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A quantum theory of nondegenerate multiwave mixing in a two-level atomic medium is formu-

lated, with emphasis on traveling-wave interaction geometries.

Two equivalent alternative

methods are developed to treat, with some rigor, the spatial propagation of the interacting mul-
timode traveling-wave field. The theory is applied to the case of a single beam propagating
through the medium to obtain the spectrum of squeezing. The effects of spontaneous emission,
propagation loss, atomic collisions, and pump-probe phase mismatch are comprehensively taken

into account for the first time.

In this Rapid Communication, we summarize our for-
mulation of a quantum theory for nondegenerate mul-
tiwave mixing in an atomic medium, and we report its ap-
plication to traveling-wave squeezed-state generation ex-
periments via four-photon mixing in such a medium.'
The theory predicts squeezing in resonance fluorescence,?
degenerate four-wave mixing,? and nondegenerate four-
wave mixing® in a consistent manner. The effects of spon-
taneous emission, propagation loss, atomic collisions, and
pump-probe phase mismatch on squeezing are properly
taken into account. A preliminary analysis of the effect of
superradiance has also been carried out.

In the frequency-degenerate limit, without considera-
tion of pump-probe phase mismatch, our theory agrees
with the earlier work of Reid and Walls,? and in the thin-
medium approximation it correctly reproduces the results
of Heidmann and Reynaud.? Recently, other* quantum
theories for nondegenerate four-photon mixing have been
developed and applied to intracavity atomic-beam
squeezed-state generation experiments.” Our formula-
tion, besides giving a more general expression for the
atomic polarizability, differs from theirs in an essential
way in that we handle the slowly-varying-amplitude ap-
proximation in the frequency domain. This approach
more rigorously justifies the adiabatic approximation for
the elimination of atomic variables, and leads to extra
terms which are important for a consistent treatment of
spatial propagation. Instead of adopting the heuristic
t— z/c transformation used in almost all the previous
works, we have developed two equivalent methods to treat
with some rigor the spatial propagation of a multimode
traveling-wave field. The slowly varying-envelope method
places a much better limit on the validity of the
squeezed-noise calculations using the t— z/c transforma-
tion,> whereas the quantum-mode method provides physi-
cal insight into how the time evolution of the usual annihi-
lation operators leads to spatial propagation of the wave.
Our inclusion of pump-probe phase mismatch, collisions,
and superradiance also gives rise to additional effects not
considered elsewhere.

In this theory, we consider a system of N stationary
two-level atoms, uniformly distributed over a volume Vyy,
interacting with an infinite number of electromagnetic
field modes quantized with periodic boundary conditions
in a box of volume V> V),. We consider the explicit dy-

35

namics of g of these modes, leaving the rest as a common
thermal-field reservoir for all atoms; this is physically
realistic, and gives additional decay and fluctuation to the
atomic variables due to cooperative behavior. Soft col-
lisions between the atoms are modeled by coupling each
atom to a separate phase-damping reservoir.

For this system, under dipole and rotating-wave ap-
proximations, we can derive the following set of c-number
Langevin equations for the atomic variables using stan-
dard techniques:®
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Here w, is the atomic resonance frequency, ng; =1—n;, V;
and n; are the c-number atomic down transition and
upper-level occupation variables, respectively, for the ith
atom, and

a, () =3 C;(t)a; (1)
j=1

gives the multimode field variable in terms of the coupling
coefficients {Cj(r,-)} for the jth mode to the atom at r; and
the c-number variables {a;(¢)} for the field modes. The
terms proportional to y; contribute extra damping to the
ith atom due to collective spontaneous decay arising from
the dipole phase coherence of the ith atom with the rest of
the atoms. When the atomic medium is saturated by a
pump mode with wave vector k, then these superradiance
terms are negligible when either (a) the number of atoms
in a diffraction volume Np =X,§'LMN/VM <1, where
Ap=2n/lk,|, and Ly is the medium length, or (b) the
atoms are off-resonantly pumped so that | (|k,, |
—wa/c) | Ly > Np. With collisions, the transverse relax-
ation rate y, is related to the longitudinal relaxation rate
yivia YL =yp,+ /2= y/2F with 0< F <1, where y, is
the collisional dephasing rate. F =1 corresponds to no
collisions.
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Neglecting the superradiance terms,
v O fv @), (fo O f, @),
ng O [ (1)) = = {f, () 5, (1))

=0, () f0, @),

and
Sy f, @)

are the only nonzero Langevin-noise correlations. All are
proportional to 6(z —¢')§;;, with the first factor due to the
usual Markov approximation, and the second to our as-
suming a zero-temperature thermal reservoir. The §-
function coefficients are similar in form to those in the de-
generate theory.3

Equations (1) and (2) can be solved by Fourier decom-
position using series expansions for the field variables

©o
ap, (1) =73 Axexp(—ivgt) ,
k=1
and Fourier transforms for the atomic variables and the
noise forces, e.g.,

ne(t) =f_:dwn,,.(w)exp( —iot) .

This procedure gives us an infinite set of coupled equa-
tions for n,,(w— vk ), which can be solved iteratively to
give n.(w) as a power-series expansion in the Fourier
coefficients {4;}. This power series converges under cer-
tain circumstances, e.g., when the pump modes are strong
and degenerate in frequency, whereas the other nondegen-
erate modes are weak.

Further, assuming that a,, () can be approximated by ¢
slowly varying amplitudes {a;(¢)} related to {a;(¢)} via

a;j(t) =a;()exp(—iwjt) ,

we can solve for the atomic transition (or polarization)
variable ¥ (¢) in terms of {a;(z)} and their first deriva-
tives {(d/dt)a;(t)} under the approximation that {a;(¢)}
do not change substantially during the characteristic re-
laxation time 1/y, of the atoms. The first-derivative
terms are essential to properly account for the refractive
index and the group velocity of wave propagation. The
solution for ¥, (¢), thus obtained, consists of a determinis-
tic part and a Langevin-noise part which is no longer é-
function correlated in time, but shows the spectrum of res-
onance fluorescence.

Substituting ¥, (z) into the Langevin equations for the
field modes, we obtain a set of temporal coupled-mode
equations for {a;(z)},
aaj

—at_ = —-z’(wj—w})aj(t)

+fyudrngV,J’V,(t)exp[i(w}t—kj-r)] .3

We note that wj*w;, in general, because of the atom-field
interaction.

For many quantum-optics problems, given the input
state to the medium at z =0, we want to find the output
state after paraxial propagation through the medium at

z=Ly. We have dealt with this problem of spatial propa-
gation of quantum fields by two different methods. In the
quantum-mode method we utilize the solutions of Eq. (3)
to obtain an approximate expression for the c-number
electric field variable E(z,¢). If we assume the initial con-
dition that a;(r =0) =0 for all j=m, we can then make
the quasimonochromatic approximation and employ the
paraxial-wave treatment. This initial condition implies
that, at z =0, the wave going into the medium is oscillat-
ing at frequency w,, for t =0, thereby exciting a quasi-
monochromatic field E,(z,z) of nominal frequency w,,
propagating in the region z > 0. Because of the integra-
tion over the finite size of the medium in Eq. (3), the input
mode amplitude a,, is coupled to the amplitudes of those
modes with w;=w,,. Spatial propagation thus arises
from the temporal evolution of many modes {a;(z)}
around the mode a,,(¢). Propagation of a multimode in-
put field is obtained via E(z,1) =Y ,, E;n(z,1) for z > 0.

In the slowly varying-envelope method, we expand the
field operator E(z,t) in terms of modal operators
{d.(z,1)}. Appropriate initial conditions are imposed on
the commutation relations for 4, (z,z) and &, (z,1) so as
to generate correct commutators for the field E(z,7) at
t =0. Unlike the quantum-mode method the frequencies
{Q.} of the mode functions fexpl —i(Q,t —K,,z)1} are
predefined by periodic boundary conditions in time, and
their wave-vector magnitudes {K,} are such that
{d,,(z,1)} are slowly varying in space. Using the operator
wave equation and applying the usual slowly varying-
envelope approximation, we obtain an equation of motion
for dpm(z,t),

O 1 e 28 7 (B, (3100 Pr}) @
9z ot
where {c,,} are constants and {?,,(z,1)} are slowly vary-
ing operators giving the medium polarization operator
P(z,t) in terms of the mode functions. Equation (4) can
be converted to an equivalent c-number equation with the
c-number variable P(z,t) obtained from V¥, (¢), which in
turn can be written in terms of the {a,(z,1)} and their
first derivatives {(8/81)a,,(z,1)} as mentioned before.
Thus, in the steady state where (8/9¢)a,,(z,t) =0, a set of
spatial coupled-mode equations for a,,(z,z) are obtained.
This formalism only requires that (8/8z)a, < | K| am
which is much less stringent than the adiabatic assump-
tion (8/0t)a, < y,a, required by the heuristic t— z/c
transformation used in the earlier works.® Finally, al-
though the two methods of spatial propagation are quite
different, they give the same results.

Quantum field propagation has been treated previously
in a serious manner, e.g., using a Schrodinger-picture
wave packet,’ or a slowly varying field envelope,® or a lo-
calized momentum operator.” Our slowly varying-enve-
lope method differs from these previous treatments in that
it is much more general. For example, it is valid even
without the rotating-wave approximation, so it can be
used to treat propagation at frequencies far removed from
atomic resonance, as in the case of a transparent medium
with real refractive index studied from the point of view of
interaction with the atoms. Our quantum-mode method is
less general, nevertheless, it treats multibeam interaction
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and propagation in a medium by making direct use of the
equation of motion for the annihilation operators. This
method enables us to show, in a manner that has not been
done in any previous treatment, how the temporal evolu-
tion of the annihilation operators gives rise to spatial prop-
agation and diffraction.

We have applied the above formalism to the case of a
single beam propagating through the medium along the z
direction. The traveling wave consists of a strong pump
component at frequency Q,, arbitrarily detuned from w,,
and two weak probe and conjugate components at fre-
quencies Q,, and Q —,,, respectively. Interaction occurs
as the beam propagates through the medium if the phase-
matching condition 2K, =K/, +K_,, is satisfied. Energy
conservation requires that (Q,—Q,)=(Q,—Q_,).
Using the slowly varying-envelope method, we obtain the
following spatial coupled-mode equations:

da - -
a;’==—iymam-+xmexp05K;z)atm-+rm , (5a)
dat, —s* + =% R = 4

Y =iy pal,+ X%, exp(—i6K- ,z)a,+IZ,, ,

(5b)

where {#,,7 -} and {im,i_,,,} are the dispersion and the
nonlinear-mixing coefficients, respectively, which agree
with those obtained via the semiclassical theory.!? Here

5Ky=(K; +K=p —2K}) €,

gives the phase mismatch between the pump and the
probe-conjugate components, and {T'n, T =} are the noise
terms, which correctly reproduce the resonance-fluo-
rescence intensity spectrum!' and the resonance-fluo-
rescence squeezing spectrum as given by Collett, Walls,
and Zoller.?

Equations (5) can be solved analytically giving the
quadrature noise spectrum at the output of the medium
for a variety of possible experimental parameters of which
we illustrate only a few cases here. We denote the nor-
malized pump detuning from the atomic resonance by
Ap=(w,— 0Q,)/y. and the normalized probe detuning
from the pump by 8, =(Q, — Q,)/y.. The degenerate
situation, 8, =0, is plotted in Fig. 1, where the quadra-
ture noise variance '?

sX2(0)=(LX,(8) — (X, (612

is shown as a function of the normalized pump intensity
B=Qgr/y.. Here Qg is the Rabi frequency and the noise
variance below the coherent-state value of % implies
squeezing. The phase 6 which defines the quadrature am-
plitudes is referenced to the phase of the pump field and
varied at each value of B to obtain minimum noise vari-
ance. Curve A is plotted for the collisionless case, i.c.,
F =1 with A, =100 and aoLy =10* where qq is the unsa-
turated on-resonance absorption coefficient. To compare
our results with those of Reid and Walls,? curve B is plot-
ted with the same parameters as curve A but without in-
clusion of the pump-probe phase mismatch, i.e., by setting
6Ky =0. As can be seen, the inclusion of the pump-probe
phase mismatch reduces the maximum amount of squeez-
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FIG. 1. Curves A, B, and C are plots of 5X2(0) vs B in the

degenerate limit with A, =100 and aoLy = 10%. A: 6K¢0 and

F=1; B: 6K0=0and F=1; C: 6K¢=0 and F=0.2. Curves D
and E show the squeezing spectra, i.e., X£(8) vs 8, (marked
on the top abscissa) for A, =100, =26, and aoly =10% D:
F=1,and for E: F=0.2.

ing achievable but broadens the range of pump intensity
over which squeezing occurs. The effect of collisions on
squeezing is shown in curve C which is plotted with the
same parameters as curve A except for F =0.2.

The nondegenerate situation is depicted in Figs. 2 and 3
where the squeezing spectra are shown by plotting 5Xx%(0)
as functions of &, for various cases of interest. Once
again, in each case @ is varied at each value of §,, to
achieve minimum noise. Figure 2 shows the squeezing
spectra for different values of aopLp with A, =100,
B=100, and F=1. At low values of aoly (curve A),
significant squeezing occurs only in the vicinity of the nor-
malized generalized Rabi frequency Ag=(A2+52)!/2. As
apLys is increased (curve B), the region of maximum
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<
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FIG. 2. Various squeezing spectra with A, =100, =100,
and F=1. Curve A: aoly =35; B: aolry =800; C: aoL =800
with 8K =0, D: aoLa =4x103.
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squeezing shifts toward lower values of 6,. The oscilla-
tions in the squeezing spectrum near Ag are due to our in-
clusion of the pump-probe phase mismatch in those calcu-
lations. As shown in curve C, which is plotted with the
same parameters as curve B but with AK,, set equal to
zero, these oscillations disappear and no squeezing occurs
in the vicinity of Ag, except for a dip at Ag. As aoLjs be-
comes very large, a broad region of no squeezing appears
below Ag without significantly affecting the squeezing lev-
el near Ag.

Figure 3 shows the squeezing spectra for different
values of B with A, =100, apLy =4x103 and F=1. For
B=25<A, (curve A), there is squeezing at the degen-
erate frequency which disappears for = A, (curves B, C,
and D) in accord with the degenerate theory of Reid and
Walls.> On the other hand, squeezing actually improves
at nondegenerate frequencies as B increases beyond A, as
shown by curves C and D. Squeezing by a factor of > 10
is possible at &,, =130 for =300.

Finally, in Fig. 1 (curves D and E), we illustrate the
effect of collisions on the squeezing spectrum in the non-
degenerate situation. Curve D is plotted with A, =100,
B=26, apLpy = 104, and F =1 whereas in curve E, F is re-
duced to 0.2. Comparing curves D and E, we see that al-
though collisions reduce the amount of squeezing achiev-
able for all 5, the effect is very pronounced only at the
degenerate frequency. This is also evident in the change
from curve A to curve C where the same change in the
collision parameter (F=1 to F=0.2) almost completely
destroys squeezing for all values of B.

The few cases illustrated above show the sensitivity of
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FIG. 3. Various squeezing spectra for different values of 8
with A, =100, aoLsy =4x%103% and F=1. Curve A: p=25; B:
B=100; C: =200; D: p=300.

the squeezing spectrum on the choice of parameters,
which arises due to a complex inseparable interplay be-
tween the squeezing due to the fluorescing field? and that
due to four-photon mixing.? The details of the theory, in-
cluding propagation and its application to various
squeezed-state generation schemes, will be described in a
series of forthcoming publications.
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