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In this paper, we continue our development of the quantum theory of nondegenerate multiwave
mixing in an atomic medium [Phys. Rev. A 37, 2017 (1988)]. In our development, the atomic vari-
ables are eliminated using a frequency-domain approach employing a slowly varying amplitude ap-
proximation that is more rigorous than the usual adiabatic approximation. We then specialize to
the case of four-wave interaction with two strong pump beams and obtain noise correlations of the
atomic polarization that are applicable to nondegenerate four-wave mixing. The noise correlations
include the effect of atomic collisions that is crucial to the atomic-vapor experiments. After making
the usual rotating-wave approximation, the atomic-polarization equations give us a set of temporal
coupled-mode equations for the c-number variables corresponding to the annihilation operators.
We then further specialize to the single-beam case in which all the relevant modes of interest are
collinear and obtain a paired set of coupled-mode equations. In order to apply the theory to experi-
ments employing traveling-wave interaction geometries, in the following paper of this series we will
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present a formalism to treat the spatial propagation of a quantum field.

I. INTRODUCTION

In the first paper! of this series on the quantum theory
of nondegenerate multiwave mixing, hereafter referred to
as I, we considered the explicit dynamics of a subset of
the field quantization modes interacting with a system of
stationary two-level atoms. Because we made the realis-
tic assumption of leaving the remaining infinite set of
field modes as a common thermal-field reservoir, the re-
sulting Langevin equations contained extra decay terms
that are due to collective spontaneous emission or super-
radiance. We further showed that these superradiance
terms are negligible when the atomic medium is saturated
by a pump mode and either (i) the number of atoms in a
diffraction volume is small, or (ii) the atoms are pumped
far off resonance. Neglecting the superradiance terms
and using a general Fourier-expansion technique, we then
obtained a solution for the c-number atomic polarization
variable V;(t) in terms of the multimode-field Fourier am-
plitudes { 4,(r;)}. No adiabatic approximation was
made up to this point.

Even though the focus of our attention has been on
two-level atoms, the formalism presented in I is still too
general to be applied directly to problems of interest.
The purpose of this paper is to further develop the theory
so that it can be applied directly to quantum-optics ex-
periments  employing  traveling-wave  interaction

43

geometries.” A summary of this development was recent-
ly reported in a Rapid Communication.’ In this paper,
we express the atomic polarization V;(¢) in terms of slow-
ly varying modal amplitudes instead of the Fourier am-
plitudes { 4, (r;)}. This is necessary for us to derive a set
of coupled-mode equations for the traveling waves. The
slowly varying assumption is similar to the usual adiabat-
ic approximation, but is more rigorous.

We start, in Sec. I, by recapitulating the pertinent re-
sults of I.! This is done for the sake of completeness and
to reestablish the notation. The remainder of this paper
can be divided into two parts. In part one, comprising
Secs. III and IV, we solve for the c-number atomic-
polarization—density variable V(r,t) in terms of the g
field-mode variables {a;()} using a slowly varying ampli-
tude approximation that is more rigorous than the usual
adiabatic approximation.* It correctly takes into account
the frequency shift of the modes due to the medium re-
fractive index in that all the coefficients are evaluated at
the shifted mode frequencies. It also gives extra terms
that are necessary to obtain a correct expression for the
group velocity in the medium when spatial propagation is
considered. This point will be discussed at length in the
following paper of this series. The deterministic part of
the solution for ¥V (r,t¢), when expanded up to the third
order, agrees with the expressions given by Boyd et al.’
for a much simpler case and the Langevin noise part
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gives the correct resonance fluorescence spectrum as first
obtained by Mollow.®

In part two, consisting of Secs. V and VI, using the
rotating-wave approximation, we derive a set of general
temporal coupled-mode equations for the slowly varying
amplitudes of {a;(¢)} denoted by {a;()}. In Sec. V, we
do so for the special case in which there are only two
frequency-degenerate undepleted pump modes. In Sec.
VI, we further specialize to the case in which the wave
vectors of all the modes of interest are collinear and the
medium is of infinite extent. In this case the set of gen-
eral temporal coupled-mode equations reduces to a
paired set of coupled-mode equations.

II. RECAPITULATION OF PERTINENT
RESULTS OF 1

After neglecting the superradiant terms, the following
c-number Langevin equations were obtained in Sec. VI of
I (Ref. 1):

da; .

‘-é“t—"——la)jaj-F;Cj(ri)Vi , (2.1)
v,

7=—iani—a(r,—,t)(ng,-—ni)—‘ylV,-+fV'_ , (2.2)
vt + + +

a =iw Vi —a () ng—n)—y, V" +f,+, (2.3)
on; + +

72—[(1 (r;,)V;+a(r;,)V; ]—)/“l’l,-‘f'fn'_ , (2.4)

and ng=1—n;. Here, {a;: 1=j =g} are the c-number
variables associated with the annihilation operators {@, }
of the g x-polarized field modes whose explicit dynamics
are of interest; V;, V,-+, n;, and ng; are the c-number vari-
ables associated with the atomic down-transition, up-
transition, upper-level occupation, and ground-level oc-
cupation operators, respectively, for the ith atom; y, and
Y =2Fy,, 0SF =1, are the atomic transverse and longi-
tudinal relaxation rates, respectively, with the collision
factor F taking a unit value in the absence of atomic col-
lisions; the coefficients C;(r;) are given by

C;(r;)=g;uq explik;1;) , (2.5)

g;=(w} N2fieqw, Vo)'? , (2.6)
with p, being the dipole matrix element defined via

pa=e{xt;lg);e,, (2.7

where |g ); is the ground state and |x ), is the upper state
of the ith atom that is coupled to the x polarization of the
field; T, is the position-vector operator of the electron in
J

24, (r;) A, (x;)expli (v
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the ith atom with e the electron charge (e <0); w, is the
resonance angular frequency of the stationary two-level
atoms and o;=cl|k;|, where k; (1=<j<gq) is the free-
space wave vector of the jth field mode defined via
periodic boundary conditions over the quantization
volume V,; the multimode field variables a(r;,t) and

a +(r,-, t) are defined via

a(r;,t)=3 C;(r;)a;(1), (2.8)
j

at(r,n=3 Cr(r;)a; (1), (2.9
J

and the Langevin noise forces fy , f,+, and f"f have the

following nonzero correlations:

(fy+)fy (1)) =2y (1=F)n,(0)8(z —1") , (2.10)
Sy (Ofy (@) =alr, )V ()8t —1') (2.11)
(f,+@0f () =a  (r, OV (08t —1'),  (2.12)

<f",-(t)f",-(zl)>= {—la™(r,, 0V () +alr, )V ()]

+yn(0}8(t—1) (2.13)
(fu (O (1) ==L, (Of, (1))
=S (O)f (1)) (2.14)

We note that Eq. (2.1) has been obtained with the near-
resonant approximation, which replaces dV;/dt by
—iw,V;, and the rotating-wave approximation, which
neglects an+ /0t. The expression for Eq. (2.1) without
the near-resonant approximation has (i /w,)3V;(¢)/dt in
place of V,(z). The set of Langevin equations (2.1)-(2.4)
were solved in Sec. VI of I (Ref. 1) by Fourier expanding
a(r;,t) and a "(r;,t) in terms of an infinite number of
Fourier coefficients A4,,(r;) and A4,/ (r;), respectively, as

a(r;,,t)=3, A4, (r))exp(—iv,1t), (2.15)

a®(r;,t)=3 A, (r)expliv,1), (2.16)

where v,, =27m /T with T being an arbitrary period of
interest. The atomic variables were also Fourier
transformed to enable us to obtain a series solution for
V;(t), which was written in a compact form as follows:

2y, F)A,,(r;)exp(—iv,,t)

,,(0,0)=2y F —i(o—v,, )+

D (—v,+v, to)ll, (—v,+v, tw,t)

1

X
D (v,tw—v,)

Vi(t)=— — +Ty, (1), (2.17)
D (v, I, (v,,,t) i
where II,, (w, ?) is defined recursively as
—v, )], (w,t)D " (@)
L (2.18)

DY (—v,+w—v,)
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with

D¥w)=—ilotw,)+y, . (2.19)
In Eq. (2.17), FV,(f) is a Langevin noise term, which can
be related to its Fourier transform I', (@) by

Ty (=[" doTy(wexp(—iat), (2.20)

where I', (w) was obtained in Sec. VI of I (Ref. 1) up to

the third order in the field amplitudes { 4,,(r;)}, and is
given by

2Am(r,-)Al+(r,- )fVlvm
Dy m_,, D,

rVi((lJ)z -

24,,(r,) ATy

m

— +
D, TemD

24,,(r;) fo_,, Sy,
+

+—
D, 7-m D,

(2.21)

Here, the subscript i on the Langevin forces has been
dropped and the following definitions have been em-
ployed:

DI ,=D*(wtv)), (2.22)
Dy =D*(w), (2.23)
) 1 1
mo)= | —io+2Fy, +2A; 4, |—+ ,
YL k Ak D D ik

(2.24)
To=mw) , (2.25)
T =mlotv), (2.26)
Xo=X(0), .27
Xippm=X(owtv,tv,), (2.28)

for X € {fV,-’fVlT’f"i}'

III. SLOWLY VARYING AMPLITUDE
APPROXIMATION

The compact solution for the polarization V;(z) of the
ith atom given by Egs. (2.17) and (2.18) is of the following
form:

V)= Y(v,,r;,t)A,,(r; )exp(——ivmt)—l—I‘Vi(t) ,  (3.1)

where Y (v,,,r1;,t) is a function of { 4,,(r;)} through the
recursive function II,,. In arriving at this compact form
of V;(t), no further approximation beyond the conver-
gence assumption of the series expansion has been made.!
However, to solve for aj(t) using Eq. (2.1), we need to
further express V;(¢) in terms of {a;(¢)}. This cannot be
done, in general, without further approximation and is
the subject of this section.
Let us assume that a;(¢) can be written in the form

a;(t)=a;(t)exp[ —i(w;—Aw;)t] , (3.2)

where a;(1) is slowly varying with changes occurring
over time scales of the order of yfl, w; is the free-field
mode frequency, and Aw; is an anticipated frequency
shift due to interaction with the medium. Our a priori in-
clusion of Aw; in Eq. (3.2) is crucial to obtaining the
correct result when the dielectric constant of the medium
is large. Without such inclusion, the atomic polarization
would be evaluated at the wrong, unshifted frequency.

Equations (2.8) and (2.9) can then be written as

a(r;,0)=3 C;(r;)a;(t)exp(—iwjt) , (3.3)
J
at(r;,n)=3 C}r))aj (t)expliolt) , (3.4)
J
where
oi=0;—Ao; . (3.5)

However, a(r;,t) and a+(r,~,t) can also be expressed in
terms of the Fourier amplitudes { A4,,(r;), 4,7 (r;)} via
Egs. (2.15) and (2.16), respectively, which in the continu-
um limit become

a(r,-,t)=f_ao dv A (v,r;)exp(—ivt) , (3.6)

at(r,0=[" dv A (v,r)explive) 3.7)
where A(v,r;),—, =A,(r;)/8v with dv=v, . ,—v,,.
Using the usual procedure of converting a product in the
frequency domain to a convolution in the time domain,
the deterministic part of V;(¢) in Eq. (3.1) can be written
as

viin= [ dra2m¥e,r,nalr,e =), (3.8)

where Y(t',1;,t) is the inverse Fourier transform defined
via

Y(t',r,0= [ 7 dvY(v,r,Oexp(—ivi') . (3.9)

We see from Egs. (2.17) and (2.19) that the magnitude
of Y(v,r;,t) has a peak at v~w, of width Av=y, due to
the presence of D " (v) in the denominator. This means
that Y(¢',r;,¢) must be a decaying sinusoid in ¢’ with a
decay time =~y '. It is thus sufficient to approximate
a(r;,t —t') in Eq. (3.8) with an expansion around ¢'=0
up to t'~y [ !. Moreover, in order for the expansion to
be convergent, we assume that yfl[aaj(t)/at] <<aj(1).
This assumption implies that the pump beam cannot have
a linewidth broader than y,. When «a;(#) is sufficiently
slowly varying, a good approximation is obtained by ex-
panding the slowly varying amplitude a;(t —¢') in Eq.
(3.3) up to the first order as

, 0a;(2)
a; t)—t T ,
giving
a(r;,t —t')= 3 C(r;)a;(t)exp[ —iw}(t —1')]
J

(3.10)

ot

—t' ¥ C(r;) exp[ —iwj(t —t')],
J

(3.11)
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which upon substituting into Eq. (3.8) yields da;(1) 3
D;()= |o(O)+i—— 3.16
Vi(t)= 2 Y (wj,1;,8)C;(r; )a;(t)exp( —iwjt) ! 3t 3w} (3.16)
_0Y(wf,1;,1) da;(t) . We thus arrive at the following simple result: the
T2 90° Cj(r;) ar exp(—iwjt) , slowly varying amplitude approximation allows us to re-
J J

place 3, A4,(rlexp(—iv,t) in Eq. (3.1) by
(3.12) 3, Ci(rlexp(—iwj t).,@( ). As noted earlier Y(v,,,1;,?)
in Eq (3.1) also depends upon sums like

where » S A, (rlexp(—iv, t) via the recursive function II,, of
da;(1)  da;(t") Eq. (2. 18) These sums can be approximated in a 31m11ar
= ; , (3.13) way giving the following result for V,(1):
ar at t'=1
and

Vi(t)=— ZC (r;)exp(—iwjt)

aY(a)j,r,,t) Y (w,1;,1)
dw} a 0w

i (3.14) 2y ,F
“Te XD (t +Ty (1),
(1) D~ (o)) (], 1;,2) Vi

Equation (3.12) can be abbreviated as

V0= Cjlr exp~iwjD; 0¥ (w)ort) - (319 317

where the differential operator I1;(w,r;,?) is, once again,
where D;(2) is a differential operator defined by defined recursively as

Hj(w,l‘,',t):21/lF—i(w—-wj)+212, CH(r;)expliw$t)D; (£)C,,(r;)exp( —iws)D,, (1)

,(o,r;,0)D (@)

D~ (—o]t+ o, to)ll;(-o]+o, to,r;1)

1 + 1

D (0}, +ro—wf) D (—wjto—o})

(3.18)

with
da; (1) 3
B

D ()=a} (t)—i (3.19)
Note that D;"(¢) is like the “Hermitian conjugate” of D,(t). Unlike Egs. (2.17) and (2.18), the summing indices in Egs.
(3.17) and (3.18) now range from 1 to g denoting sums over the g field modes {a;(¢):1=j <gq}.

For later convenience, let us define a polarization density ¥V (r,t) by

Vinn= 3 Vel (3.20)
r,t)= , .
r, (€ov) OV

where ¥V, (1)=V;(t), and the sum is taken over all atoms contained in a microscopic volume element 8v at r whose
I

linear dimensions are assumed smaller than a wavelength. If we further assume that the N, atoms within év are homo-
geneously distributed and similarly excited, then the polarization density can be written as

No
V(r,t)=-6—UV,(t)=pa V.(t), (3.21)

where p, is the atomic number density. Equivalently, V() can be taken as an average by setting

Ny V. (t)

V.(t)= — . (3.22)
2'1 No

Reexpanding V;(t) of Eq. (3.17) using the recursive relation (3.18), we obtain the following expression for V (1),
which is correct up to the third order in D;(¢):
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wqgexplik; r)
Y (1+i8,;)S

Vi(t)=—3 exp(—iw;t)D;(1)
j

+3 3 3 exp[—ilw)—w]+o;)t]D;( D (D, (1)

JonED I

Here, the coupling coefficient g; and the dipole matrix
element p, are as defined in Egs. (2.6) and (2.7), respec-
tively,

8=, —@}) /v, (3.24)
8y =(wj—w) /7, , (3.25)
(1—=id,)(1+i8,,)
1,,= A : (3.26)
48,8, gl
aa,expl —i(k,—k,)r]
s=1+ 3 3 , (3.27)
n:o), =wj ! II
(1+82%)
:I”V—lz*%— ) (3.28)
4g/ |yl
ata,expl—i(k;,—k,,)r
S,=1+ 2 > pl ! ], (3.29)
o =oS J Ilnj
mw,, = w; J
YY1 .
I, =—5——5F,[1+i(§,+6,,)]
Inj 4gj2'“d|2 1 1 j
(5,18, ] - on’2 (3.30)
X[ i( nl aj ] 1+i81n > .
F 14+i8,,/2F (5.31)
= 4i8,/2 :
Ny Ty (¢)
ry, )= : , (3.32)
i [gl No
and F=vy,/2y,.

In Egs. (3.27) and (3.29), the summing indices n and m,
respectively, denote sums over equal frequency (and not
equal wave vector) field modes whereas the remaining
summing indices (/ and j) in the above equations range
from 1 to g. S as defined by Eq. (3.27) is the usual satura-
tion factor and S, of Eq. (3.29) can be regarded as a gen-
eralized saturation factor when more than one modes of
different frequencies are present. I,; of Eq. (3.30)
represents the corresponding generalized normalized sat-
uration intensity. The generalizations become apparent if
we note that I} , _ = =I,and S| , _ 5—S

n J

Similarly, the effect of col]lswns 1s expressed by the gen-
eralized collision factor F, of Eq. (3.31), which attains a
unit value in the absence of collisions.

We show in the Appendix that the deterministic part
of Eq. (3.23) reduces to the expression obtained by Boyd
et al.’ for the simple case in which the total field consists
of a pump mode in the form of a monochromatic plane
wave and two weak sideband modes, also in the form of
monochromatic plane waves.

One may wonder what the difference is between Eq.
(3.23) and that obtained by the usual adiabatic elimina-

nl‘ r4 r
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i(k;+k,—k;)
lu’dgjexp[ )r] T, (1) .

3.23
yi[1+i(8,;+8,,)18S,F 1,1, ! o2

—
tion procedure. Besides the extra care that we have taken

to evaluate V(1) at the correct, shifted frequencies o} of
the modes, the main difference from the usual adiabatic
elimination procedure is the appearance of higher-order
derivative terms in D;(¢). These terms are crucial for ob-
taining the correct group velocity of propagation for the
deterministic as well as the fluctuating part of the quan-
tum field. This point will be elaborated upon in detail in
the following paper of this series.

IV. NOISE CORRELATIONS

In principle, the correlation of the noise appearing in
the solution for V;(¢) [cf. Eq. (2.17)] can be found using
Egs. (2.10)-(2.14), (2.20), and (2.21). However, a general
solution is algebraically quite complicated. Therefore, we
specialize to the case in which there are only two dom-
inant pump-field modes in the medium that are at the
same frequency szw;, and treat them as classical
fields. Using the technique developed in the preceding
section, we can likewise express the correlation of the
Langevin noise of Eq. (2.21) in terms of a sum of the
slowly varying amplitudes {a;(t)}. However, while
evaluating the expressions for the correlation of the
Langevin noise, we retain the contribution of only the
two strong pump modes. Even for this case, the correla-
tion expressions are so complicated that we have to resort
to a symbolic manipulation program. The extra compli-
cation arises because of our inclusion of the atomic col-
lisions.> Our results agree with those obtained by Reid
and Walls.”

Let us denote the wave vectors of the two pump modes
by kp] and k;72 and their slowly varying amplitudes by

a, (t) and «a

” (2), respectively. Let us further define

Py

T“Vi(w) and I~“Vi+(a)) as follows:
n=[" T‘V_(w)exp[—i(a)—i-ﬂp)t]dw, 4.1)
(0= [ T, wexpl—il0—=Q,)1ldo,  4.2)
sothatF (w)—FV aH—Q )andF )= FV (@—Q,).

From Egs. (2.21) and (2.10)-(2.14), for this special case,
we obtain the following correlations with use of a symbol-
ic manipulation program:

o D,.,(d)
(P,,i+(w)1“,,[,(w'))= oy Slot+w")d; , (4.3)
o Dy, (d)
(FV[((:))FV‘_,(C:)'»ZTS(CO-FCU')&[' , (4.4)
D, (d)
<TV+(w)rV+(a)')):#‘—‘&w“f“w')(sﬁ', 4.5)
i i 21

whered =w /v |,



+4F*+ A2(4F>+2B°F?) | +d B’ F*+4B°F*+B*F? /2}

3944
Dy =2 D@

2 A2
DViVi(d)= BF £

22y D) 4,4,
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{(1—=F)[d*+2A,d*+dX(4F?+1—B°F + A2)—d A ,(B*F —8F*—2B°F?)

((1=F)(—d’B°F +28,B°F*)+ Fd*+d’[4F*+F —3(A2 +B2F)F]

+4F*+B*F?/2— 1200 F> +il, { (1—F)(—2B°F*)+d*F +d*[4F’+3F — (A, +B°F)F)

I)VjJr V,'+(d)=D;i Vi (d) ’

D(d)=(F +AJF +B°F /2){ d°+d*(2+4F>—2B°F —24})

+12F3—4A2F%})

+d?[1+8F2+2B°F (2F — 1)+ B*F*+ A} — A2 (8F>—23°F —2)]

+4F 4B F2+ B F + AL(BF2+4B°F2) +4A, F?

A,=(Q,—aw,)/v, is the normalized pump-frequency de-
tuning from the atomic resonance, f’>=44 p+ A4,/ yiF
=84, 4,/v,v), and

4,=8, g |ap](t)exp( —ik, 1;)

+8,,l1ala,, (exp(—ik, -1;) .

In the special situation where the two pump beams are

collinear and are of equal amplitudes, i.e., kp] =k[,2 and

a, =a,, B? can be simply related to the pump intensity

Py
I, and the line-center saturation intensity I, via
B*=2I,/1,(Q,/w,)?, where I,=8ex(Q,/w,)|a, |’
and I, =¢€uc(y,y,/2)(#/|4])*. Here, B is known as the
Rabi frequency. Note that in arriving at the above rela-

tion, we have used the following relation between a, and

the net electric-field amplitude of the pump beams
6, [for the exponential mode exp(—ik, -r)]:

6, =ﬁgp12ap10p /w,. We also note that in the presence
of collisions (i.e., F<1), D, V_(d) is not an even function
of d, whereas both Dy, Vz(d) and D4+

Furthermore, we show in the Appendix that our expres-
sion for D, ., (d) [Eq. (4.6)] gives the correct resonance-

(d) remain even.

fluorescence spectrum as first obtained by Mollow in the
collisionless limit.®

The noise correlations obtained in this section, Egs.
(4.3)-(4.9), are crucial for the application to squeezed-
state generation using nondegenerate four-wave mixing in
atomic vapors, wherein the effect of atomic collisions

f

cannot be neglected. In the next two sections, we illus-
trate how the results obtained so far lead to the coupled-
mode equations for the slowly varying amplitudes
{a,,(t)} when a sum over the large number of atoms
comprising the medium is performed.

V. TEMPORAL COUPLED-MODE EQUATIONS

Using Eqgs. (2.1) and (3.1), the following equation for
the slowly varying amplitude «,, (¢) is easily obtained:

B?am(t)=—zAa)mam(t)

+fVMdrpac,:(r)V,(t)exp(iwfnt) ENCR)

Here, we have assumed that the atoms are uniformly dis-
tributed so that Rayleigh scattering could be ignored.
Also, using Eq. (3.21) we have replaced 3; appearing in
Eq. (2.1) by the integral [ v, 4T pa. With V(1) of Eq.

(3.23), the above equation gives a set of g coupled-mode
equations for {a,,(7)}.

As in Sec. IV, in the following we restrict ourselves to
the case where there are only two frequency-degenerate
undepleted pump modes with wave vectors kp‘ and kpz,

respectively. We further assume that these pump modes
have the same approximately constant amplitude
a, (t)zap (t)zap =const, which is much larger than
1 2 1

the amplitudes {a,,(2):m%p,,p,} of the remaining
(g —2) modes. With these assumptions, Egs. (5.1) and
(3.23) yield the following temporal coupled-mode equa-
tion for a,,(¢) up to the first order in «,, /a, :
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—a,,(t)=—iAw,a,(t)
ot
+fVM drp,
\y,dlzgmg,,exp[i(k,,—km)-r]
X|{— 3 explilo), —w,)tlD, :
n (Fpipy) v (14+i8,,)S

148 mg, (expli (k, —k,,)-r]+expli(k, —k,)T]]
yi(1+i8,,)S

—expli(w,, —w,)t]D,

+ 3 expli(o),—w})t]D,' D,D,
n (#py,py)

v |.“'d‘2gmgpexp[*i(km—kn)-r]{exp[i(kpl—kpz)-r]+exp[—i(kpl—kpz)-r]+2}
v i(1+18,,)8S,,F,, 1,
+ 3 expli(e), to),—20})t1D,D,D, |u,l’e,g,expl —i(k,, +k,) 1]
n (#py,py)
9 exp(2ikpl-r)+exp(2ikp2-r)+2exp[i(kpl+kp2)-r]
Y1+ (8,,+8,,)15S,,Fopl,y
+gm,u§I‘V'(t)exp(—ikm~r)exp(iwfnt) , (5.2)

where D, and D are given by Egs. (3.16) and (3.19), respectively, and D, =$P1 =$p2 =a, dueto the constant pump-
amplitude assumption. The fourth and fifth terms of the above equation are obtained from the second term of Eq. (3.23)

by setting /,j equal to p,,p, (or p,,p), and n,j equal to p,,p, (or p,,p,), respectively. S, S,,, F,,, and I,,, obtained
from Egs. (3.26)—-(3.31), are approximately given by
+ ; — . J— ——— .
R oz‘,,lapl{exp[z(kpl sz) r]+exp( z(kp] sz) r]+2} ’ 53
1,
a;lapl[exp[i(kpl—kp2)~r]+exp[—i(kpl—kpz)-r]-!-Z}
Sy =1+ 7
npp
=S » (5.4)
Ip:?/L'}/ﬂ(l‘FSgp)/“'g:‘.u'dP ’ (55)
YY1 . . 1+i8,,/2
=————F, [1+i(5,,+8,,)](1— — | 5.6
npp 485',1.1"112 np[ i(8,, ap)]( 84 1+i8np (5.6)
F,,=(1+i8,,/2F)/(1+i8,,/2)
=Fp, , (5.7)
" 4gngp]“d‘2
:I;‘n . (5-8)

Equation (5.2) is greatly simplified if we take the medium volume V), to be equal to the quantization volume V. In
this case, the spatial integral in Eq. (5.2), which extends over an infinite volume due to the periodic boundary condi-

tions, can be approximately evaluated by retaining only the phase-matching terms to give the following coupled-mode
equation:
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ioz ()=—ido,a,/ (t)
at m m m
2 +
_ dr |\ D pa|‘u,d12g31 2pa|‘ud| Em8p%p, Up,
Yo "y (1+68,,)8 " vi(1+i8,,)S8S,, Fppnl,,
pa]“dizgmgpa;ap
+ > expli (0}, — %) 1D, . o
U:km—kj:i(kplﬁkpz)} ! ! 7/1(14‘180] )SSijijpA
20, 114178 m 8,00
+exp(idws, t)D; ; l
P Om i | 118y +8,) 1SS, Fop I
+ ) [i (@}, +0f — 20 1D} polital 88,5, (1)
expli(ws, + @’ —2w;)t)D; - +T,, (),
ik, +k; =2k, or 2k, ] " ! P Pyl +i(8,,+8,,)SS,F, 1,
(5.9)
f
where volve many weak probe beams and is somewhat general.

T, (=g, u fVQ drp,Ty (1)

Xexp(—ik,, ‘T)explio;,t) . (5.10)

Note that S and S, in the denominators of the terms in
Eq. (5.9) are r dependent. This is why our retaining of
the phase-matching terms in Eq. (5.9) is only approxi-
mate, except in the special case when kp1 =kp2. The spa-

tial integrals can be evaluated analytically as is done by
Reid and Walls® in the case of degenerate four-wave mix-
ing.

In the fifth term of Eq. (5.9),

Sy, =w,, +w, —20), , (5.11)
where )}, is the shifted frequency of mode n [cf. Egs. (3.2)
and (3.5)] picked by the phase-matching condition

km-t—k,,kal-i-kp2 . (5.12)
The sixth term of Eq. (5.9) represents three-wave mixing
with k,, +k; =2kp‘ or k, t+k; =2kp2 as the phase-

matching condition. Similarly, the fifth term gives rise to
four-wave mixing with Eq. (5.12) as the phase-matching
condition. Both the fifth and sixth terms lead to coupling
with the conjugate modes {a'} appearing in the
differential operators {D*} [cf. Eq. (3.19)].

The fourth term of Eq. (5.9) is also a four-wave mixing

term with k,, —kj=i(kpl—kp2) as the phase-matching

condition. This term, however, does not lead to coupling
with the conjugate modes. When kp‘ =kp2, it couples a
mode with itself giving rise to extra nonlinear gain (loss)
and frequency shift.

In the following, we will use a. (1), instead of a,, (1), to

denote the image mode to «,,(?), i.e., the mode whose
conjugate a, couples to a,, via the nonlinear terms of
Eq. (5.9). So whenever the subscript 7 appears, it is to be
understood as n with the wave vector of the correspond-
ing mode determined by Eq. (5.12).

The result obtained in this section, Eq. (5.9), can in-

In the following section, we specialize to the case of spa-
tially degenerate forward four-wave mixing, which would
be important for application to squeezed-state generation
experiments using such a configuration.? The results of
one such application have been published.’

VI. SINGLE-BEAM INFINITE MEDIUM CASE

In this section, we derive the temporal coupled-mode
equations for a single pump beam of wave vector k, and
amplitude ocp(t):Zocp1 propagating through an infinite
medium. The equation of motion for a copropagating

nondegenerate mode with frequency w;,, which is
different from the pump-mode frequency wj}, can be ob-

p’
tained from Eq. (5.9). In this case, the third term of Eq.

(5.9) is identical to the fourth term and the fifth term is
identical to the sixth term. Adopting the image mode no-
tation defined at the end of Sec. V, we obtain the follow-
ing coupled-mode equations:

da,, da,, 9V,
= —7 + + :
ot iAw,a,, Ty, i 3 dat,

+X,, explidws, t)a,’
da, 0X,,

ot dws,

+i exp(idws,t) +T,, 6.1)

+
da,,

m + *
Ao a, Ty, a

da) %
ot !

m Ty

+ .

S
dw,,

+ X exp(—idw), t)a,,

*
Ay m +

—i exp(—idw3,t)

ot aa)‘iﬁ m
where
2+
_ PaVognlnal? — 48y, %,
v (14+i8,,,)S SomFpm L pm8p&m

Ym™=
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40,V 08 m8n8; Ial’a}.

_ - b , (6.4)
vu[1+i(8,,+8, 1SS, F, I 2.8,
K, +k, =2k, , (.3
80}, =w, + o, —20) (6.6)
dat a
Se14 % (6.7)
IP
N 4ozp+1apl
Sy =1+—"+
P Impp
5., (6.8)

and the remaining symbols are as defined in Egs.
(5.4)-(5.8).

To determine co;, we need the equation of motion for
the pump-mode amplitude «,(¢). Noting that, for
m =p =p,=p,, only the second term of the spatial in-
tegral in Eq. (5.2) contributes, in which case we obtain
the following equation for a,(#):

da, (1) )
a1 =(—ido,+7,)a,(t), (6.9)
where
Vog,lual?
y,=—Lte oS Bdl_ (6.10)
vi(1+i8,,)S
Defining v, =Yg, Ti7,, we have
AL AN
YRy =— 6.11)
v (1+85,)S
and
Vogrlugl*8
=pa Qgp 1221 ap (612)

Ty (1462)3

Clearly, the loss coefficient y g, must be small if our as-
sumption of a constant ozp(t)z2ozpl is to be valid. In this

case, the solution for a,,(¢) is given by

a,(t)~exp[—i(Aw, =¥ 1,)t]a,(0) . (6.13)

Hence in order for a,(#) to be truly slowly varying so

that ap(t)ZZapl, we must set Acop=7/,p. Then, from

defining Egs. (3.2)-(3.5), we determine w, =7, +|k,|c.
This implies that the refractive index seen by the pump
beam is given by n, =1+y,, /[k,|c.

Following a similar argument for the other modes, we
also have Aw,, =Im(y,,) with y,, given by Eq. (6.3). We
note from Eqgs. (6.3) and (6.12) that even when v}, ~w,,
Aw, and Aw, are not equal. That is, the pump-mode
and the copropagating nondegenerate modes always see
different refractive indices so that the frequency
mismatch 8w, in Eq. (6.6) is, in general, not zero. Physi-
cally, this is due to an additional index seen by the probe
beams because of coherent scattering of the pump beam
off the population grating formed by the beating between
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the pump and the probe beams.

Note that if we had derived Eq. (6.1) using the more
exact expression for Eq. (2.1), which involves
(i /w,)X(QV; /3t), instead of V; as mentioned after Eq.
(2.14), then we would have obtained (da,, /0t)[i(dy,, /
dws, ) +ily,, /w},)] instead of (da,, /9t)i(dy,, /dw;,) in
Eq. (6.1). Also the coefficient y,, in Eq. (6.3) would have
been multiplied by the factor ), /w,. Similar
modifications would also apply to the coefficient X,, and
the aa;; /9t term in Eq. (6.1). The physical significance
of the da,, /9t term on the right-hand side of Eq. (6.1)
will become clear in the following paper of this series, in
which we rigorously treat the simple case of a lossless
dielectric medium without making the rotating-wave
(near-resonance) approximation, and also approximately
deal with the more complex case of a slightly lossy medi-
um. There, we will show that the rotating-wave approxi-
mation is valid only in the limit where |y,,| <<®$, and
that the da,, /9t term on the right-hand side of Eq. (6.1)
is necessary for obtaining the correct group velocity.

The temporal coupled-mode equations [i.e., Egs. (5.9),
(6.1), and (6.2)] would be directly applicable to cavity ex-
periments where the quantum state in the cavity is known
at time ¢t =0, and one is interested in the correlations
(a}f(t)a,, (1)) and {a,,(t)a,, (1)) at a later time ¢ inside
the cavity. In a traveling-wave experiment, however, one
has a spatial boundary-value problem and one must deal
with the issue of spatial propagation. In the following
paper of this series, we will present a consistent formal-
ism to treat, with rigor, the spatial propagation of a
quantum field. This formalism will allow us to convert
the temporal coupled-mode equations, Egs. (6.1) and
(6.2), into spatial coupled-mode equations.
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APPENDIX

In this appendix, we show that the expressions derived
in this paper, although quite general, do in fact reduce to
those derived in earlier works, in particular the works of
Boyd et al.® and Mollow.°

In the paper of Boyd et al.,> E, corresponds to our
pump field 4,, E; corresponds to our probe field a,,, p,,
equals our V;, py, equals our n;, p,, equals our n,, 1/T,
equals our y, 1/T), equals our y,, u,, equals our p,, @,
equals our ,, ®; equals our Q, =w},, and w,, equals
our w,. With these identifications, it can be shown that
their expression for p,,(®;) [Eq. (5a) in their paper] is
identical to the (j =p) term of the first term of Eq. (3.23),
ie.,

A,1q8,

7,(1+i8,,)S ° (Al

pba(Qp): -

where we have let ﬂj(t)lw = A4,. The expression for

S =
J Q'p

Pua(@3) in their paper [Eq. (5b)] can be obtained by add-
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ing the (j=m) term of the first term and the
(j=I1=p,n =m) term of the second term of Eq. (3.23),
ie.,
LnMa8m
Q _ . mitaom
Pral )= = s, s

+ Ap+ Apam:u'dgp
v (148, )SS,p For T

pm= pm=pm

(A2)

Finally, the expression for p,,(2w;—w;) in their paper
[Eq. (5¢)] can be shown to be identical to the
(j =n =p,l =m) term of the second term of Eq. (3.23),
i.e.,

Aot ag,
YL 1Hi 84y + 8,1y ) 1SS,y Fonp Ly

pba(ZQp_—Qm )=

(A3)

To show that Eq. (3.23) also gives the correct reso-
nance fluorescence spectrum, we need to calculate the
correlation
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VIV (t+1)= |V, [Pexp(—iQ,7)

(T, D, (t+1) ,  (Ad)

where

vV =— App'dgp
>y (1+i8,,)S

and evaluate the Fourier transform
glo)= [ " AV (Ve +7))explior)dr

=27V, 1’8(Q, —o)

+ [ 7 AT, (0T (¢ +7))explion)dT . (A6)

Simple manipulation shows that the expression for V
agrees with Eq. (3.17) and that for g(w) agrees with Eq.
(4.15) of Mollow’s paper,® provided we make the
identifications y , =« /2, (Q, —0,)=Aw, and Y} =0
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