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Abstract

We demonstrate an efficient numerical method for calculating transverse electric (TE) or transverse magnetic (TM)
modal properties in a waveguide with an arbitrary refractive index distribution. We approximate a planar waveguide
cross-section by a finite number of thin dielectric layers and use 2 X 2 transfer matrices to relate adjacent layers. Using a
back-propagation method that is simple and computationally efficient, we solve for the vectorial field across the
multi-layered waveguide and plot the mode profile. There is rapid convergence to a high-accuracy solution. We also obtain
the number of guided modes and the propagation constant of each mode. © 1997 Elsevier Science B.V.

1. Introduction

We present a numerical guided-wave calculation based
on the transfer matrix method [1] to calculate the mode
profile in a planar waveguide with a varying refractive
index. We approximate the waveguide by a finite series of
dielectric layers, each characterized by a discrete refractive
index and width. We place the multi-layered waveguide
structure between two high-index regions as shown in Fig.
I. The input field is introduced from the high-index region
via evanescent mode coupling, and the incidence angle 6,
is varied to excite all possible modes in the waveguide.
The waveguiding layers and the high-index regions are
separated by a low-index cladding gap. This configuration
is directly analogous to prism coupling to a waveguiding
layer using a high-index prism [2]. Using the incident
angle value corresponding to the desired mode, we find the
spatial field profile of the propagating mode.

Three useful parameters in a multi-layered waveguide
structure are the number of guided modes (if any), the
propagation constant of a mode, and the mode width for
TE or TM polarizations. Analytical methods using the
matrix approach solve the characteristic equation for the
layers and find the propagation constants from the transfer

matrix zeros [3,4]. This approach can become complicated
as the number of layers increase since it involves the
solution of complicated differential or transcendental equa-
tions. Numerical matrix methods can solve for a particular
propagation constant or mode profile [5,6] but may not be
able to determine all guided modes. The algorithm pre-
sented here can be written as a short program (e.g., a
150-line Mathematica program) executed on a personal
computer and can yield the number of guided modes, the
propagation angle for each guided mode, the propagation
constant, and the mode profile within several minutes for
100 layers. High-accuracy solutions are obtained for vecto-
rial wave propagation in the multi-layered structures. The
waveguide structure can be complicated, asymmetric and
have an arbitrary index variation that is continuous or
abrupt. The structure can be either a strongly-guided wave-
guide or a weakly-guided (rib) waveguide. Some examples
of complicated waveguide structures are multi-layered
thin-films with different refractive indices, curved wave-
guides that have an exponentially varying equivalent index
profile (such as ring lasers or S-curve connections in
optical cireuits) [7], or waveguiding layers with loss or
gain parameters. Even though this method is a one-dimen-
sional waveguide calculation, it is easily extended to two
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Fig. 1. A waveguide cross-section with an arbitrary index of
refraction profile is divided into several layers. The input field £
and output field K., are coupled in and out of the waveguide
from the high-index regions via the adjacent cladding layers.

dimensions by using the effective index method [8] to
incorporate the second dimension.

2. Transfer matrix formulation

The waveguiding region has an arbitrarily varying in-
dex of refraction and is modeled as many thin dielectric
layers, each layer with a discrete refractive index. Each
layer has a complex transfer matrix that relates the trans-
mitted and reflected fields within that layer to the fields in
the adjacent layer. The transfer matrix method allows us to
find the cumulative field amplitude at any point in the
waveguide by multiplying the transfer matrices.

The numerical method presented here assigns a trans-
mitted field at the output and propagates backwards through
the waveguide layers to find the total field at the input. In
Fig. 1, we see the case of a waveguide of arbitrary index
distribution n( x) separated from a high-index region by a
thin cladding layer (such as an air gap) on either side. The
field is coupled in and out of the waveguide via the
cladding layers with index n, on either side. To excite
all possible guided modes, the refractive index of the input
layer, nq, must be greater than the maximum refractive
index in the waveguide region, n,,.. By assigning a
transmitted electric field amplitude E,, and propagating
backwards, we obtain both the transmitted and reflected
waves at the input of the waveguide, E; , and E;

We calculate the ratio of the output field to the total
input field at the final air gap as a function of incidence
angle 6,,. The angle for the lowest-order guided mode
corresponds to the largest angle that results in a local
maximum for the field excitation in the waveguide (and
hence a local maximum transmittance in the waveguide).
We then use this angle to propagate through the medium
and calculate the field at each layer in the waveguide as a
function of space.

Suppose there are two layers in the waveguide as

shown in Fig. 2. The first layer has an index of n, and the
second has a length d and index n,. With an incidence
angle @,, the transmission angle into the next layer is given
by 6, = arcsin[(ngsin0;)/n,]. The TE propagation vectors
on each side of the interface are g = (2mn,cos6;) /A and
h=(2mn,cos6,) /X The TM propagation vectors are g =
(2acos0)/An, and h={(2wcos6;)/An,. The transmis-
sion and reflection coefficients at the interface are T =
2¢/(g+h) and R=C(g—h)/(g+h) for the left-hand
side of the interface and 7, =2h/(g + 1) and R, = (h—
g)/Ce -+ h) for the right-hand side of the interface. The
total field amplitude on the left side of the interface is
composed of two elements denoted by E* and E[. The
total electric field amplitude on the right side of the
interface is composed of E., and E, . The equations
relating the waves across the interface are £ = RE +
T.E ., and E', =R E.  +TE".

Using these two equations, the transfer matrix at this
interface is:

IT,_RR, R,

4 | exp( jhd) 0 ‘ T, T,
B 0 exp( —jhd) R [

b Ty

(D

with the fields in the adjacent layer given by the relation
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The matrix for each segment has similar coefficients
depending on the length and refractive index of each
segment. We can also include any parameters for gain or
loss in the layers in the transfer matrices. The transmission
angle 6, for one interface becomes the input angle 6, for
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Fig. 2. An arbitrary index distribution is divided in a finite number
of layers with a discrete refractive index value assigned to each
section. The inset shows the interface between two adjacent layers
with indices n, and n, and the forward and backward-propagat-
ing fields in each layer.
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the next interface. Once we have computed a transfer

matrix for each segment, the final output for N — 1 layers
is

EY E} E

oy :ANWI‘AN '7"-<-A1‘ . :A\\')- -

En E; owl g,

)
By storing the field amplitude value at each interface, we
can plot the field as a function of space in order to observe
the mode profile.

3. Method outline and example

The calculation steps are as follows and the variables
and fields are indicated in Fig. 1. Although the method is
applicable to either TE or TM modes, we perform the
numerical calceulations in the following examples {or the
TE guided wave with the free-space wavelength A, = 1.55
pm. We describe the total field at each point in space by
E(x)=E"(x)+ E*(x)and denote it by [ E_(x), £, (x)].

3.1. Possible excited modes in a multilayer waveguide

The two input parameters required are the structure of
the waveguide layers and the incident guiding angle. The
structure is a list, L= {{n,, 00, ), {ugs Lonads 111011 100,153,
o Wy il b s Laaa b 8o Loud)s that describes the
refractive index and thickness of each layer. We choose an
initial ¢;, and using Snell’s law, we propagate through L
starting at the end of the structure list until we solve for

Oou- 7y, and n, are the refractive indices of the outer
high-index layers.
We assign a wave E, =[E,,_.E,.]1=[01] and

propagate backwards through the layers to solve for the
field £, =[E, ..E,.] using 6, as the starting angle.
E,, . 1s the wave entering the waveguiding layers. We
store the value of |Eyy./E, . |2 for 6,,, increment 6, ,
and repeat the calculation. This result is the transmittance
through the structure for varying 6,,. The number of
transmittance peaks for the range of possible incident
angles indicates the total number of supported modes in
the waveguide. The incidence angle for the lowest-order
mode is given by the largest angle at which there is a peak
in the field transmittance output.

The lowest-order modes are not as lossy as the higher-
order modes and appear as much smaller peaks. Therefore,
to identify the lowest-order mode angle, we decrease the
air gap so that we increase the output coupling at the air
gap and identify the small peaks. Once we identify the
approximate value of the guiding angle, we increase the air
gap to find a more accurate solution. As the air gap is
increased, the peaks narrow and the peak values slightly
shift (typically less than one percent for an increase of the
gap from 0.05 to 0.5 pm). The guided mode becomes
increasingly sensitive to the guiding angle and the peaks
narrow because we are decreasing the output coupling
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Fig. 3. The field transmittance is graphed as a function of the
incidence angle for two different cladding layer (air gap) thick-
nesses. The peaks indicate field excitation and correspond to
guided modes. The small peak at the largest angle shown indicates
guiding for single-mode propagation. The plots are normalized to
the second peak {rom the right.

from the waveguide and effectively increasing the photon
lifetime in the waveguiding region. Increasing the gap size
narrows the peaks and rapidly converges to a high-accu-
racy solution. In Fig. 3, we see the field intensity output as
a function of incident angle for a simple 1-pm-wide planar
waveguide of refractive index »n = 3.3. The cladding layers
in this example are air, but they can be any low-index
material. The output is shown for an air gap of 0.05 pm
and an air gap of 0.5 wm, and the peaks correspond to
guided modes. All calculations are for a free-space wave-
length of Ay = 1.55 wm.

3.2. Field mode profile calculation

By propagating backwards up to any particular layer,
we find a value for the total field and the propagation
angle at that layer. We call this field £, =[E . E,,.]
The iransmiltance at this point is ([i‘wg, + By V)/
E...|". Using the guiding angle for the lowest order mode,
we solve for [Ewg‘ Loy after eyery layer in the struc-
ture list L. We plot | £, | versus the length after
each increment to get the mode profile. Note that since we
know the refractive index of each layer and can solve for
the propagation angle in each layer for a particular mode,
we can also solve for the propagation constant of that
mode k= (w /)y sin 6, This propagation constant
is matched throughout all of the layers. At the air gap, the
propagation angle is a complex value 8= 6, + 16, indi-
cating that the field at that point is a decaying field.

4. Numerical examples
4.1. Step-index waveguide

In Fig. 4, we calculate the mode profile for a 1-um-wide
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1.55 wm. The cladding layers are air (n = 1.0). We com-
pare the mode profile with the exact solution obtained by
solving the wave equations inside and outside the physical
waveguide. We solve the numerical method for a step-in-
dex waveguide surrounded by air gaps of widths 0.05, 0.1,
and 0.5 um. Thc corresp()nding incident angles for the
three cases are 6, = 1.117049, 1.115379, and 1.114346
rad, rcsp(:ctivcl_y. The propagation angle inside the wave-
guiding region is @, = 1.36660 (for the latter 6,). The
propagation constant for this mode in the waveguide is
k={(w/cInsinf,. As the air gap is increased, the accu-
racy of the incident angle increases indefinitely. The case
with the 0.5-pm air gap agrees with the exact solution and
the error in the propagation angle is on the order of 10 .
The error is due to the finite incident angle increments in
numerically finding the incident angle, and the accuracy
can be further increased by using higher resolution incre-
ments.

4.2. Quadratic-index waveguide

The quadratic-index  distribution is  na(x) = n(l -
n;,_xz/n)'/;". The solution of the wave equation 9°F Jdx’
+ 10 = (ny/mxDIE =0 is of the E =
exp(—x?/w?) where w’ = The chosen in-

form

- (A/ W)\ﬂm 5.
dex distribution is a(x) = 3.4(1 — x?/3.4"? as shown in
the inset of Fig. 5. The numerical transfer matrix method is
applied by dividing the quadratic-index distribution into
0.01-wm-thick step-index layers. The waveguide formed
by the index distribution has a 0.1-pwm air gap on either
side. The incident angle for single-mode propagation is
6., = 1.16226. From this angle, we can find the angle in
any layer in the waveguide and find the real or complex
propagation constant for that layer. If the propagation
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Fig. 4. The field intensity is graphed as a function of space

showing the mode profile for a step-index planar waveguide. The
solid line is the known exact solution and the symbols represent
the numerical method solution for different
cladding-layer thicknesses as indicated on the graph. The inset

transfer matrix

shows an enlargement of the curves at the base of the profile.
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Fig. 5. The field intensity is graphed as a function of space

showing the mode profile of a waveguide with a quadratic index
of refraction distribution. The solid line is the exact solution and
the solid circles represent the numerical transfer matrix method
solution. The inset shows the quadratic refractive index distribu-
tion as a function of space across the waveguide.

constant is real, the mode is guided and the propagation
u)nstanls‘ in the guiding layers are matched and given by

= (W /e sindy, . In Fig. 5, we see that the inten-
slly mode profiles found by the numerical matrix calcula-
tion and the exact solution are in agreement.

5. Conclusion

The numerical method presented here is an accurate
and fully vectorial wave calculation using 2 X 2 transfer
matrices. It is a simple, fast, and general method to
analyze multi-layered waveguides with any refractive in-
dex distribution. By assigning an output field and back-
propagating through the waveguide layers, we calculate the
incident angles for all possible propagating modes, the
mode profile of any mode, and the propagation constant of
the mode. Intensity mode profiles of quadratic-index and
step-index examples caleulated using this method agree
with the exact solutions.
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