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A quantum theory of degenerate four-wave mixing is presented in which the atomic medium con-
sists of stationary four-level atoms, each with three degenerate excited states, and the interacting
light beams are allowed to be in different states of polarization. This vector-field theory differs
from the scalar-field theory of Reid and Walls [Phys. Rev. A 31, 1622 (1985)] in that there are new
atomic variables in the Langevin equations which are related to the induced coherence between the
upper atomic states. It is found, for the assumed set of atomic levels, that this seemingly different
mechanism of four-wave-mixing gain does not circumvent the degrading effect of spontaneous emis-
sion on squeezing obtainable via degenerate four-wave mixing. The theory is applied to both for-
ward and backward degenerate four-wave mixing with nearly collinear geometry, and specialized to
the case in which the polarization states of the two pump modes are mutually orthogonal. It is
found that for both forward and backward configurations, the range of pump intensity for which
squeezing can be achieved in the vector-field case is larger than that in the scalar-field case, and the
maximum amount of squeezing obtainable at a particular pump detuning is comparable in both
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cases.

I. INTRODUCTION

A squeezed state is a nonclassical state of light having
the property that its noise in one electric-field quadrature
is less than that of a coherent state.! Four-wave mixing
(FWM) has been the most extensively studied scheme for
its generation. Backward,> forward,® and intracavity*
beam configurations of both degenerate and nearly degen-
erate® FWM have been considered. Slusher et al.® have
recently reported observing such a state in homodyne
detection of light emitted by a single-ended cavity con-
taining the probe and conjugate beams of an intracavity
nearly degenerate backward FWM experiment in an atom-
ic beam of sodium.

The first proposal to generate a squeezed state via
FWM was made by Yuen and Shapiro’ who gave a sim-
plified quantum description of the backward degenerate
configuration. Describing only the probe beam (PB) and
the phase-conjugate beam (PCB) modes by quantum-
mechanical operators, they showed that an appropriate
combination mode of the probe and PC beams at the out-
put of the four-wave mixer was in an ideal squeezed state.
Using the same approach, Yurke* proposed an intracavity
beam configuration to enhance the FWM interaction, and
Kumar and Shapiro® proposed a forward beam geometry,
which showed favorable squeezed-state generation charac-
teristics when propagation loss of the probe and PC beams
was taken into account phenomenologically. A more real-
istic theory of degenerate FWM has recently been given
by Reid and Walls,” who have described the nonlinear
medium and the light beams quantum mechanically. By
modeling the medium as consisting of two-state atoms,
they have shown that propagation loss and spontaneous
emission severely limit the amount of squeezing obtain-
able via degenerate FWM.

The theory of Reid and Walls’ assumes that all the four
interacting modes are in the same state of polarization,
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whereas in some experimental situations® it is desirable to
have different polarization states for different beams. In
this paper we present a theory of degenerate FWM in
which the atomic medium is assumed to consist of four-
level atoms and the interacting beams are allowed to be in
different states of polarization.

The general approach we take here is similar to the
scalar-field theory of Reid and Walls.” In our model the
electromagnetic field is treated as consisting of vector
waves interacting with vector atomic dipoles. In Sec. II,
we start with an atom-field Hamiltonian in which the
medium is considered to consist of four-level atoms with
three degenerate excited states and a ground state. This
would be the case, for example, for the 555.6-nm transi-
tion of ytterbium. Each atom is assumed to be coupled to
four field modes (two pump beam modes, a probe beam
mode, and a PC beam mode) and a thermal field reservoir.
We make the usual simplistic assumption that the thermal
field reservoirs for different atoms are decoupled from
each other, which amounts to neglecting the effect of su-
perradiance. Following Reid and Walls,” we first consider
a microscopic volume of atoms interacting with the total
field. This enables us to take care of wave coupling later
with a spatial integration. An equation of motion is ob-
tained for the reduced density operator of this system us-
ing the Markov approximation.

In Sec. III, the equation of motion for the reduced den-
sity operator is transformed to a c-number equation of
motion for the associated distribution function using the
usual technique of choosing an operator ordering.” With
some approximation, this c-number equation is reduced to
a Fokker-Planck equation from which a corresponding set
of Langevin equations are obtained. Here, our vector-
field theory differs from the scalar-field theory of Reid
and Walls” in that there are new atomic variables in the
Langevin equations which are related to the induced
coherence between the upper atomic states. In a semiclas-
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sical analysis, such an induced coherence (called Zeeman
coherence) has been shown to contribute to the FWM gain
in the vector-field case.!” It is found that this seemingly
different mechanism of FWM does not circumvent the ef-
fect of spontaneous emission with our choice of atomic
levels. Nonetheless, the possibility of choosing different
field polarization states provides an additional degree of
freedom.

In Sec. IV, we obtain equations of motion for the PB
and PCB modes by adiabatically eliminating the atomic
variables in the Langevin equations. This step is algebrai-
cally so involved that the symbolic manipulations had to
be done with the use of a computer. The final results,
however, are relatively simple and the radiated noise pat-
tern can be physically related to spontaneous emission by
an atomic dipole. Coupling of modes arises when the
field is considered to interact with the entire medium by
an integration over the atomic volume which is done in
Sec. V.

In Sec. VI, we consider forward and backward degen-
erate FWM with nearly collinear geometry and specialize
to the case in which the polarization states of the two
pump modes as well as the PB and PCB modes are mutu-
ally orthogonal. It has been found with a scalar-field
theory’ that propagation loss and spontaneous emission
limit the amount of squeezing obtainable at a particular
pump detuning and intensity. Here, we show that for
both forward and backward degenerate FWM, the range
of pump intensity for which squeezing can be achieved in
the vector-field case is larger than that in the scalar-field
case and the maximum amount of squeezing obtainable at
a particular pump detuning is comparable in both cases.
We conclude in Sec. VII with a discussion of the differ-
ences between the scalar-field and the vector-field results.

II. ATOM-FIELD MODEL

Let us consider an ensemble of N atoms uniformly dis-
tributed in a volume V,, interacting with four external
field modes of the same angular frequency . Each atom
is coupled to a separate thermal field reservoir. The
atoms are assumed to be stationary in space and hence
Doppler and collisional effects are ignored. Each atom is
characterized by four states consisting of three degenerate
excited states which are the eigenstates |/ =1;m =0,+1)
of the total angular momentum operator, denoted
separately as

|1>’ |0>y l —1> ’ (2-13)
and a ground state |/ =0,m =0), abbreviated as
lg) . (2.1b)

In our treatment below, we will assume linearly polarized
waves and so it is more convenient to use a set of excited
states which are coupled to the linear (e,,e,,e;) com-
ponents of the field polarization instead of the circular
components. This set of energy eigenstates, which can be
obtained by a linear combination of the above states, is as
follows:

|x)=(|1)+ | —1))/2!2, (2.2a)

[¥)=(|1)—=| =1))/21%,
|z)=]0).

(2.2b)
(2.2¢c)

Following the approach of Reid and Walls,” we first
consider a microscopic volume 8V at position r contain-
ing Ny atoms where 8V has linear dimensions smaller
than a wavelength. The Hamiltonian of this microscopic
atomic volume interacting with the field can be expressed
in terms of the following collective atomic operators:!!

Vi=3 lghulll, (2.3a)
i=1
Ny
ﬁ1=2'1>u<ll » (2.3b)
i=1
No
ﬁg=2 lg)ilg] » (2.3¢)
i=1
Ag= | A1 |—Fg , (2.3d)
1

where [ € {x,y,z}, i labels the states of the ith atom, {?,]
are the collective atomic transition operators, {fi;} and 7,
are the total occupation operators of the respective atomic
levels, and 7, is the total population inversion operator.
Under electric-dipole and rotating-wave approximations,
the Hamiltonian fI,. in the Schrodinger picture can be
written as

ﬁr=ﬁ0+ﬁ1,r+ﬁR,r , 2.4)
where the free part is
Hy= E ﬁax’ij a;+(fiwo/2)R, (2.5)
j=1
and the atom-field interaction term is

A, = iACyna | V—He], (2.6)
Lj

with H.c. denoting the Hermitian conjugate. The thermal
field reservoir term consists of a free part and an interact-
ing part

Ay =R+V,, v X))
with the former being

I/{\ =2ﬁwk3L- Bh ’ (2.8a)
ik
and the latter given by
V=3 iff{[Ch(r)b L |g)ull|]1-H.c.} , (2.8b)

Lk

where 31:; is the annihilation operator of the reservoir
mode of frequency w; that is coupled to the ith atom.
Under the summation signs of the above equations, j
denotes the sum over the four frequency-degenerate field
modes representing the two pump, the probe, and the PC
beams; k denotes the sum over the reservoir modes for
each atom; / denotes the sum over the atomic excited
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states /| € {x,y,z}; and i denotes the sum over the number
of atoms i€{1,...,Np}. Also, o in the above equa-
tions is the atomic resonance frequency, and the coeffi-
cients are given by

(2.9a)
(2.9b)

Cij(r)=gu explik;-r) ,
g =(w3/ 2wk )' 2,

where V is the volume of quantization and p;; is the com-
ponent of the dipole {/|eT|g) coupled to the jth field
mode. If the polarization vector of the jth mode is e;,
then

pi=_1]et|g)e; . (2.10)
The equation of motion for @; is given by
aa] . A1y LA * £
—at-=(1/1ﬁ)[aj,H,]=-—tcoaj+§ Ci(nV; . (2.11)

For the entire medium, the equation of motion for g;
can be obtained by considering the total Hamiltonian as in
Eq. (2.4) but with a sum over the atoms in the microscop-
ic volume elements at different r. The equation of motion
for @; is then given in terms of an integration over the
volume V,, of the medium as

9a;

—L=—iotj+ [, d’t3 CHOV(1), (2.12)
m !

at

where /V,(r) in the integrand is a component of the
dipole-density operator'? defined as

Vi =",/8V,

for 9,, a component of the dipole operator of the micro-
scopic volume element 8V at r.

With the adiabatic approximation as shown below, f’,,
can be solved in terms of @; without the use of Eq. (2.12).
Equation (2.12) then allows us to solve for the correlations
of the field annihilation operators once we obtain f’,,. If
we further assume that the thermal field reservoirs for

different atoms are uncoupled, we can solve for f’,, by just
considering the atoms in the volume 8V at r and neglect
the presence of the other atoms in the medium. This as-
sumption of uncoupled thermal reservoirs neglects the ef-
fect of superradiance.

Using H : given in Eq. (2.4), we can obtain the equation
of motion for the density operator of the atom-field sys-
tem consisting only of a single microscopic volume ele-
ment. The reduced density operator is of interest; it is ob-
tained by tracing the density operator over the reservoir
modes which are assumed initially to be in thermal equili-
brium. Using the Markov approximation, we employ the
master equation given in Louisell’ to derive the equation
of motion for the reduced density operator g in the in-
teraction picture. After transforming away the free part
of the pump modes this procedure yields

B _ (80/20)[ g pl+ (1 /i#) Ayl +L () .

3 (2.13)

In the above equation 8o =wo—w and L (p) is a reservoir

term given by

A A At A
LP)=3— UV Pup1+[p Vi, Puliy(n +1)
il

+[PuVip1+ BV Vilyn) . @14)
where ;= |g);(l|, 2y is the spontaneous decay rate,
and n is the average number of thermal photons at fre-
quency w. At optical frequencies n << 1 prevails, so we
shall consider only the first term in Eq. (2.14). This
neglects thermal-noise-induced atomic decay effects.

From Eqgs. (2.13) and (2.14), we see that the interaction
of the atoms with the field given by H;, and L (p) decou-
ples into x, y, and z components. This means, e.g., that if
the atoms are excited by an x-polarized wave, there is no
emission of waves with y or z polarizations, which need
not be the case for atoms with more complicated atomic
energy levels. As a result, there is no four-wave mixing
gain if the two pump modes are copolarized in a direction
orthogonal to those of the PB and PCB modes. Thus, in
what follows we shall consider the case in which the two
pump modes are orthogonally polarized.

III. DERIVATION OF THE ¢-NUMBER
FOKKER-PLANCK EQUATION

In order to derive the Fokker-Planck equation for the
distribution function associated with the reduced density
operator, let us assume for simplicity that all the beams
have their polarization vectors lying in the x-y plane.
This reduces our four-level atom problem to a three-level
one. It turns out that by an argument of symmetry we
can recover the solution for waves having arbitrary polari-
zation vectors.

The equation of motion for the reduced density opera-
tor p in Eq. (2.13) can be transformed into a c-number
equation for the associated distribution function p, by us-
ing the standard technique described in Louisell.’ This
c-number transformation is not unique in that it depends
on the choice of ordering of the atom and field operators.
The operator ordering is arbitrary, but an appropriate
choice minimizes the algebra in the calculation. The or-
dering we use is

2'wivianamav.v,2alalaa,,

where 2, defined as

z=3 |x)uly|, (3.1
i=1

is an operator related to the Zeeman coherence between
the | x) and |y) states. The introduction of this opera-
tor is necessary to obtain the c-number equation of
motion for p.. We note that our choice of operator order-
ing makes p, real. This halves the effort in obtaining the
equation of motion, as the second half of the solution can
be obtained from the first by complex conjugation. After
the c-number transformation, the corresponding c-
number variables of the atom and field operators will be
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denoted by the same symbols without carets, and with su-
perscript pluses in lieu of daggers.

The equation of motion for p. contains derivatives of
infinite order in the n,, n,, and n, variables and third or-

der in some other atomic variables. In the limit of large
Ny we can safely truncate by keeping only the first- and
second-order derivatives. This reduces the equation of
motion for p, to the following Fokker-Planck equation:

apc I PP .y, 0 3 o 4+ O 3
_2 Xj x aa ijy aajaz —Cij a +ija" (ng nx)aV C’V j Vx Vx+an+ - ;jajz+ an+
9? ?? 9
—CpajtVy————-ClafZ——— +Claf Z————
%% ¥y av,av; vj9j anavyF +Cy84 an,av;
9 9 9
+
+('y—18(0)V an ,,jaj Z+ a.Vy+ +(nx ny) jaj aV+
+Cy; +V+——az +Cy; +V+——————az +(y—idw)V,’ 3
Y avtav,t avtavyt Y avt
d 9 92
+C‘ Vx an, ija x a C x_éT
. 3’ ) 9 a3’
— 3G9/ Vs n on, —3Cyai Vx angon, +Cyjaj Vy 3 — o, —Gyiai' ¥y ang 3 e Vs 3 ony
1 3? 9’ () d a3’
- 2C V}' an,an, 2C.Ia] Y an a +vny an, —Ynx an, —Yny an,,ang
32 2 a 62
1 -~ _ —°
ARLCT P PR LLCT w e L ma T m g
1 3 1 9? . _+ d d 92
L —_— L _— +Crat -
I g T T M anany T4 Vraz YO Vg — G Ve g g
32 ot az 82
+C,jaj * 3 az+ C,ja z uaV;*asz —(ng—n,)C, jaj _———GV*’GZ*
3 9? 3? 3? 3’
z-2 4yZ —yZ ey Zt——
Y2z Ym0z P anaz VYV avrezr T amezt
z+—2 i y & + 9 )
- yA .C. |pe » 3.2
Y angaz+ "™ azaz+ TV Bvpazt TV azv TOS P (
T
where c.c. denotes complex conjugate. (In the above equa- avt + + . +
tion all the coefficients preceding the partial derivatives 3 — % (ng—ny)+ay,"Z —(y —idw)V;" +f v
should instead follow them.)
Essentially by reading off the coefficients in this (3-3e)
Fokker-Planck equation, as described in Louisell,” we get av;}
the equivalent following set of Langevin equations: - =— a; +( ng—ny)+ a}z+ -—(y——t&u)V + fy+ ,
da
—atf-_ Ve +CoiVy+1a, » (3.3a) (3.3
ag 8z o WV,—aVi-2Z+fz, (3.3g)
J ot
——at—=ij V;"+Cy]- Vy+ +fa-+ , (3.3b) +
7
027 oV —a}Ve—2yZ* S, (3.30)
v, + . ot z
» =—a,(ng—n,)+a,Z* —(y+id)Vi+fv_, an,
(3.30) at = —ax+ Vy—ay Vx+_27’nx +fnx ’ (3.3)
3c
on
3% _ —ay(ng—n,)+a,Z —(y+i80)Wy+fy, , (330 ——at’ =—a}'V,—a,V;t —2yn,+1, , (3.3))

ot



34 VECTOR-FIELD QUANTUM MODEL OF DEGENERATE FOUR- . .. 297

where we have defined

a,=3 Cya;,
j

ay E? Cyjaj ’

(3.4a)
(3.4b)

and various Langevin forces have been denoted by sub-
scripts on f. In Egs. (3.3¢)—(3.3j), n, is tied to n, and n,
by the completeness relation

ng=No—ny,—n, . (3.5)

The nonzero correlations between the various Langevin
forces are

(fa)(Of2()) = —C5 ¥, 8(t —1') , (3.6a)
(fop O 748y ==Cy vre —t), (3.6b)
(fo+(t)fV:(t'))=Za,,+Vx+5(t -1, (3.6¢)
(fv,Ofy (1) =2a,V,8(t —1t'), (3.6d)
(Fr(0f (1)) =(=a) V) —a, V)8t —1') ,  (3.60)
(f,,y+(t)f,,y+(t’) y=2a,V, o(r—1"), (3.60
(fr,(0fy (1)) =2a,V,8(s —1t") , (3.6g)
(fyp(0f 3 (1)) =0 VI8 —1) (3.6h)
(fr,(Ofy (1)) =a,Ve8(t —1), (3.6i)

(fn ()5 (1) =( —afV,—a, Vi +2yn ot —t'),

(3.6j)
(fa (O (1)) =(—05 ¥, —a, V¥ +2ym )80t —1) ,

(3.6k)
(f,,y+(t)fz+(t’))=ay+Z+6(t —t'), (3.61)
(fyy(l)fz(t')>=ay28(t —t'), (3.6m)

(fr+(Of g2t =[—a," (ng—n, ) +2yV,; 18t —1")

(3.6n)
(fv,(0f (")) =[—ay(ng—ns)+2yV, ]6(t —1")

(3.60)
(fz+(t)fz(t'))=27n,8(t —t'), (3.6p)
(f,.‘(t)fz+(t’))=(—2yZ++a,+ V)8t —t'), (3.6q)
(f,,‘(t)fz(t'))=(-—27/Z+any+)8(t—-t’) , (3.61)
(f,,x(t)fz+(t'))=(27/Z+—ay+V, )8(t —t'), (3.6s)
(fa, (Of2(t'))=(2yZ —a, V;)b(t —1') , (3.6t)

(fo, (O () =(=2yn, +a,*V, +a,V; )8 —1')

(3.6u)

(fag (O (£)) =2y ne +2yn, —at V, —a ¥y

—a,V,f —a, Vst —t'),  (3.6v)
(f,,;(t)f,.x(t')) =—a, Z8(t 1), (3.6w)
(fr (Ofn (1)) = —a,Z+8(t —1") , (3.6%)
(fo+(t)f,,y(t'))=ay+Z¢S(t—t') , (3.6y)
(fr,fn (1) =a,Z 8t —1") , (3.62)

(fa (Ofn (1) =(as Vi +a Vi —2yn)8(t —1') .

(3.6aa)

IV. ADIABATIC ELIMINATION
OF ATOMIC VARIABLES

The solution to the above Langevin equations can be
obtained by first solving for the atomic polarizations ¥V,
and V), using the adiabatic approximation which is briefly
reviewed here.

In adiabatic approximation, it is assumed that the fields
{a;} have a characteristic decay rate yx which is small
compared to the decay rate ¥ of the atomic variables.
This enables us to treat {a;} as slowly varying in Egs.
(3.3¢)—(3.3j). More importantly, it follows that the
change in a; as given by Eq. (3.3a) is sensitive only to
driving frequencies that are small compared with yg.
Hence, it is sufficient for us to solve for just the low-
frequency part of ¥V, and ¥, by looking at a coarse-
grained time 6t such that

1/yr>8t>>1/y . 4.1)
Then in Eq. (3.3¢), for example, we have
av, ¥V,
_* 4.2
a <o <yVy 4.2)

so that we can set the time derivative equal to zero. More
precisely, this approximation is equivalent to convolving
both sides of Eq. (3.3c) with a unit-area pulse of width 6¢.

Similarly, after setting the time derivatives equal to
zero in Egs. (3.3d)—(3.3j), we solve for ¥V, and ¥, in
terms of {a;} simply by algebraic manipulations. Because
of the convolution mentioned above, we find that the
noise parts of ¥V, and ¥, have nonzero correlations for
time differences of the order of &¢, even though the
Langevin forces are delta correlated. For coarse-grained
time intervals, however, they can still be regarded as delta
correlated.

The equation of motion for a; that would be obtained
in Sec. V from the solutions of ¥, and V, for our system
is of the form

9a; .

?=+ty,aj—yRaj+Dj+Fj , 4.3)
where yg,y; are real constants, D; is a slowly varying
drive term arising from coupling with the other modes,
and I'; is a noise term contributed by the noise parts of
Vx and V,. The solution for g; is in general of the form
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Ajexpliyjt), where 4 ; is a slowly varying amplitude and
the exponential factor gives a frequency shift. In the de-
generate case, the frequency shift comes from the iy,aq;
term of Eq. (4.3) and hence ¥;=v;. The magnitude of
y7 could be larger than the atomic decay rate ¥ which
would invalidate the assumption that a; is slowly varying.
This problem can, however, be avoided by making the
transformation a;—a;exp(iy;t), and similar transforma-
tions for all the other field and atomic-polarization vari-
ables before performing the adiabatic elimination. This
transformation procedure, which then in the degenerate
case eliminates the iy,a; term in Eq. (4.3), changes 8w in
Egs. (3.3¢c)—(3.3f) to 6w —7;. All the field and atomic-
polarization variables below are to be taken as the
transformed variables.

Because of its algebraic complexity, the adiabatic elim-
ination is done on a computer with use of a symbolic ma-
nipulation program giving the following solutions for ¥V
and V,:

N 09x

Vi=———7"—+Gyp , 4.4
=T (48P T (4.4a)
v, Nty g (4.4b)
Y= Ty a+isr T '
where § is the normalized detuning defined as
(wg—w,,)
. L 4.52)
Y
with
Wop =0 —Y] , (4.5b)
P is a saturation factor given by
2(a.ay +aya,)
P14 =2 Oy ) 450

yA1+82)
and GVX,GVy are the noise parts involving terms linear in
fo’ ny’ fZ) fnxr fny; fo+’ .fyy+’ and fz+' The correlation
equations for ny and GVy are complicated and are not
presented here. However, we note that they are asym-
metric in the x and y parameters. Using Eqgs. (4.4a) and
(4.4b) in Eq. (3.3a), we obtain the following stochastic
equation of motion for a;:

No(Csja, +Cyiay)

y(1+i8)P

where G“,-r is a Langevin force given by

aaj .
S =i

+G,,  (46)

G“jrzfaj -+ C;jGVx —+ C;}GV}’ . 4.7)

Below, we specialize to the case in which the PB and
one of the pump modes have e, polarization, whereas the
other pump and PCB modes have e, polarization. We
also assume that the two pump modes are nondepleted
having equal complex amplitudes £. Let the PB and PCB
modes be a3 and a4, respectively, then a, and g, in Eq.
(3.4) are

ax=cxl€+cx3a3 ’ (4.8a)

a, =Cy2£+Cy4a4 N (4.8b)

where, because of the assumed polarization states of the
fields, we have taken

Ci2=C4=C;;=C,3=0, 4.9)
and the nonzero C’s of Eq. (2.9a) are given by
C,1=Cexplik,1), (4.10a)
C,3=Cexplik;1), (4.10b)
Cy,=Cexplik,'1) , (4.10¢)
C,4=Cexpliky1) , (4.10d)
C=gu,, (4.10e)
with
(x|ex|g)=(y|eP|g)=no. (4.10f)

Using Eq. (4.6), we get the following stochastic equations
of motion for a; and ay:

da; . _NOC‘ax .

T T et [Siagp e [xR(= i)
(4.11a)

day - —NoC*a, :

—-é7—=—17/104+ m*—rak exp(—ikyr) ,
(4.11b)

where [y, =G,, explikyr) and I‘a“:Ga“exp(ikfr). P
can be expressed in terms of the total field intensity I and
the detuned saturation intensity I; by

P=(1+1/I)), (4.12a)
where

I=(aa;t +a,af)/|C|?, (4.12b)

I,=I(1+8%, (4.12¢)
and

Lo=y*/2|C|%. (4.12d)

The noise correlations for the Langevin forces are given
by

(T4 (0T (1)) =Dy 82 —1"), (4.13)
with
a,a,(C*)’N, o3 5
Dy o, =— C 1 LP (160 [(1—i8)Y +(I/1,)*/2],
(4.14a)
a,a;NoI /1)
D =———>[24+1/I;) /2], (4.14b)
a9F =y PY(1+46°) [2+U/Lo)/2]
a,a,(C*)’N,
D == Y%y 0 1—i 3 2
a0, [C 15y L.PN148) [(1—i8)’+(I/1,)*/2],

(4.14¢c)
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D =N L
a4a+_’}’IsP3(l+82)2{( /JO)[ +( /30)/ ]} ’

(4.14d)

D —a,a,(C*)*N,
aza, |C |2'}/ISP3(1+82

° [(1—i8)’+(I/1,0)?/2],

(4.14¢)

and

+

<3N

D, ,, =22 0 (/L 2+ U/1,0)/2]] .
a0t = YLPA1+6%)

(4.14f)

Unlike the correlations for Gy, and ny, the above

correlations show x -y symmetry. The recovery of the x -y
symmetry is due to the nonzero correlations of fa]. and

faj‘" with f7z and f,, as given in Eqs. (3.6a) and (3.6b),

respectively, which are themselves asymmetric in the x -y
parameters (f,,j and f,, are uncorrelated with f,, and

fz, respectively). This recovery of symmetry is expected
because the correlations of Eq. (4.13) can be physically re-
lated to spontaneous emission noise whereas the correla-
tions of Gy,_ and ny in Eq. (4.4) have no direct physical
meaning, i.e., they do not completely describe the correla-
tions of ¥, and ¥, because of the noise terms present in
a, and a,. We can generalize these correlations further to
waves having arbitrary states of polarization, which is
done in the Appendix.

V. COUPLED-MODE EQUATIONS

The equations of motion for the field-annihilation
operators interacting with the entire medium can be ob-
tained by using the total Hamiltonian as mentioned in
Sec. II. The c-number equivalent equation of motion for
a; (j =3,4) corresponding to the operator Eq. (2.12) is
aa j .,

0 i

-N0(C;jax +Cy';a,)
[y(14+i8)P]

+ [, (@87 [

+I“,jrexp(—ikj-r) . (5.1)

To derive the coupled-mode equations, we expand 1/P
in Eq. (5.1) to first order in the amplitudes of the PB and
PCB fields a3 and ay:

1/P =(1/Py){1—[ase+expliky-r—ik,-r)
+ai eexplik;-r—ik;r)
+asetexplik, r—iky 1)
+aieexpliky r—iky 1)} /I Py}
(5.2a)

Po=(1+21,/1,), (5.2b)

where I,=|e|% The integration in Eq. (5.1) is to be
done over the entire volume V,, of the medium. For sim-
plicity, we take V,, to be equal to the volume of quantiza-
tion ¥ in Eq. (2.9b) which is equivalent to assuming an in-
finite medium because of the periodic boundary condi-
tions imposed on the field. In the spatial integration, the
exponential terms of Eq. (5.2a) make no contribution un-
less they satisfy the phase-matching condition

k1+k2=k3+k4 . (53)

Unlike the scalar-field case, this integration is straightfor-
ward as P, is not a function of r. Using a similar pro-
cedure for the conjugate field mode a;*, we get the fol-
lowing coupled-mode equations for a; and a:

aa3

?=i(y,—~y})a3~y,¢a3+)(a;* +I3(2), (5.42)
daf
o = —i{i—vDed —yral +X*a;+ T, (5.4b)
with
y1=2C"(1+1,/I,)8/(1+ 8P} , (5.52)
Yr=2C'1+1,/I)/(1+8")P} , (5.5b)
X=2C"(e?/I;)/(1+i8)P}§
=Xg+iX;, (5.5¢)
2C'=|C|*N/y, (5.5d)

where N in Eq. (5.5d) is the total number of atoms in the
medium. The coupled-mode equations for a3 and a, can
be obtained by interchanging subscripts 3 and 4. Follow-
ing the discussion after Eq. (4.3), ¥} should be equal to y;
in Eqgs. (5.4) so that the terms proportional to y; —y; are
zero. The equations of motion for the pump modes are
similar to Eqgs. (5.4) but with a different y; coefficient
given by

v1(pump)=2C"(14-2I, /I,)8/(1+8°)P} . (5.5¢)

Due to this difference in y; coefficients it is impossible to
make a transformation that removes the (y;—7v7])-
proportional terms not only from Egs. (5.4) but also from
the pump-mode equations. This problem can, however, be
solved by considering modified FWM geometries'® and in
what follows we will assume that the (y;—v7)-
proportional terms are zero. The integrated noise forces
I3,y in Egs. (5.4), and T'#, T, which appear in the equa-
tions for a3 and ay, are given by

T(0= [, (d*t/8V)T, (Dexp(—ik;-1) , (5.6a)

L= [ (@’r/8VT,  (Nexplik;1) . (5.6b)
jr

The noise forces I‘,,j and I' , in Egs. (5.6) at different r
4 it

can be shown to be uncorrelated due to the assumption of
uncoupled thermal reservoirs. Thus we have from Eq.
(4.13)

(g, (0T, ("))

SVoV (5.7a)

=(D,,i,,j/8V)8(t —t")8(r—r'),
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(Tg (0T, (£)
ir a]{
SV av

To determine the correlations for ' and T f, consider,
for example,

(LT ("))
= f,, de3rd3r'exp( —ik;-r)exp(—ik;-r’)

=(D, . /8V)8( —1")8(r—r') . (5.7b)
(]

X (Dq,q,/8V)8(1 —1")8(r—1') , (5.82)
and
(TnTF (1)
= f,, fyd3rd3r'exp( —ik;r)explik; r')
(5.8b)

X(D, . /8V)8(t —t)8(r—1') .
i

Since the dominant term in D‘,mocexp(ikl-r)exp(ikz-r),
we find that the anomalous correlator (T'3(£)T4(¢’')) is
nonzero because of phase matching. The normal correla-
tor {I'3(£)['(¢')) is nonzero too, but not because of phase
matching as Da30 ¢ is independent of r. We also find that

([3(1)TF(¢")) is zero due to phase mismatching. The
nonzero correlations, therefore, are

(T3()T4('))=R*8(t —1') , (5.9a)
(CF(OTF())=R8(t —1') , (5.9b)
(D3O (")) =(T()0F(t")y=A8(t —t'),  (5.9¢)
where

R*=Rg—iR; , (5.10a)
Rp=—[2C"(e¥/1,)/(1+8*)?P}]

X [(1=38%)+2(1, /I, (1+8%)] , (5.10b)
R;=—[2C"(2/I,) /(1+8%)*P§1(36—6°) , (5.100)

A=[2I, /1,)2C" /(1 +8))P31[2+ I, /I (1 +8))] .
(5.10d)

The coupled-mode Egs. (5.4) have been derived assum-
ing that the fields are polarized only in the x-y plane,
which is possible only if their k vectors are almost col-
linear. A more general analysis can, however, be per-
formed for waves having arbitrary polarization states by
means of the correlations given in the Appendix.

A preliminary calculation shows that in the general
case, the polarization state of the PB or the PCB mode
could undergo rotation as it propagates through the medi-
um. This is because the component of the PB or the PCB
mode with polarization parallel to the resultant polariza-
tion of the two pump modes sees a lower loss than the
component with polarization which is perpendicular to
that resultant. This loss asymmetry is due to saturation;
the medium acts like a polarizer whose axis is determined
by the resultant polarization of the two pump modes. In
addition, for the case of forward FWM, the PB mode cou-
ples to the PCB mode, which in turn couples to the mode
with polarization state orthogonal to the PB mode. This

mechanism also gives rise to polarization rotation of the
PB and PCB modes. Because of these complications, we
only consider nearly collinear cases in this paper.

VI. DEGENERATE FOUR-WAVE MIXING

In this section we apply the vector-field theory
developed in Secs. II—V to the forward and backward de-
generate FWM configurations for comparison with the
scalar-field theory of Reid and Walls.” As explained at the
end of Sec. V, we restrict our attention to the geometry in
which all the beams are nearly collinear.

A. Forward degenerate FWM

As shown in Fig. 1, let us consider the case in which
the two pump beams have mutually orthogonal states of
polarization. For a probe beam copolarized with one of
the pump beams, a PC beam with polarization vector
orthogonal to that of the PB is generated via degenerate
FWM in a direction which satisfies the phase-matching
condition of Eq. (5.3).>!° Equation (5.4) describes the
evolution of the coupled PB and PCB modes.

In our idealized theory, it is assumed that the medium
is of infinite extent. All the modes, which are + z direct-
ed plane-waves, are assumed to be in coherent states at
z =0 and observations are made at z=L. This provides
an appropriate model for a medium of finite length L
when the effect of reflection at the medium boundaries
can be neglected.

In order to solve for spatial propagation, we make the
t—z /c transformation where c is the speed of light in the
medium. Such a transformation, although not rigorous,
has been used in previous works.>~>7® Further justifica-
tion for this transformation can be provided by a mul-
timode analysis of nondegenerate FWM. !4

The propagation equations for the PB and PCB modes
obtained in this way are

803(2)
9z

= —aa;(z)+Xai (2)+T4(2), (6.1a)

FIG. 1. Nearly collinear forward degenerate FWM geometry.
PB and PCB wave vectors k; and k,, respectively, lie in plane
Z and the pump-beam wave vectors are obtained by rotating
plane Z along € €' by m/2 rad. The pump beams are assumed

orthogonally polarized with one polarization vector perpendicu-
lar to 2.
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aag’fzm =—aaf(2)+X *a3(2)+T{(2), (6.1b)
where

a=ygr/c, (6.2a)

X=X/c=Xg+iX; , (6.2b)

(T3(2)Ty(z')) =R *8(z —2') , (6.2¢)

(Ff(2)Tf(2))=R8(z —2"), (6.2d)

(T3(2)TF (")) =(T42)TF(z))=A8(z—2"), (6.2¢)

R=R/c=Ri+IiR;, (6.2
and

A=A/c . (6.2g)

We can solve for a;(L) and a; (L) using the standard
method? to obtain

a3(L)=T(L)a3(0)+r(L)ai (0)+G3(L) , (6.3a)
af (L)=T(L)a}(0)+r*(L)as(0)+G{ (L), (6.3b)
where
G,(L)= fOL[T(L —2)T3(z")+r(L —2 )T} (z))dz’ ,
(6.4a)
G;*(L):foL[T(L ~2)TH(z")
+r*(L —2")5(2"))dz’ (6.4b)
T (z)=exp(—az)cosh( | X |z) , (6.4c)
riz)= ;' exp( —az)sinh( | ¥ |2) . (6.4d)

According to the ideal theory,’ squeezed states are gen-
erated when the PB and PCB waves at the output are
combined with a 50% beam splitter. Therefore, we con-
sider the following combination mode:

e=[8,(L)+exp(i0)d,(L)]/2'?
=X,0)+iX,(0) , (6.5)

where X 1(8) and b'¢ ,(0), the two quadrature operators of
the combination mode, can be measured via homodyne
detection.’® The fluctuation in the quadrature operator
b'¢ 1(8) as given by the variance

8X 30)=([X,(0)—(X,(6))]?)
=+ ++[(a3(L)as(L))exp(if)
+{af(L)aj (L))exp(—ih)

+<{ai (L)as(L)) +{ai (L)as(L))],
(6.6)
is the key quantity of interest; 8X 2(8) < + is squeezing.

The calculations for the minimum noise in the quadra-
ture operators of € are identical with those in the scalar-
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FIG 2. Plots of the minimum quadrature noise variance
8X HOpin) for forward degenerate FWM as a function of the
normalized pump intensity S divided by the normalized pump-
frequency detuning 8 for various values of 8. Dashed curves are
for the scalar-field case of Reid and Walls (Ref. 7) and the solid
lines are for our vector-field case.

field case’ except that the expressions for R, A, a,and X
are different. Let 0=0,;, be the phase that gives the

minimum value of the variance 8X (@), then as shown in
Ref. 7

8X HOumin)
=+++[A|X| —(RgXgr —RXDV/LIX | (a+ |X])] .
6.7)

In Fig. 2 we plot the minimum quadrature noise vari-
ance 8% 2(@min) as a function of S/8, where S =1, /Iy,
for various pump-frequency detunings 8. For the purpose
of comparison, the minimum quadrature noise variance at
the same pump-frequency detuning for the scalar-field
case is also plotted.

B. Backward degenerate FWM

In backward degenerate FWM, the two pump beams
counterpropagate as shown in Fig. 3. We again assume
that the polarization vectors of the two pump beams are
mutually orthogonal. Due to degenerate FWM, a PB
copolarized with one of the pump beams generates a PC
beam which counterpropagates to the PB with its polari-
zation vector perpendicular to that of the PB.>!° The
spatial propagation equation for the PB mode a;(z) is ob-
tained by making the t—z /c transformation, whereas be-
cause of the counterpropagating beam geometry, the
transformation for the PCB mode a4(z) is t——z/c.
Once ag_ain, apart~from the differences in the expressions
for R, A, a, and X, the calculations for the noise variance
in the quadrature components of the combination mode
are similar to those in the scalar-field case and we omit
the details.

In Fig. 4 we plot the minimum quadrature noise vari-
ance 8X }(Omin) as a function of S for both the vector- and
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FIG. 3. Nearly collinear backward degenerate FWM

geometry. Pump beams are assumed orthogonally polarized as
indicated.

the scalar-field cases. We have assumed =100 and
aol =2C'L /¢ =10*, where a is the on-resonance unsa-
turated loss coefficient.

VII. DISCUSSION

We have developed a theory of degenerate FWM in
which the atomic medium consists of stationary four-level
atoms. This allows the interacting beams to have dif-
ferent states of polarization. Our theory reduces to the
scalar-field theory of Reid and Walls’ when all the in-
teracting beams are in the same state of polarization. As
in the scalar-field theory, we find in our vector-field
theory that the maximum amount of squeezing achievable
via both forward and backward FWM is limited by propa-
gation loss due to absorption in the medium and by spon-
taneous emission from the excited states of the four-level
atoms. From Figs. 2 and 4 we see that for both forward
and backward FWM, respectively, the range of pump in-
tensity for which squeezing occurs in the vector-field case
is larger than that in the scalar-field case, whereas the
maximum amount of squeezing at a particular pump de-

(o] 40 80 120 160 200 240

FIG. 4. Plots of minimum quadrature noise variance

34 Y Omin) for backward degenerate FWM as a function of the
normalized pump intensity S. Dashed curve is for the scalar-
field case of Reid and Walls (Ref. 7) and the solid line is for our
vector-field case.

tuning is comparable in both cases with the maximum
occurring at a higher pump intensity in the former case.

To understand the origin of these differences we first
note that significant squeezing occurs only when the
atoms are weakly saturated, i.e., when I/I; <<1. This is
because in this limit, the contribution of spontaneous
emission from the excited states as determined by the nor-
mal correlators of Eq. (6.2¢) and as given by A in Eq.
(5.10d) is negligible. Comparing the expressions for X, R,
and A [Egs. (5.5) and (5.10)] in this limit, we find that the
first two are linearly proportional whereas the last de-
pends quadratically on the pump intensities. Also, in
both forward and backward configurations, the magni-
tudes of X and R are smaller by a factor of 2 in the
vector-field case than those in the scalar-field case.”!
This factor-of-2 difference in X between the scalar-field
case and the vector-field case as considered in this paper
arises even when the light fields are treated classically. As
shown in Ref. 10, the difference originates in the com-
parative strengths of various gratings leading to the non-
linear coupling in the two cases. This is not surprising in
light of the fact that in the weak-saturation region, where
squeezing occurs, quantum-field calculations of atom-
field interaction reduce to the classical field results.
Therefore, in the descending regions of the curves in Figs.
2 and 4, where A is negligible compared with R, the same
amount of squeezing is achieved at twice the pump inten-
sities in the former case. The ascending parts of the
curves, however, are spontaneous-emission noise limited
where due to the quadratic dependence of A on I/I, the
contribution of spontaneous-emission noise at the same
squeezing level is larger in the vector-field case. This ex-
plains why in the vector-field case the maximum amount
of squeezing achievable is slightly lower than that in the
scalar-field case.
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APPENDIX

The correlations given by Egs. (4.13) and (4.14) show
x -y symmetry which is expected because they can be
physically related to spontaneous emission noise. In gen-
eral these correlations should also be symmetric with
respect to the z coordinate because the medium is as-
sumed isotropic in the absence of the applied light field.
Let us define a new variable a, similar to a, and a, of
Eq. (3.4) as

a,=3 Cya;, (A1)
J
and redefine I of Eq. (4.12b) as
I=(a,a," +aya,t +a,a;Y)/|C|2. (A2)

Motivated by the fact that in Eq. (4.14) only the x (y)
component of the total field appears in Dg 4, (Dg,q,), we

generalize the correlations of the Langevin forces I' q; and
I‘,,j for the two modes ¢; and a; with arbitrary polariza-
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tion states e; and e;, respectively, to

(A'C,’ )(A'Cj )(Cﬂ.l )2N0
|C |*7I,P(1+ 8

(g, ()T, (1) = —

X[(1—i8) + (I /1,0)*/218(t —1t') ,

(A3a)
(A-e;)At-e;)N,
(T (0T, (1)) = : “——(1 /1)
ir aj'lf‘ > YISP3(1+82)2 s0
X[24 /1) /2)8(t —1¢') (A3b)

where
A=a.e, +aye,+ase, . (A4)

The vectorial nature of Eq. (A3) can be interpreted
geometrically by noting that the net induced atomic di-
pole moment vector V is parallel to the effective total
light field vector A:

V=V,e,+V,e,+V,e, x(a e, +aye, +a,e,)=A .
(AS)

Thus the amount of spontaneous-emission noise into each
mode is just the vectorial component of the dipole radia-
tion in the direction of the polarization vector of that
mode.
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