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Abstract

A simple approximation is developed for solving the “whispering gallery modes” of a microdisk laser structure using conformal
transformation and the WKB approximation. Using this method the spontaneous emission coupling factor of microdisk lasers
is estimated. The result predicts a # value of the orderof 10!,

Recently, McCall et al. have demonstrated a 2D
guided microdisk structure to achieve low-threshold
lasing [1]. This structure is an example of photonic
confined microcavities, where the photon density of
states and the spontaneous emission characteristics
are significantly modified [2]. The threshold current
of a microcavity laser with low transparency current
1s dependent mainly on the spontaneous emission
coupling factor # [3]. We have previously calculated
the decay rate of exciton in a one-dimensional cylin-
drical dielectric waveguide with high index guiding
{4]. In the calculations, the spontaneous decay is
modeled as stimulated decay due to stochastic vac-
uum field fluctuations [2-4]. The spontaneous
emission rate (y) is proportional to the modal den-
sity of states and the field intensity of a vacuum mode
at the location of the dipoles. More precisely, the
contribution to y from the guided mode n is [4]
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where A is basically the spatial mode area (i.e. the
transverse area of the mode ) times the dielectric con-
stant, £, is the mode function for the guided mode,
and # is the usual dipole matrix element. In the case
of the one-dimensional waveguide structure, the field
is quantized in the longitudinal direction (z-axis) via
the traveling-wave modes [4], where the number of
states per unit angular frequency is pr= (L./2x) dk,,,/
dw for each waveguide mode. To extend our theory
to a microdisk laser for estimating the S values, a
simple, approximate method for solving the wave-
guide modes and the density of states is developed
here. Knowledge of the mode size and the density of
states allows us to obtain the value of y,, according to
Eq. (1), and thus estimate the g value of the micro-
disk laser.

A microdisk laser as shown in Fig, 1a is character-
ized by two size parameters, d and R, where d is the
thickness and R the radius of the disk. The indices in
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the figure are taken to be that given by a semiconduc-
tor microdisk with n,=3.4 and n,=1.0. The wave-
guide modes travel around the edge of the disk by re-
peated total internal reflections, in a way similar to
the “whispering gallery modes™ [5]. In this paper the
whispering gallery modes are solved approximately
using conformal transformation and Wentzel-Kra-
mers-Brillouin (WKB) approximation. The modal
density of states and the mode field sizes are then
evaluated as a function of 4 and R. Finally, an esti-
mation for the f values of microdisk lasers is given,

The solutions for the conventional cylindrical
waveguide are Bessel functions, which are the solu-
tions of the wave equation in cylindrical coordinates.
For the case of microdisk, we adopt an alternative
treatment based on the method of conformal trans-
formation developed in Ref. [6]. Our approach dif-
fers from Ref. [6] in that we treat a disk waveguide
with finite thickness. In this approach, the wave
equation for the cylindrical waveguide is first trans-
formed into the Cartesian coordinate system (u, v)
which is related to (r, ¢) by a conformal transfor-
mation as follows [6]:

u=RIn(r/R), v=R¢. 2)

The “circular” waveguide is thus equivalent to a
“straight” waveguide in the (u, v) plane, and the in-
dex distribution has become a function of .

Under the transformation, the forms of ¥ 18 trans-
formed to y=F(u) exp(ik,v) cos(k,z), where k=
mg. The cosinusoidal variation of ¥inthe zdirection
accounts for the waveguiding in the plane of the disk.
Let us define an effective index n, to be k,=2an,/A
(4 is the free-space wavelength). Since ko=mg, us-
ing v=R¢ from Eq. (2) to eliminate ¢ we have
A=2nn,R/m.

Note that in the disk waveguide, for each k vector
there are two modes corresponding to two polariza-
tions. We shall define them as transverse electric (TE)
and transverse magnetic (TM) modes with the elec-
tric field and magnetic field, respectively, parallel to
the r direction as shown in Fig. 1a (in the figure the
direction of the electric field is indicated). This cor-
responds to having the electric field and magnetic
field, respectively, parallel to the y direction in the
transformed coordinate. Under our definition of TE
and TM modes, i is the z-component of the magnetic
field for the case of TE mode (i.e. the electric field
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Fig. 1. (a) Schematic structure of a disk waveguide with radius
R and thickness d. n, and n, are the refractive indices inside and
outside the disk. (b) Illustration of the form for k2(u) as a func-
tion of u.

has no z-component) [7]. Likewise, y is the z-com-
ponent of the electric field for the case of TM mode.
The radial function F(u) is then the solution of

d2F/du=—k2(u)F, (3)

where kZ(u)= (k3 —k2)exp(2u/R) —k2 for r<R,
ki(u)=(k3-k2) exp(2u/R) -k} for r>R, and k,
must satisfy the condition for guided mode: (k% -
k3) <k? < (k% —k?). The variables k, and k; are de-
fined as 2zn, /4 and 27n, /A respectively. The form of
ki(u)=[2nn,(u)/2)?%is illustrated in Fig. 1b, where
n,(u) is an effective index distribution in the u direc-
tion. The form of n,(u) inside the waveguide entails
that the radial distribution of the mode is skewed to-
ward the edge (i.e. r=R or #=0) since the index has
a maximum there.

As in a planar waveguide, k. is determined by
matching boundary conditions at the interface. For
the lowest-order TE modes, tan (k.d/2)=y/k,, where
d is the thickness of the disk, and k24+yr=k3(n? -
n3) with ky=2z7/A. Let n,=k./ ko, from these equa-
tions we can obtain #, as a function of d/i (A=w/c).
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The most interesting region of d/4 is below 0.5/n,
where only the lowest TE mode is guide [4].

Next, k, (1, or the mode number m) is determined
using the WKB approximation, by requiring the
quantization condition [8]:

jku(u)du=1n+¢l+¢2’ 1=0,1,2..., (4)

where the integral is taken over the classical region in
Fig. 1b, i.e. from the lower limit defined by k,(u)=0
to the upper limit =0 (or r=R). In Eq. (4), [isa
radial mode number, and ¢,, ¢, are phases deter-
mined by the shape of the potential function at the
turning points. For /=0, the calculated 7, as a func-
tion of R/A and d/A are shown by the discrete data
points in Fig. 2. Note that (i) n, is relatively insensi-
tive to R/ for R/1>2, and (ii) n, decreases with d/
1. This is because 7, increases with decreasing d/A.
To facilitate later calculations, we fit the calculated
n, with simple curves shown by the solid lines in Fig.
2, which have the following simple expression:

n,=a/n}—n2, a=s,—1—;ﬁ, (5)
where s,=0.984 and s,=0.163. Note that n, still de-
pends on d/4 via . Using Eq. (5) and the definition
of m, it follows that for a fixed d/A, and hence fixed
/n?—n?, there is a linear relationship between R/4
and m. Since m is an integer, this determines, for a
given R, the resonance wavelength 4, corresponding
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Fig. 2. The calculated effective index n, for the I=0 radial mode
as a function of R/A for various values of d/A. The solid lines are
curve fitting for the calculated points.

to each value of m. Specifically, A ,,=2nn,R/m.

The modal density of states, dk,/dw, for any guided
mode can be derived by making use of Eq. (4), and
noting that k,= wn,/c. Hence if n, is a function of only
R/4and d/2, then a general and complete expression
for dk,/dw is

dk, R dn,

(S R d dn,
dw ~° A d(R/A)

Ad(d/A)”

(6)

In Fig. 3, cdk,/dw for the lowest-order mode is plot-
ted as a function of d/A for various values of R/A. It
is noteworthy that dk,/dw is not sensitive to R/4, and
that the dependence on d// is significant only if d/A
is smaller than 0.2.

In order to evaluate the spontaneous emission rate,
we also need to determine the mode area 4 besides
the modal density. For the lowest-order modes, we
obtained A by approximating the two-dimensional
mode profiles with a product of cosine functions of
the form cos(nx/w,) cos(ny/d.), where w, is the ef-
fective width of the radial mode function, and d, is
the effective mode thickness in the direction perpen-
dicular to the disk. The effective mode thickness d, is
approximated by the width of the lowest order planar
waveguide mode. The value of w, is determined by
the radial functions for the (m, [) modes, which are
Bessel functions of order m, J,(qr), where g=
ko~/n? —n2. The outer limit of w, is simply given by
rou=R (or u=0) in Fig. 1b. The inner limit of w,
denoted by ry,, is approximately given by the classical
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Fig. 3. The dependence of the mode density dk,/daw for the low-
est-order TE mode on d/4 and R/A.
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turning point at r=r, shown in Fig. 1b at which
k,(u)=0. Setting k,(u)=0 gives ./n}—n?
exp(u/R)=n,. Using Eq. (5) we then obtain r, =
Ra=Rn,/./n?—n2. Using r| as an estimate for r;,
tends to underestimate w, because of the weak mode
confinement and a better estimate is given by
rn= Rn,/n, which is slightly smaller than r,. Using
this estimation for r, we obtain the following equa-
tion for w,/A:w,/A=(R/A) (1 —n,/n,). In this form,
w,/A is not only a function of R/A, but also of d/A.
Note that the radial mode widths are actually larger
for the disks with smaller d/A since they have larger
n,and hence smaller #,.

The modal density of states and the effective mode
size allow us to determine the spontaneous emission
coupling factor # for a microdisk laser. It is given by
B=R; /Ry, where R, is the emission rate into the las-
ing mode, and Ry is the total emission rate. We shall
take R, and Rr as normalized rates normalized by
the spontaneous emission rate in a bulk medium of
uniform index »,. We assume that the spontaneous
emission into the lasing mode only emits into one
guided mode spatially and into one cavity resonance
spectrally. The condition for the spontaneous emis-
sion to go spectrally into one single resonance mode
is Av.> Av,, where Ay, is the spontaneous emission
width, and Av, is the intermode frequency spacing,
given by Av.~c/(2nRn,) [3]. If Av<Avw,, then the
spontaneous emission will emit into other non-lasing
modes spectrally and the 8 value will decrease. This
condition, therefore, determines the maximum size
of the disk before the § value decreases. For example,
the spontaneous emission width of a quantum well is
typically 1% of the optical frequency, so at A=1.5 um,
the largest diameter of the disk that satisfies the con-
dition Av> Ay, is 9.5 pm. If several radial modes are
allowed, the dominant mode is one with the largest
cavity Q. The evaluation of Q is complicated as it de-
pends on the particular dominant loss mechanism. In
the case of radiation loss due to tunneling from the
disk, it can be shown that the Q is larger for the modes
with the larger values of m. We note that the values
of m for the /=0 modes are significantly larger than
those for the /=1 modes. Hence, the /=0 modes will
have larger Q values than the />0 modes and will be
the most likely to lase. The cavity resonance width
Av.,, is also related to Q, according 10 Ay, =Av./
Q. If Ay, << Av.,,, then the spontaneous emission rate

into the guided modes will be enhanced by a factor of
Q. On the other hand, if Ay, > Ay, then the spon-
taneous emission rate into the guided mode will not
be strongly affected by the cavity. The cavity en-
hancement factor will be averaged to around unity if
the spontaneous emission width approaches the in-
termode spacing. We will assume for our estimation
of § that this is the case [4].

It turns out that for the microdisk case Ry is close
to the bulk emission rate because of the high proba-
bility of spontaneous emission out through the center
and then out from the side of the disk. Thus we can
take Rt~1. In fact even for the strongly confined
waveguide of a microring cavity, Rt does not vary
from 1 by more than 20% (see Ref. [3]). By know-
ing dk,/dw and A4 as a function of R/J and d/4, one
can determine R, for a specific combinations of R/A
and d/A. We will restrict d/A to 0<d/A<0.5/n,,
which is the region of interest for microdisk lasers
where we want all the emissions into a single lasing
mode. The calculated f is plotted in Fig. 4 with re-
spect to R/A and d/A. Note that the § value for partic-
ular R/A is around the highest at d/A~0.14, which is
right at the disk thickness that cutoff the second or-
der planar guided mode. The § value reduces with re-
duced disk thickness d because of the broadening of
the guided mode at small 4, leading to a larger mode
width w,. On the other hand the § value increases with
decreasing disk radius R due to the reduction of the
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Fig. 4. The calculated spontaneous emission coupling factor, f,
for microdisk lasers with varying size parameters (R/A, d/4), as-
suming only one guided (lasing) mode is supported.
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mode width at smaller disk radius. Physically, a
smaller mode width corresponding to a larger mode
guiding angle, which allows the lasing mode to cap-
ture more spontaneous emission.

The calculation of the § value is done with the as-
sumption that only the radial dipole is excited by the
pump (i.e. the non-isotropic pumping). In the case
of isotropic excitation (i.e. all three dipoles are
equally excited) which is normally the case in prac-
tice, the B value will vary. However, we note that it is
shown in Ref. [4] that the radiation is non-isotropic
even when the excitation is isotropic. In particular,
the z-dipole emission is suppressed by the thin disk
due to the reduction of the z component of the vac-
uum field. In fact the z dipole emission rate will be
further reduced if quantum wells are used inside the
disk as the active medium {9]. As a result there will
only be r and ¢ dipole emissions even under isotropic
excitation. Since only r dipole emits into the lasing
mode, the value will be approximately half of that
considered here.

The B value obtained here can be compared to the
case of microring laser considered in Ref. [3]. The
value of a microdisk laser is generally smaller than
that of a micro-ring laser, this is primarily because of
the weaker mode confinement in a microdisk struc-
ture, except when the radius is of the order of a wave-
length. For the microdisk case, if the laser is multi-
mode with several radial modes (/=0, 1, ...) then the
B value will be even smaller.

In conclusion, we have developed an approximate
method for solving the whispering gallery modes in a
microdisk laser. Conformal transformation of the

wave equation for the circular disk is used to show
the effective radial index distribution which provides
guiding action to confine the mode near the edge of
the disk. The effect of the disk thickness is also evi-
dent in this approach. We showed that the sponta-
neous emission coupling factor of a microdisk laser
is smaller than a laser with an ideal cylindrical wave-
guide structure with strong index guiding. Neverthe-
less, a considerably high value of 8, 0.1-0.2, can still
be achieved in a microdisk laser with a cavity Q value
of unity. In practice, the microring laser geometry is
not easy to achieve.

This work is supported by National Science Foun-
dation contract ECS-9210434.
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