 w, (at the center of the first wave interference effects. As shown schematically in Fig. 6(b),
passband). As increases, the decay length in the passband derandom cavity is formed by two stacks (the right-hand side

VI. RANDOM CAVITY SIZE
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over the entire frequency regime except in the first stopband.
- The decay length is on the order of one wavelength.
( , )| — Complete light localization occurs if photons always return to
Cavity the point of origin. The degree of light localization depends on
R=l RT3 the sample length. In a 1-D structure, there are only two escape
Mirror 1 Mirror 2 channels for the scattered light, forward or backward. As long
(@) as the sample size is much larger than the decay length, light
: will most likely return to the original point. Therefore, for 1-D
e b random media, strong light localization occurs when the sample
v : ‘ size is larger than the decay length.
To reduce the photon localization length and random cavity
size, we can either use a dense medium or increase the refrac-

= ™"

Randon 2 Cavity tive index of the system. For practical applications, it is impor-
tant to find the optimal operation region that has strong con-

1 ) 1 1 finement and low lasing threshold. It is also important to know
Mirror 1 Mirror 2 what system parameters will affect the localization length and

() the cavity size. We will study the 1-D disordered system with

Fig. 6. Resonant mode of laser cavity (a) Conventional lasers. (b) Randt()jr!rfferent f||||_ng f.aCtor and different refractive mde).(' -
media. ' The localization length for random systems of different filling
factor is plotted in Fig. 7(a). The filling factor is defined as
nqa0/(nqag + npbo). This definition of the filling factor gives
and the left-hand side) of multiple layers of random thicknegge portion of the optical path in the particles versus the en-
and spacing, which serve as two highly reflective mirrors.  tire sample. The plot shows that the localization length will ap-
The number of disordered layers needed to form mirrors pfoach a constant value at short wavelength. When the wave-
high reflectivity will determine how large the random cavity sizéength is much shorter than the gap distance, the minimum scat-
is. Light inside the random cavity penetrates into the mirrors @@ring length is the averaged inter-particle distance.
both sides for a certain distance. The penetration length is deThe normalized localization length  (localization
fined as the distance over which the lightintensity decaygto |ength/wavelength) is plotted in Fig. 7(b). This ratio indi-
of that of the incident light. This is also called the decay lengt@ates the degree of photon localization. For samples of a
The decay length is a measure of how far the photons travel igfigferent filling factor, the minimum ratio of localization length
the media. When the scattering is strong, light cannot propa-wavelength occurs at different frequency. When the filling
gate far and has a short decay length. In other words, the deggtor is 1:1, the minimum ratio of localization length over
length is an indication of the strength of photon trapping. Thgavelength occurs near the center of the first stopband. This
decay length determines the number of random layers neegedecause the interference effects between the particles and
to form mirrors of high reflectivity and also the size of the reswithin the particles coincide at this frequency.
onant cavity mode in the random medium. Fig. 7(c) shows that the minimum localization length occurs
The ensemble-averaged transmissivity decays exponentiatythe first stopband when the filling factor is 1:1. As the filling
with the sample length. We can extract the decay length Egctor deviates from the 1:1 ratio, the minimum localization oc-
curve-fitting the transmission with the exponentially decagurs at higher frequency region.
function of distancel (z) = I,e=*/¢, where¢ is the decay  In Fig. 8, we plot the localization length for systems with dif-
length. In our calculations, we obtain transmission as a functierent refractive index contrast. The localization length is nor-
of medium length. The transmissivity is ensemble averagethlized to the wavelength. In this plot, the minimum localiza-
over 1000 samples. tion length is abouh for the case ofi = 2.2. As the refractive
The decay length versus frequency of the completely randdnglex increases, the normalized localization length decreases
1-D system with refractive index ratio,ao : n,bg = 1 : 1is and vice versa.
plotted in Fig. 5(a). Different lines indicate different degrees of
randomness of the system. When the randomness is small, th@lII
stopband and passband regions can be clearly distinguished. The
decay length in the stopband region is much smaller than that inn a 1-D random system, the bandgap effect persists in the
the passband region. As the randomness increases, the d@cagence of weak disorder. When the randomness is small, the
length in the passband decreases. Photons in this frequencydesay length is short in the stopband. Because the density of
gion are less likely to travel far. They are more likely to bstates is very low in the stopband, it is most likely to find the
trapped in the random medium. While in the stopband, the deazgrity modes near the band edge. On the other hand, when the
length increases as the randomness of the system increases.r@imdomness is large, the density of states increases in the stop-
is because the introduction of disorder in the system reduces ltizend, but the decay length in the stopband also increases. It is
coherent interference. However, the decay length is still relaore likely to have modes in the stopband.
tively small compared with that in the passband region. WhenFurthermore, experimental measurement of random lasing is
the randomness is large= 0.9, the decay length is almost flatcarried out in a single sample. Its behavior is different from the

CAVITY QUALITY FACTOR AND LASING THRESHOLD
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Fig. 8. Localizationk versusw/w, for different refractive index. The
refractive index is» = 2 for the dotted linep = 2.2 for the solid line, and
n = 3 for the dashed line.

The transmission spectrum of a single sample is plotted in
»»»»»»»»»»»» n,a,:n,b,=1:10 Fig. 9(a). This sample is a completely random system with de-
n.a,nby=1:1 gree of randomness = 0.9. The sample length is larger than
1 280 Mp00=10- the decay length. Light is localized in this sample. The sharp
100 5 lines indicate the resonant cavity modes in the sample. The spec-
] "g tral linewidth reflects the quality factor of the random cavity
which determines the lasing threshold. By increasing the spec-
tral resolution, the linewidth of the resonant modes could be
found in the transmission spectrum. However, when the sepa-
ration of central frequencies of two resonant modes is smaller
than their linewidth, their transmission peaks are overlapped in
the transmission spectrum. It is then difficult to separate these
two modes to obtain their linewidth.
. . . . . . . . . X Thus, we use a different and more efficient method to ex-
o1 2 8 4 5 6 7 8 9 10 ¢{ractthe spectral linewidth of cavity modes. The frequency and

Localization length /A

/a0 linewidth of the resonant mode in a dielectric medium can be
(b) found by solving for the eigenmodes of the dielectric system.
3.0 7 A resonant mode is an eigenmode of the system. For the peri-
L] odic structure, in the passband thereare 1 resonant modes

corresponding to the — 1 eigenmodes of the-layer system.
Similarly, in the random media, we can find the resonant modes
by solving for its eigenmodes.

2.0 In a system of finite size, photons in a resonant mode can
leak out of the system. This loss gives a honzero linewidth for

2.5

_‘E 5 the resonant mode. We call these leaky resonant modes quasi-
= states. In the transfer matrix method, a quasi-state satisfies the
boundary conditions that there is no input light into the system,
g 1.0 1 / but there may be outgoing wave.
- The propagation of light in 1-D random media can be calcu-
05 . : . . . lated by a transfer matrik " ""12 ) | Input and output light
0.0 0.2 0.4 0.6 0.8 1.0 m21 MM22

are related by the transfer matrix
Filling factor

m m J
© (po) _ < 11 12) (P]\ ) ) 1)
do ma1  M22 qN
Fig. 7. Random media with different filling factors. The filling factors, @ : . ) )
nybo) are 1:10 for dotted line, 1:1 for solid line, and 10:1 for dashed linéA quasi-mode corresponds to zero input light, exg.,= 0,
(a) Localization lengthi, versuse/wy. (b) Localization lengthY versusw /wy. ¢ = 0. Therefore, (1) becomes

(c) w at minimum localization versus filling factor.

<0>:<m11 m12><PN> )

; - o Ma1  Ma2 0 )"
ensemble-averaged behavior of the random media. To compare

with experimental data, it is important to understand the reso-Fig. 9(b) illustrates the boundary conditions for a quasi-state.
nant modes in individual samples. Such conditions requirgr;; = 0. In order to satisfyn,; = 0,
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Fig. 9. (a) Transmission spectrum of a single sample. (b) Quasi-state leaky mode.
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Fig. 10. Linewidth distribution for first lasing mode [(b) and (d)] and all possible modes (density of state) [(a) and (c)]. (a), (b) Number density. ver
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the eigenfrequencyw must have an imaginary part. The We compared the result of a periodic structure obtained
imaginary party of w corresponds to the linewidth of thewith the above method to the direct calculation of full-width at
quasi-state. half maximum (FWHM) of the transmission peaks. There is a
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one-to-one correspondence of the quasi-states of the system and Fig. 10, we plot the statistics of both the first lasing modes
the transmission peaks of the periodic structure. The linewickind all modes (density of states) versus frequency. In Fig. 10(a)
of the quasi-states matches the FWHM of the transmissiand (b), we plot the distribution of the first lasing modes and
peaks. the density of states. This plot indicates how the modes are

We apply this method to find quasi-states in individual sanaistributed in the frequency domain. In Fig. 10(c) and (d), we
ples. We find that the frequency and the linewidth of quasi-state®t the mean linewidth of the first lasing modes and all modes
also match the frequency and the FWHM of the transmissieersus frequency. In Fig. 10(e) and (f), we plot the normal-
peaks in the transmission spectrum. ized second-order varian¢éy/¥) — 1)?), where# is the av-

To obtain the general behavior of the quasi-states in tkeage linewidth. This plot tells the width of the distribution.
random system, in Fig. 10 we plot the ensemble averagkdFig. 10(g) (h), we plot the normalized third-order variance
linewidth of the quasi-states in the random system vers((g//7) — 1)?). This value tells whether the linewidth distribu-
frequency. The frequency is normalized dg. The system tion is symmetric with respect to mean linewidthSymmetric
is a completely random system consisting of ten dielectriistribution gives zero value of normalized third-order variance.
layers and nine air gap layers. The refractive index ratio is From Fig. 10(b), the first lasing modes are located mostly at
ngag : npbg = 1 : 1. We take 4000 random configurations foithe band edge when the randomness is small. As the randomness
each value of randomness. increases, the lasing mode moves toward the stopband center,

We obtain the density of states from the distribution of athe density of states in the passband decreases and the density
these resonant modes in the 4000 random configurations.ofrstates in the stopband increases [see Fig. 10(a)].
each sample, among all the modes, we pick up the mode withFrom Fig. 10(d) the lasing threshold decreases for the modes
the minimum linewidth (maximum quality factor). This moddocated in passband and decreases in the stopband as the ran-
has lowest loss and will lase first in this particular sample wittlomness increases. In Fig. 10(c), the frequency dependence of
increase of optical gain. The statistics of these modes with mihe mean linewidth is similar to that of localization length and
imum linewidth (first lasing modes) gives the distribution ofransmissivity. In the stopband, when the degree of randomness
lasing threshold of the random system. in the system is small, the linewidth is almost zero in center of
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the stopband. Only near the band edge, the linewidth hasasme %%
value. When the randomness of the system increases, the vall

of the linewidth increases in the stopband. This means that ther __ 0.0010+
is a higher probability of finding a cavity mode inside the stop-
band and the linewidth increases as the randomness increases
the system.

In the passband, the linewidth is large when the randomness i
small. As the randomness of the system increases, the linewidt
decreases and the quality of cavity modes increases; i.e., th
modes in the passband become less lossy and have a lower lasi
threshold. When the randomness is very large, the linewidth o
quasi-states is the same across all frequencies. Thus the lasil
modes can be found at any frequency.

We also calculate the variance of linewidth of the lasing
modes as shown in Fig. 10(e) and (f). The normalized
second-order variance gives the fluctuation of lasing threshold.
As the randomness of the system increases, the distributfg 11. Minimum lasing threshold versus randomness in the system of
of lasing threshold becomes wider. In the stopband regidi¥mPpletely random system with a 50% filling factor.
the distribution of lasing threshold is wider than that in the

passband region when the randomness is small. When tbea periodic system, the behavior of a passband depends on
randomness is large, the distribution of lasing threshold is abatgt origin. For example, when the spacing between particles is
the same in all frequency regions. randomized but the particle size remains uniform, the gap-re-

Fig. 10(g) and (h) plot the normalized third-order variancgated passbands diminish and eventually disappear at a large de-
The third-order variance tells whether the distribution afree of disorder. But the particle-related passbands survive and
linewidth is symmetric with respect to the averaged linewidtihe maximum transmissivity of particle-related passbands re-
value. As the randomness increases, the distribution of theins unity, no matter how large the randomness is. We explain
lasing threshold becomes less symmetric. The distribution s result with the single-particle resonance. When the particle
linewidth for all quasi-states is asymmetric in the stopband, bsitze is randomized but the particle spacing is kept constant, the
symmetric in the passband. As the randomness of the systeafticle-related passbands disappear, but the gap-related pass-
increases, the distribution of the linewidth for all quasi-statégnds remain. In both cases, the combined passbands remain.
becomes more asymmetric. The reason that some passbands survive is that some degree of

We compare the linewidth of quasi-states in a random systejiier remains in the random structure. When both the particle
with the linewidth of the mode near the edge of passband site and spacing are randomized, all three types of passbands di-
a periodic structure and the linewidth of a single defect statginish and eventually disappear. The complete random medium
in a periodic system. The results indicate that the single-defeégshaves like a broadband mirror through the entire frequency
system has the smallest linewidth when the defect is locatedrégjion.
the center of the stopband. But in a highly disordered system|n such a random system, light can experience high reflec-
the minimum linewidth of the quasi-states is comparable to th@n from the multiple dielectric layers of random thickness and
of the single defect mode. The lasing threshold in the highkgndom spacing. With two stacks of those multiple layers of high
disordered system can be close to that of the single-defect maégiectivity which serve as two highly reflective mirrors, light

In Fig. 11, we plot the lasing threshold versus disorder in thgill be confined in between and a resonant cavity is formed.
completely random system with filling factor 1:1. The lasing.ight inside the random cavity penetrates both sides of the mir-
threshold first decreases then increases as the disordernesgoi3-for certain distance. This penetration length gives the size
creases. The minimum lasing threshold occurs not in a perfeatiythe random cavity. This value also determines the number of
ordered system or completely disordered system, butin a systieiers needed to trap the photons inside. We found that the op-
with certain degree of disorder. timal region of strong localization occurs in the sample of 50%
filling factor.

We calculate the spectral linewidth and lasing threshold of
quasi-states in the 1-D random system. The statistics of all

Our calculations for 1-D periodic structures show that theguasi-states gives the frequency dependence of the density of
are three types of passbands: particle-related passbands, gtgies. In each sample, we pick the mode with the smallest
related passbands, and combined passbands. The particldimewidth or highest quality factor. This mode will lase first.
lated passbands originate from the Fabry—Perot resonanceloé statistics of linewidth of the first lasing modes gives
a single particle and the gap-related passbands come fromtthee distribution of the lasing threshold. Both statistics of the
Fabry—Perot resonance of a single air gap. At common miasing threshold and the density of states show strong bandgap
tiples of single-particle and single-gap resonant frequencieseffect. In a weakly disordered system, the lasing mode is
particle-related passband and a gap-related passbhand mergdauaded near the band edge and the density of states becomes
form a combined passband. When randomness is introduceshzero but small inside the stopband. As the randomness
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increases, the first lasing mode moves toward the stopbarids] A. Yarivand P. Yeh, “Electromagnetic propagation in periodic stratified
center and the density of states increases in the stopband. In media, Il birefringence, phase matching and x-ray lasexsOpt. Soc.

the highly disordered system, the mean value of the Iasinc?g]
threshold is uniform through the entire frequency region an

Amer, vol. 67, pp. 438-448, 1977.
P. Sheng, B. White, Z.-Q. Zhang, and G. Papanicolaou, “Minimum
wave-localization length in a one-dimensional random medilhy's.

the distribution of lasing threshold is asymmetric with respect__ Rev. Bvol. 34, pp. 4757-4761, 1986.

to the mean value of the threshold. The spatial mode profil

20] Z.-Q. Zhang, K.-C. Chiu, and D. Zhang, “Method to measure the
localization length in one dimensionPhys. Rev. Bvol. 54, pp.

of the first lasing mode is highly localized in the middle of 11891-11894, 1996.
the Sample. The minimum IaSIng threshold occurs at Certali?l] K. M. Leung, “Defect modes in phOtOI‘liCS band structures: A Green’s

function approach using vector Wannier functionk,’Opt. Soc. Amer.

degree of disorder. The resqlts of thig paper are re_stricted ©01-D g vl 10, pp. 303-306, 1993.
system. Localization behaviors in higher dimensional systemg2] N. Liu, “Defect modes of stratified dielectric medi&hys. Rev. Bvol.
are dramatically different [24] and deserve further study. 55, pp. 4097-4100, 1997.
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P. M. Platzman, “Photonic band structure and defects in one and two
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