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ON THE CONCEPTS OF PHOTONS AND PHOTODETECTION
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The concepls of photons and photodetection are examined in a unified manner by a careful construction of Jocalized-photon
creation and annihilation operators. Photons are shown to be localizable in their direction of propagation. An ideal but
realistic photodetector is shown to sense the localized photons. Tt is found that a photodetector with a finite bandwidth may

give a small but non-zero mean photocurrent in the vacuum.

1. INTRODUCTION

The concept of photons is often debated in the literature.
For example, there are questions as {o whether photons can
be exactly located in free space.! On the other hand, the
concept of photodetection has been developed in quanium
optics,? showing that the quantization of the electromagnetic
field becomes important when dealing with detectors with
near-unity quantum efficiency. The quantization of the elec-
tromagnetic field and the concept of photons should be re-
lated. In fact, it has been implicitly assumed in guantum
optics that the number of photoelectron emissions in a detec-
tor is approximately equal to the number of photons entering
the detector if the detector has a unity quantum efficiency.
However, as far as I know, such a viewpoint has not been
shown in any exact manner. In this short paper, I give a
summary for a theory that will provide some answers to the
above questions by building a concept of photons based on a
quantum measurement theory of an ideal detector.

1 approach the problems by constructing operators that
can be interpreted as the creation and annihilation opera-
tors of photons in some localized regions of space. 'These
operators will be rcferred to as the localized-photon creation
and annihilation operators (I.PCAOs). [ specialize the con-
struction to one spatlial dimension, defined by the direction
of photon propagation. Such a specialization is not a Joss of
generality, as it will enable us to describe the realistic situ-
ation where photodetection is achieved by having a beam of
photons propagating into a detection region. For simplicity,

plane-wave modes will be used in this construction.
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2. CONSTRUCTION AND PROPERTIES OF LPCAOs
Let us begin by quantizing the electromagnetic field with
Coulomb gauge in a box of volume Vg with periodic bound-
ary conditions in the usual manner, and denote the corre-
sponding Heisenberg annihilation operators by {a.(2)}. The
spatial coordinates are given in terms of a Cartesian coor-
dinate situated at the center of Vg. The coordinate unit
vectors will be denoted by €, &, and &, respectively. Let
Vo = I%‘z and divide Vg into 2N+1 small slabs ol equal lengths
I;, along the té, directions, where N is a positive integer.
The centers of the 2N+1 slabs, namely slab {0,.., N}, are
at z = {Ro,.., Ren}, 1espectively, where By = p I A
localized-photon annihilation operator (L PAQ) with positive

wave vector, krm = kLmé: (krm > 0), is defined as follows:
. kim . .
bll,m(R‘l'”t)E /dzl f Illzfizp('lk,/mz)/‘(z,l,+)7 (1)
o L

where A(z, {,+) is an operator related to the -+z propagaling
part of the vector-potential operator,® and is given by:

51 Y kal ™ P i (Oezp(ikaz) + i (Desp(~ika2)}. (2)

n
ka>0

The spatial integration in (1) is carried out only over the
length of the slab located at R, defined by the interval:
[1/2 + Ry, 1n/2 + Rp). The sum in (2) is carried out
only over positive k,. One can also define a —2 propagating
vectonpotential-like operator, .AA(z,t,—)7 using an equation
similar to (2), but with a sum over negative k,. The localized-
photon annihilation operators with negaiive k,, can then be
defined in a similar manner as (1) but with A(z,1, +) replaced
by fi(z, 1, =). The k-vector &y, is quantized in the volume Vg
oflength Ig so that k, = 2nx/ly, where n € {0, £1, £2,..}.

However, the k-vector ky,, is quaniized in cach slab of length
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Ig so that kp, = 2mn/i;. The index m also takes on integer
values, except that it is necessary to split the m = 0 case into
two cases, namely m = +0, defined by the limiting process
+0 = lim_q %|e|, respectively. In any case, il turns out that
the m = +0 modes do not carry the dynamics of real photons
and do not participate in causing atomic transitions. lence,
[ will not discuss them in this paper. The index m below
shall then be taken as excluding the special cases of m = $0.

It is also essential to take the limil /g — oo in (2). Tak-
ing this limit resolves the question as to whether one should
include n = 0 terms in (2), as the question then becomes im-
material. More importantly, the commutation relations for
A(z,1,+) and A(z,1, ) are sensitive to the length lg, and
the formulation below requires lg — co.

The localized-photon creation operators are obtained by
taking the Mermitian conjugate of the localized-photon anni-
hilation operators. The LPCAOs at a general location 7 can
be defined by replacing R, in (1) by .

One can derive the commutation relations: [by,m(Rp,1),
B (B, 0] = b, a0 [ty 2), byt (R, 1] = 0,
which are like the usual raising and lowering operator commu-
tation relations. However, the delta function 6, tells us that
any two such operators from different slabs commute with
each other. Such commuting property qualifies i;,TLm(R,,,t)
and I;;Lm(]{p,t) as creation and annihilation operators that
are localized in slab p.

One can build a Fock space for slab p in the usual manner
by defining the localized vacuum |0 >i, R, to be such that
I;ILm(Rp,D)IO > r,= 0 for all m. This shall be called the
localized Fock space, and the cortesponding I'ock states in
the space shall be called the localized-photon number states.
Note that the usual vacuum for the entire box of quantization
0 > is not annihilated by b, me( Ry, 0) becanse of the {di(t)}
terms in (2). Hence, |0 >y, g, is not the same as [0 > but is
related to the usual Fock states via a Bogoliubov transforma-
tion. One can also define a localized-photon number operator
for slab p by: N;Lm(r i) = b,ibm(r,t) éle(r, 1).

Using the usual non-relativistic minimal interaction
Hamiltonian applied to a collection of single-electron atoms,

one can derive the following equation of motion for d,(2):

5(3) .
n(t)— — (1) - (%)ZQpat(t)exp(ﬁknrgﬂ)‘ (3)

where, wy, = [kale, g0 = (B/26,wnl})' 2, BU)(1) is the dipole-
(7)

moment operator for the j* atom, and r;”’ is the z coordinate
of the j* atom. In equation (3), the dipole approximation
has been made. Using this equation of motion, one can derive

the equation of motion for 511,,,,(1', 1):

9 0 m

(7 + Sime hium(r, ) = —iwpmbiym(ry) - (5™ 3
b

Ou" 289

——[ezp(— ikpmt)) — cos( )ezp(—szmr)} 4)

where SLm = Sign(kpm), Wpm = ]IsLmlc, and gpm = (h/2¢,
wLmI%IL)‘/z. The sum in (4) includes only those atoms in
the slab at r. Thus, b m(r, 1) only interacts with the atoms
in its volume of localization. In free space, fnm(r,t)
can be readily solved giving: 51Lm(r+5mct,l) = (;ILm(r,O)
exp(—iwpmt), which clearly shows a sense of photon propa-
gation to the %€, directions for mZO, respectively. In fact
it can be shown that the classical limit for an eigenstate of
I;lbm(r,()) is just a sinusoidal light pulse of length i,

To understand how photon energy causes atomic transi-
tions, let us consider the simple case where a group of atoms
is situated in the 2=0 plane. Let us denote the electron occu-
palion number operator for energy level I of the ;% atom by
ﬁfj)(t). By inserting complete sets of atomic wave functions,
the atomic operators in the Hamiltonian can be put into a
second-quantized form. Using the second-quantized form of
the Hamiltonian, one can conveniently derive the equation of
motion for nEJ)( 1). With the help of (4), one can also obtain
an equalion of motion for the localized- photon number oper-
ator N,Lm(r, 1). By integrating the equations of motion for
both ﬁfj)(i) and N;Lm(r, Hfromt=0tot=1I/c=T, the

following identity can be shown:

i I A !
Z thm[NILm(‘"SLm_ZI—yO) - Nle(S[,m-éin)] =

)= 2(0)] + B Eing, (5)

Z El (J)

where AE;, is an operator term expressing the difference
between the values of the atom-field interaction energy at
t =T and t = 0, respectively. Equation (5) shows the con-
servation of enetgy, that a decrease in the total local photon
energy after the photons pass through the atoms is equal to

an increase in the total atomic emergy plus an increase in
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the atom-field interaction energy. The left-hand side of (5)
accounts for both the +z and —2 propagating photons.

3. AN IDEAL PHOTODETECTOR

A photodetector can be constructed with a high density
of ground-state atoms distributed in the z=0 plane. An ion-
ization chamber is set up in such a way that, when triggered,
it will ionize all electrons that are not in their ground states.
This means that those electrons not ionized will be projected
back to their ground states after the ionization. The trigger-
ing of the ionization is designed to occur periodically with
time intervals T = I,/c. As this happens, the ionization cur-
rent will be made up of bursts of electrons. The number of
excited electrons at the end of each period is again governed
by (5). However, the atom-field energy term is negligible.
This follows because, before and after each period, the atoms
are in the energy eigenstales, which have zero mean dipole
moments. If we further assume that all the photon energy is

absorbed at unify-quantum efficiency, then we have:
By 40T = Y g Niym(=Stm £, 0 6
Z ‘nl ( )"Z Wim ll,m( I;mzy ) ()
Jl m

Equation (6) shows that such a detector does not, in gen-
eral, detect photons. It only responds to photon energy.
This is because of the non-zero probability for multi-photon
transitions. However, such probability may be negligible at
resonance. It can be shown that al a prominent resonant
frequency w, such that w, = wpm, (6) can be reduced to:
55 89(T) = Yoy e twn Nipm(=Smlr/2,0), where 29(1)
is the upper-level occupation number operator. The deriva-
tion of (6) is based on the identity (5), which suflers from the
problem that it cannot tell us whether the above assumption
at unity quanium efficiency is approptiate or not. However,
ﬁ}j)(T) can also be solved perturbatively in terms of opera-
tors at t=0. The periurbative approach supports the above-
mentioned assumption and will be described elsewhere.
Because of the existence of {al} terms in i),m, the vac-
uum expectation value of Ny, ,(0): < 0|N;,m(0)I0 >, is not
zero and is about 0.075 for m = 1. 1t is approximately in-
versely proportional to if,/c at a fixed wy,,. It can be shown
that the atom-field interaction time T basically limits the re-
sponse bandwidth of the detector to the radio-frequency (RF)

modulations on an optical beam. Its inverse: 1/T, shall be

referred to as the intrinsic RF bandwidth (IRFBW). The re-
sults here imply that a detector with a finite IRFBW may
give a small but non-zero mean photocurrent in the vacuum.

The LPAO given by (1) relates the photon annihilation
operators to a local spatial integration over the +z and —z
propagating parts of the vector-potential operator. This is
perhaps more satisfying? than the usual way of relating the
photon annthilation operators to the negative-frequency part
of the field. As the negative-frequency part can be isclated
only through infinite-time integration, it is physically absurd
to expect any finite-time measuring process to be able to
“see” the negative-frequency part.

The concept of photons as particles in this formulation is
best seen not as an absolute entity but as dependent on the
IRFBW of the detector that is used to detect them. In this
formulation, the photons seen by the detector are well defined
mathematically, and both the photons and their energy can
be localized exactly in the same region of space.

This formulation gives a theoretical framework to describe
localization of photons along their direction of propagation.
The use of plane-wave modes is, however, not recessary. For
example, one can use modes that have finite lateral dimen-
sions, which will enable one to describe photons that are lo-
calized laterally. This formulation clearly shows that, as time
progresses, a photon wave packet propagating in free space
will not spread out along its direction of propagation. One
would, however, expect it to spread out laterally, in a way
according to the law of diffraction.
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3. It is not possible to use +2 propagaling field operators
as they will give an unbounded < 0|N;,,,(0)[0 >.

4. Actually, A(z,1,4) has a component thal interacts non-
causally with the atoms. However, by, (mZO) only

depends on the component of A(z,¢,4) thal is causal
(within the coarse-grain-time I1,/c).



