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The modification of the spontaneous emission from various dipoles in a cylindrical dielectric waveguide is stud-
ied as a function of the refractive index and the radius of the waveguide. It is found that the emission rates of
the axial dipoles and the radial dipoles can be modified to enhance greatly the fraction of radial dipole emission
that goes into the guided lasing modes. The total emission from the axial dipoles can be suppressed. This
combination gives a high spontaneous-emission factor /3 for a microcavity ring laser. Other microlaser struc-
tures that have high /3 values are also discussed. We conclude that microlasers based on strongly guided single-
mode dielectric waveguides are promising devices for achieving high /3 values and low lasing thresholds.

1. INTRODUCTION

Recently there has been much interest in the use of micro-
cavities or dielectric structures to modify the rate
or spatial pattern of spontaneous emission. It has
been suggested that controlling spontaneous emission
can reduce the laser threshold to very low (near-zero)
levels.1 3̀ Furthermore, nonclassical-number-state light
and ultrahigh-speed (terahertz) modulation rates are pre-
dicted for such lasers.3 Various methods have been pro-
posed for modifying the spontaneous-emission rates.
These methods include various types of microcavity and
periodic dielectric structures with photonic band gaps.
Several authors have reported the use of microcavities to
modify spontaneous decay rates and to achieve near-zero
threshold lasing theoretically and experimentally.4-' 8

With photonic band gaps, as was first suggested by
Yablonovitch,2 '9 huge reductions in the decay rates can be
expected. The amount of reduction that can be achieved
with photonic band gaps may be greater than that possible
with microcavities.

The realization of near-zero threshold lasers, however,
does not necessarily require that the net spontaneous de-
cay rate be modified. It has been shown that there are
two main factors that affect the laser threshold, namely,
the transparency-current factor and the spontaneous-
emission factor /3.32021 The transparency current is the
current at which the active medium becomes transpar-
ent, which is a necessary condition for lasing. The
spontaneous-emission factor /3 is defined to be the rate of
spontaneous emission into the lasing mode divided by the
total rate of spontaneous emission.3 " Because of the
relation between gain and spontaneous emission, an in-
crease in spontaneous emission into the lasing mode
means an increase in gain also. Hence, the larger the
value for ,, the less current is required above the trans-

parency current for lasing to occur. Thus, when the
transparency current is small, increasing the /3 value to-
ward unity will drastically reduce the laser threshold.
The /3 value can be increased with an appropriate cavity
design. For improvement in the value of /B it is the spatial
pattern of spontaneous emission that matters, not the
change in the overall decay rate. For /3 = 1 to be
achieved, all the spontaneous emission must be into the
lasing mode both spatially and spectrally. Spatially one
wants an emission pattern that emits solely into the lasing
mode. Spectrally one wants the spontaneous emission to
couple into only one cavity resonance. The reduction of
the overall decay rate, however, can be useful in reducing
the amount of pumping that is necessary to achieve popu-
lation inversion, as is apparent in a three-level laser
model. Hence decay-rate reduction can be used to reduce
the transparency current.

In this paper our focus is on the modification of the 3
value. The /3 values for microcavities with plane dielec-
tric mirrors were studied by Bjork et al.9 and Baba et al.2 2

Here we analyze the case of a ring cavity in which the
lasing mode is guided along a ring dielectric waveguide.
Such a microring laser could be realized with microelec-
tronic techniques that are similar to those used for creat-
ing microdisk lasers and microcavities.16 7 To treat this
case, we first analyze the modification of spontaneous
emission when a dipole is placed at the axis of a cylindri-
cal dielectric waveguide. The analysis is given in Sec-
tion 3. In Section 4 we consider an example that may be
realized with semiconductor materials. We study the
modification of the spontaneous emission from the dipoles
as a function of the waveguide diameter for this example.
In Section 5 we consider the extreme cases in which the
waveguide diameter approaches zero and infinity. In
Sections 6 and 7 we estimate the spontaneous-emission
factor /3 for microring lasers. We discuss both an ideal
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ring structure with an optimal /3 value and a more practi-
cal structure. We also apply our result to the case of a
vertical-cavity laser with vertical waveguiding.

2. WAVEGUIDE STRUCTURE OF INTEREST

We analyze the spontaneous emission from excitons at the
center axis of a cylindrical dielectric waveguide. The ex-
citons can be the excited carriers in a quantum wire that
is located along the waveguide axis. The excitons will be
modeled as three independent dipoles. One of the dipoles
is parallel to the waveguide axis and is referred to as the
axial dipole. The other two dipoles are perpendicular to
the waveguide axis and are referred to as the radial
dipoles. The dielectric waveguide structure is shown in
Fig. 1. It is a step-index cylindrical waveguide with di-
ameter d, where the high-index core region has refrac-
tive index nD and the surrounding cladding region has
refractive index n. For example, nD can be the refractive
index of AlGaAs or InP, with a value of approximately
3-3.5, and n can be the refractive index of air (n = 1).
The refractive index of the active center region that is
occupied by the dipoles is assumed to be the same as or
close to nD It is also assumed that the diameter of the
active region, dA, is small compared with one optical
wavelength, A/nD, where A is the exciton emission wave-
length in free space.

In our calculation the spontaneous decay is modeled as
stimulated decay arising from stochastic vacuum-field
fluctuation.9 2 3 The dipoles interact with the vacuum-
field modes from all directions. Let us denote the k vec-
tor of any vacuum-field mode at the location of the dipoles
by the spherical coordinates , 0,, and r, where is the
angle between the k vector of the field mode and the axis
of the waveguide, which we define as the z axis (see Fig. 1).
We use r to denote the radial distance from the axis of the
cylindrical waveguide, so that the dipoles are at r = 0 and
the surface of the cylindrical waveguide is at r = dD/2.
Depending on the angle 0,, the vacuum-field modes at the
dipoles can come from either the incident vacuum-field
modes in the cladding index n (solid slanted line in Fig. 1)
or the guided vacuum-field modes along the cylindrical
waveguide (dashed zigzag in Fig. 1). When the vacuum-
field modes in the index-n cladding propagate into the
waveguide, they become the vacuum field modes in the
shaded region of Fig. 1. This shaded region is defined by
the region within the critical angle for total internal re-
flection. We refer to these modes as the radiation modes
for convenience. For each k vector there are two modes,
corresponding to two polarizations. These are the TE
and TM modes, as shown in Fig. 1, where the polariza-
tions of the TE and TM modes are along the unit vector
of 0, and 0,, respectively. The modes are labeled E,
and Eo..

Let us decompose the field around the dipoles in the
dielectric into two components, Ep, and E0, We note that
E0. is tangential to the dielectric surface of the wire and
has no component along the z axis, while E has compo-
nents parallel and perpendicular to the z axis. Since only
E0, has a component parallel to the z axis, the axial dipole
radiates solely into E0.. Similar arguments indicate that
the radial dipoles radiate into both Eo, and E0, The main
part of our decay-rate calculation is to find the vacuum-

field strengths of Eo, and E0,8 of the various vacuum-field
modes around the dipoles. From the vacuum-field
strength the decay rates of the dipoles can then be
obtained.

3. DECAY-RATES CALCULATION

We denote the dipole moment operator for an excited
dipole under consideration as d. To calculate the net de-
cay rate for a dipole d, we first compute the incremental
contribution to the decay rate from the vacuum-field
modes at a particular direction fl = {0,k 9} and those ly-
ing within a small angle dfQ of that direction. Let us
denote this incremented contribution by dy(fl). The
standard decay-rate calculation, such as that given in
Ref. 24, gives

dy(fl) = (2 H/in
2) t(FIHintI 2dpF, (3.1)

where Hint = Em d, with E being the macroscopic
electric-field operator for a quantized mode propagating
in that direction and where dpF is the number of states
per unit angular frequency within the solid angle d.
The frequency of mode Em is at the resonant frequency of
the dipole. A familiar example for Em and dpF is the case
of free space, for which one has

dpF = [VQ/(2q)3 ] k2(dk/dco)sin(0,)d05 d48,

Em = imemam exp(ikm r) + H.c.,

where H.c. denotes the Hermitian conjugate, em is the
polarization vector, and {m = (ihOA/2EoVQ)/ 2

. (WA is the
resonant frequency of the dipole.) Below we need to find
the mode amplitude 6m for different cases. This mode
amplitude can be found by requiring that the vacuum
expectation value of the total mode energy be 1/2hC.A.

That is,

2 I dr(O[(e~m + ,Aftm"2)10) =
2 Q

fJQ dr(OeEm210)

x /

1
= 2 hI(A.

2

(3.2)
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Fig. 1. Schematic of the cylindrical dielectric waveguide struc-
ture. The rays of a guided mode and a radiation mode are shown
as the dashed zigzag and the solid slanted lines, respectively.
The spherical coordinates are also indicated.
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Fig. 2. Cylindrical coordinates used in the calculations.

For the cylindrical waveguide structure the contribution
to the decay rate can be split into two parts, namely, that
arising from the vacuum field in the guided modes yg and
that arising from the vacuum field in the radiation mode
yR. If the net decay rate is y,, then ysp = g + R. Let
us first calculate yg.

Let us consider a guided mode m. The macroscopic
electric-field operator for the guided mode can be
written as

Em(r,k,z) = iAFm(r, )tm exp(ikmzz) + H.c., (3.3)

where km2 is the k vector in the z direction. The function
Fm (r, *) is the mode function for the guided mode. These
guided modes are more conveniently expressed in terms of
cylindrical coordinates instead of spherical coordinates.
The cylindrical coordinates will be denoted by r, , and z
as shown in Fig. 2. The constant A in Eq. (3.3) is to be
chosen so that Eq. (3.2) can be satisfied, as follows:

2WA f f. dz f dr f dkrerl(0IEm(r, X, z) 10)I 2,

where

(0lpmI0)12 = IFm(r,ck)I 2A 2

(3.4)

(3.5)

and Er is the dielectric constant at r. This gives us

A2
= hCOA/(2LS), (3.6)

where

S = 7drf drrerIFm(r,p)12. (3.7)

We note that the vacuum-field intensity at the dipole is
proportional to A2IFm2 evaluated at the dipole. From
Eqs. (3.6) and (3.7) we see that the intensity is inversely
proportional to S, which is basically the transverse spatial
area of the field mode times er. Thus we see that the
larger the mode spatial area, the smaller the vacuum field
intensity at the dipole. This is because the total energy of
the mode must be equal to hcW. The decay-rate contribu-
tion to g from mode m will be denoted by ygm. Following
Eq. (3.1), ygm is given by

7ygm = 2 A2IF. * l2( ) dkrn (3.8)

=2 2 IA ( dk3
2LS2 dto

where A = (uldlg) is the usual dipole moment matrix ele-
ment between the excited and the ground states of the
dipole atom. We have quantized the field in the z direc-
tion by means of the traveling-wave modes (with the pe-
riod boundary condition within length L,) and the r
direction by means of the waveguide modes. Thus the
number of states per unit angular frequency is dpF =

[Lz/(27r)] (dkmz/dW) for each waveguide mode owing to the
quantization of kmz. Examples of the mode functions Fm
are discussed in Appendix A. The total decay rate yg is
the sum of the rates for each guided mode )7gm,

wg = lgm.-
m

(3.10)

Next let us calculate the values for yR. Similar to the
free-space case, the field mode at the dipole is taken as
Em = imembm exp(ikm * r) + H.c.. The incremental
contribution to yR from the radiation modes at the dipole
around the angle il is given by

d7R (fl) = (2V/h 2 ) m em *1 , 2 p, sin(0 8 )d0d 8 , (3.11)

where the spherical coordinates and k, are used. In
Eq. (3.11), p sin(05 )d05d4. is the density-of-states factor
dpF and m is the vacuum-field amplitude at the location
of the dipoles. However, as every mode 6m in the struc-
ture actually comes from a quantized mode in the cladding
medium of index n, we can relate each am to an incident
vacuum mode in n, which will be denoted as 6m"C. We
know that a quantized mode in the n cladding has the am-
plitude mC1 = (hcA/2eVQ) 1 2 (e = Eon2). We can propagate
mode mCI into the structure and find its amplitude at the
dipoles. Let us define Gm as the ratio Gm = em/mC1. We
can rewrite Eq. (3.11) in terms of incident modes in the
cladding region and sum over all the incident modes, re-
sulting in a net contribution to the decay rate that is
given by

YR2 2dclJ dOc I fmC1 2 1G 2 lem' * IL 
2
pci (sin Oc,),

(3.12)

where em' is the polarization vector of that mode in the
core region, 0,d is the incident angle in the cladding region,
PcI = [VQ/(2iT)3 ]k2(dk/dco), k = An/C, and dk/dwo = n/c.
We note that, for the case of an axial dipole that is coupled
to the TM modes, em' _ ,u12 = ,L12(sin2 m); for the case of
a radial dipole coupled to the TM modes, em'. /2 =

IuI 2(cos2 m) (sin2 Om); and, for the case of a radial dipole
coupled to the TE modes, em' * ,ul2 = |,| 2 (sin2 km). The
axial dipole does not couple to the TE modes, because the
dipole is perpendicular to the electric field in that case.

The factor Gm is not easy to calculate, because the
modes in the waveguide experience reflections at the
waveguide surface owing to the refractive-index step. As
a result the modes, on entering the core, see a Fabry-
Perot resonator with two parallel cylindrical mirrors
formed by the waveguide surface. To simplify the prob-
lem we approximate the curved surface of the cylinder by
flat surface. That is, the wave in the waveguide is as-
sumed to bounce from a plane dielectric interface at the
waveguide surface. As is discussed below, this approxi-
mation gives the correct numerical results when the

__ __ __ I __ __ __ __ __ __ __ __ __
nD
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Fig. 3. Normalized decay rates R,(HEii) (HE11), Rg(HEi2 )
(HE12), Rg(EHii) (EH11), and RR (RAD) of the radial dipole ver-
sus the normalized core diameter. The total normalized decay
rate Rp (SUM) of the radial dipole is also given (solid curve).

waveguide diameter dD approaches zero. The approxima-
tion, however, does not give the correct quantitative result
when dD is large. Nevertheless, the approximation will at
least tell us the qualitative behavior in the region of finite
dD. With this approximation Gm can be found with use of
the transfer-matrix method,2 5 yielding

value unity when the core becomes a bulk medium in the
limit of large core diameter. Let y. be the total decay
rate of the horizontal or vertical dipole in a bulk medium
of refractive index nD. (The dipoles have the same rate in
a bulk medium.) The various rates shown in the figures
are the actual decay rates divided by y.. The normalized
rates are labeled as RR for radiation modes, Rg(m) for the
various guided modes, and R5p for the total rates [Rsp =
RR + ImRg(m)]. In Fig. 3 the emission rate into the HE1
mode Rg(HE 1) is given as the long-dashed curve, into the
HE1 2 mode Rg(HE,2 ) as the dotted curve, into the EH11
mode Rg(EH1i) as the short-and-long-dashed curve, and
into the radiation modes RR as the three-dashed-two-
dotted curve. In Fig. 4 the emission rate into the TMo1
mode Rg(TMoi) is given as the dashed curve and that into
the radiation mode RR as the dotted curve. The total de-
cay rate Rsp is given as the solid curve for both dipoles.
From the above calculations it is clear that the values of
the decay rates are dependent on the values of both the
density-of-states factor, dkmz/d&), and the mode spatial
area, S. The density-of-states factor, dkmz/das, is plotted
in Fig. 5 as a function of the normalized core diameter for
the dominant HE11 mode. We note the similarity between
the leading edge of Fig. 5 and the leading edge of the de-
cay-rate curve of the HE11 mode in Fig. 3. This behavior
also holds for other modes. Hence we see that the
leading-edge locations of the various modes in Figs. 3 and
4 are due mainly to the density-of-states factor instead of
to the mode spatial area. We note that the number of
guided modes is actually greater than that shown in
Figs. 3 and 4. The missing modes do not show up in the
figures owing to their lack of coupling to the dipoles. For

G,. = (R 21 /T21)exp(ikmzdD/2)
m R 2 1 (T

2 1 T 12 - R2 1R 2/Tl 2)exp(ikmzdD) + (R12/T12 T2j)exp(-ikmzdD)

where km = 2(cos OS)/(A/nD), A = 2 7rc/A, R21 =
(h - g)/(g + h) = -R12 , and T21 = 2h/(g + h) = T 2g/h.
Depending on the mode polarizations, g and h are given by
g = 27rn(cos OI) [TE] = 2(cos 1)/n [TM] and h =
27rnD(cos O) [TE] = 27r(cos OS)/nD [TM]. The angles O,
and 0 are related simply by the Snell's law of refraction.
We have labeled the cladding as region 1 and the core as
region 2. This gives us the label for the various R and T
coefficients, so that R12, for example, is the field reflection
coefficient for the wave in the cladding as the wave goes
into the core.

1.2

1.0 

'I

0

4. RESULTS WITH SEMICONDUCTOR
WAVEGUIDES

Examples of the decay rates for the radial and the axial
dipoles are given in Figs. 3 and 4, respectively. In these
examples we have taken nD = 3.4 and n = 1.0, which can
be achieved with semiconductor materials as the cylindri-
cal waveguide. The results are used below to discuss the
spontaneous-emission factor for various semiconductor
microcavity lasers. The core diameter (x axis in Figs. 3
and 4) is normalized by the optical wavelength A/na. In
the figures the curves represent the various contributions
to the decay rates from the radiation modes or from the
various guided modes. The rates are normalized so that
the total emission rate for a dipole in the core has the
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Fig. 4. Normalized decay rates Rg(TMoi) (TM01) and RR (RAD)
of the axial dipole versus the normalized core diameter. The to-
tal normalized decay rate RSP (SUM) of the axial dipole is also
given (solid curve).
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Fig. 5. Density-of-states factor, dkmz/d c, versus the normalized
core diameter for the HE,, mode.

example, for the TEO, mode Fr and F, are zero everywhere,
and F,5 is vanishing at the dipoles. As a result there is no
spontaneous decay into the TEO, mode.

5. DISCUSSION OF EXTREME CASES

In this section we consider two limiting cases, namely, the
case in which the core diameter approaches zero and the
case in which the core diameter is large. For the case in
which the core diameter approaches zero we discuss the
limiting values for the total spontaneous-emission rates,
which can be derived by using simple physical arguments.
This derivation allows us to verify our numerical calcula-
tion in that limit. For the case in which the core diame-
ter is large we focus on the behavior of the radiation
modes, which is relevant to the estimation of the sponta-
neous-emission factor for microcavity lasers.

In the limit when the wire diameter dD is small com-
pared with the optical wavelength, the coupling of the
dipole to the guided modes vanishes. This is because the
mode spatial area S must become infinitely large in that
limit, and the vacuum-field intensity of the guided modes
will be negligible at the dipoles. Hence the dipoles will
couple only to the radiation modes. In this limit the field
in the wire will become uniform. This means that the
field at the dipole is equal to the field just below the wire
surface. Also, it turns out that when the wire diameter is
small the wire behaves as an on-resonant parallel-plate
Fabry-Perot resonator with equal mirror reflectivities.
As a result, any field that impinges upon the thin wire is
totally transmitted through the wire without reflection.
Furthermore, the net field just below the wire surface is
related to the net field just above the surface by means of
dielectric boundary conditions. Hence the net field at the
dipole is just related to the impinging vacuum field by
means of the dielectric boundary conditions. Specifically,
the component of the field that is tangential to the bound-
ary is continuous across the boundary, while the compo-
nent of the field that is perpendicular to the boundary is
attenuated by a factor of (n/nD) 2 when it enters the wire.

Let us call the vacuum-field components that are tangen-
tial and perpendicular to the wire surface the tangential
and the perpendicular vacuum fields, respectively. This
means that the tangential vacuum field in the wire will
have a value that is the same as the vacuum field in the
medium of index n. Similarly, the perpendicular vacuum
field in the wire will be attenuated by a factor of (n/nD) 2

from the vacuum field in the n medium because of the
boundary conditions.

Since the axial dipole is coupled only to the z component
of the vacuum field, which is entirely tangential to the
wire surface, the axial dipole will experience the vacuum
field strength in the n medium. In other words, the
dipole will radiate as if it were a dipole in the n medium.
As we know, the dipole decay rate is proportional to the
factor n, where n is the refractive index of the medium
surrounding the dipole. This can be seen when Eq. (3.1)
is applied to the case of a dielectric medium.2 4 Hence, in
the limit when dD approaches zero, the axial dipole emis-
sion rate would be reduced by the factor (n/nD) from y.
The nD medium behaves as a bulk medium when the core
diameter is large.

The radial dipole, however, has 3/4 of its emission into
the TE mode and 1/4 of its emission into the TM mode.
Since the TE field is tangential to the wire surface, the
radial dipole decay rate that is due to the TE field will be
3/4 (n/nD) of y.. The TM field component that couples to
the radial dipole is perpendicular to the wire surface.
Hence its relevant field strength will be reduced by the
factor of (n/nD) 2 from that of the n medium. Since the
decay rate is proportional to the field strength squared,
the decay rate of the radial dipole that is due to the TM
modes will be reduced by a factor (n/nD)4 from its decay
rate in the n medium. But the decay rate in the n medium
is (n/nD) of that in a bulk medium of index nD. Also when
the factor 1/4 is taken into account, the radial dipole decay
rate that is due to the TM field should then be 1/4(n/nD)5

of y.. Thus we conclude that, when the wire diameter
approaches zero, the asymptotic values of the decay rates
for the axial dipole Yaxial and radial dipoles Yradial will be

(5.1)'Yaxial = (n/nD)Yx,

3 n 1 n 
Yradial = Y .\ n D 4 \ (5.2)

This gives us, for the case of n = 1 and nD = 3.4,
Yradial = 0.22y/ and Yaxial = 0.29y., which are in agreement
with the values at dD = 0 in Figs. 3 and 4, respectively.
Hence our decay-rate calculations for the radiation modes
have the correct values at dD = 0.

When the diameter of the wire is large, the contribution
to the decay rate that is due to spontaneous emission into
the radiation modes R (i.e., those modes that eventually
escape from the wire) can be easily computed. In that
case we can treat the dipole as emitting into a large dielec-
tric material, and the value of YR can be found by integrat-
ing over the emission into the shaded region of Fig. 1,
defined by the critical angle of escape. In this limit R
for the various dipoles emission given by Eq. (3.12) can be
simplified to

yR = CRR, (5.3)
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Fig. 6. Schematics of two microcavity ring laser structures.
(a) An ideal structure with an active medium along the axis
of waveguide. (b) A practical structure with a planar active
medium.

where C is a constant common to all cases and RR is given
by

3 2 /2RR - do f dOW(, k),
4r O "/2-0C

with G(0, f) = (sin3 0) [TM] = 0 [TEl for axial dipole
emission into TM and TE modes, and G(0, = (cos2 0)
(sin2 k) (sin 0) [TM] = (sin2 4)(sin 0) [TE] for radial
dipole emission into TM and TE modes. The critical
angle 0, is given by sin 0, = (n/nD). The value of C is
chosen so that RR = 1 for the total rate of emission from
each dipole into all angles and all modes (i.e., the case in
which 0, = vr/2). For the case in which n = 1.0 and
nD = 3.4, we have RR = 0.428 for the total rate of emis-
sion of the axial dipole into the TM radiation mode (TE
emission is zero). We have RR = 0.227 for the total rate
of emission of the radial dipole into the TM and TE radia-
tion modes (0.0064 into TM, 0.2206 into TE). These are
to be compared with the value of RR when 0, = /2 (i.e.,
all angles). RR is 1 for axial dipole emission into TM
modes, 1/4 for radial dipole emission into TM modes, and
3/4 for radial dipole emission into TE modes.

In the limit of a large waveguide diameter, the sponta-
neous emission will be coupled into many guided modes.
The total emission into the guided modes and the radia-
tion modes will approach the bulk value of y=. That is,
RP will approach the value of unity, which is already ap-
parent in Figs. 3 and 4.

6. CAVITY ENHANCEMENT FACTOR FOR
SPONTANEOUS EMISSION

Consider an ideal ring laser, shown in Fig. 6(a), where the
ring cavity is formed by a circular ring of cylindrical di-
electric waveguide. We assume that the active medium
occupies a small region along the center axis of the wave-
guide. This is similar to the case of the cylindrical
waveguide considered above. To calculate the f3 value, we
need to know the fractional power of spontaneous emis-
sion into the lasing modes. For the discussion in this sec-
tion the lasing modes will be taken loosely as the
waveguide modes at the spontaneous-emission frequency.

This would be the case for multimode lasing. We specifi-
cally consider single-mode lasing in Section 7. If the
cavity resonance is weak (i.e., low cavity quality factor Q),
then the 6 value for this ring laser can be estimated from
Figs. 3 and 4, which give the fraction of spontaneous emis-
sion into the waveguide modes. However, with a high-Q
cavity, the vacuum-field intensity will be enhanced at
the cavity resonant frequencies, which can alter the 3
value. Thus it is important for us to discuss this cavity-
enhancement effect before we present the specific 13-value
calculations.

The cavity-enhancement effect is dependent on the
spectral width of spontaneous emission (Avp), the cavity
resonance width (cav), and the frequency spacing be-
tween two adjacent longitudinal modes (AVmode). In calcu-
lating the 8 values, it is important to distinguish between
the case in which the spectral width of spontaneous emis-
sion is smaller than the cavity resonance width (Avsp <
Avcav) and the case in which the spectral width of sponta-
neous emission is larger than the cavity resonance width
(Avsp > Avcav). The former case will be referred to as the
first case and the latter case will be referred to as the
second case. The first case requires a large Avcav and can
be achieved with a short cavity. These two cases are il-
lustrated schematically in Fig. 7, where the solid curve is
the cold cavity transmission curve, the dashed curve is the
spontaneous-emission curve for the first case, and the dot-
ted curve is the spontaneous-emission curve for the sec-
ond case. In the discussion below, without loss of
generality we assume that the spontaneous-emission spec-
trum is homogeneously broadened. The behavior for the
inhomogeneously broadened case can be obtained from
the homogeneously broadened case by modeling it as a
combination of many homogeneously broadened spectra
with different frequency shifts.

For the first case, where Av,1p < Avcav, the active me-
dium will see a vacuum-field intensity that is strongly
modified by the cavity. The frequency dependence of the
vacuum-field intensity in the cavity is proportional to the
cavity transmission curve. Let us describe the degree of
cavity enhancement of the vacuum-field intensity by a

Cavity
enhancement
factor

10 -

1

--.(a)

… L .. I
1(b)

*- - . -_- .- _

Frequency

Fig. 7. Cases in which the spontaneous-emission width is
(a) larger than and (b) smaller than the cold cavity linewidth.
The cavity resonance curve is the solid curve; the spontaneous-
emission curves for cases (a) and (b) are the dotted and the
dashed curves, respectively. The cavity-enhancement factor that
is due to cavity resonance is indicated on the y axis.
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cavity-enhancement factor. This enhancement factor is
indicated on the y axis of Fig. 7. In the figure the two-
dashed-dotted line represents the unity enhancement fac-
tor when there is no cavity effect, and the transmission
curve indicates the enhancement factor when there is a
cavity effect. For example, if the spontaneous-emission
frequency is on resonance with the cavity, and if the cav-
ity has a quality factor of Q = 10, then the spontaneous-
emission rate into the waveguide modes will be increased
by a factor of 10 by the cavity. Since the radiation
modes will not be affected by the cavity resonance, this
means that a larger fraction of spontaneous emission can
be channeled into the lasing guided modes. Hence the
cavity can be used to drastically increase the value of 6.

If most of the emission already goes into the lasing
guided modes to start with, then this increase in the value
of p will be accompanied by an increase in the total
spontaneous-emission rate. The accompanied increase in
the total spontaneous-emission rate, however, may not be
good for reducing the laser threshold. This is because an
increase in the total spontaneous-emission rate would in
general increase the transparency pumping rate, which is
part of the laser threshold. If the laser threshold is only a
few times higher than the transparency pumping rate,
then the increase in the transparency pumping rate may
balance the beneficial effect of increasing the value.
Hence an overly high cavity-enhancement factor may not
be good, and one must be careful to design its value appro-
priately to optimally reduce the laser threshold.

For the second case, where Avip > Avcav, it can be shown
that the spontaneous-emission rate into the guided modes
will not be strongly affected by the cavity because the
enhancement of the emission rate at cavity resonance is
averaged out with the suppression of the emission rate off
cavity resonance. Without detailed calculation we can
expect that the cavity-enhancement factor will be aver-
aged to near unity if the spontaneous-emission width is
nearly the same as or is larger than the frequency
spacing between two adjacent longitudinal resonances
(i.e., Avsp A\Vmode)-

7. SPONTANEOUS-EMISSION FACTORS FOR
MICROCAVITY LASERS

From the discussion in Section 6 we see that, to compute
the spontaneous emission factor properly, one has to
include both the waveguide effect and the cavity-
enhancement factor. However, the cavity-enhancement
factor can be computed separately. Hence in the discus-
sion below we consider only the simple case in which the
cavity-enhancement factor is unity. As is discussed
above, this is the case in which the homogeneously broad-
ened spectral width of the spontaneous emission is nearly
the same as or is larger than the cavity intermode fre-
quency spacing. For the discussion in this section we as-
sume that the spontaneous-emission width covers only one
cavity resonance. This assumption is necessary in order
to optimize the value for the case of single-mode, single-
frequency lasing.

First we calculate the , value for the case of an ideal ring
laser, shown in Fig. 6(a). For this calculation we assume
that all three dipoles have equal probabilities of being ex-
cited. Also, the lasing modes in this ring cavity case will

be taken as the lowest-order guided modes of the wave-
guide, which are the two orthogonally polarized HE,,
modes. In addition, lasing modes in both traveling-mode
directions will be included. If we take only one of the
polarizations as the lasing mode, then the p value will be
effectively halved. If we further take only one of the two
traveling-mode directions as the lasing mode, then the p
value will be effectively one quarter of the calculated
value. However, it is possible to introduce birefringence
in the guide to shift the guiding frequency of one of the
polarizations off the dipole emission frequency. It is also
possible to use active media that have different emission
frequencies and efficiencies for different polarizations,
such as a transversely placed quantum wire array.2 2 This
technique would enhance one polarization emission over
the other. In addition, it is possible to introduce non-
reciprocal elements into the cavity to change the resonance
frequency of the lasing modes for different traveling-mode
directions. Although they are not easy to realize in prac-
tice, these methods may be used to help us to obtain single-
mode lasing with a high p value.

Let the diameter of the ring cavity in Fig. 6(a) be dring
and the diameter of the waveguide be dD. The refractive
indices of the waveguide (nD) and its surrounding medium
(n) are assumed to be 3.4 and 1.0, respectively. In order
to obtain the largest P value for this ring laser, it is desir-
able to have as much spontaneous emission into the lasing
guided mode as possible. For the purpose of calculating
the value, we assume that the three orthogonal dipoles
are equally excited. From Figs. 3 and 4 we see that the
largest value is obtained with dD just below the cutoff
diameter for the second-lowest-order guided mode (i.e.,
the TM01 mode). This gives dD = 0.76/nD = dopt. For a
wavelength of A = 1 m, dopt = 223.5 nm. From Fig. 3
we see that the emission from the radial dipoles will be
mainly into the HE,, guided mode with a total normalized
rate of 1.2 x 2 = 2.4. (We have included two radial
dipoles.) The emission from the two radial dipoles into
the radiation modes has a total normalized rate of 2 x
0.025 = 0.05 (Fig. 3). The axial dipole does not emit into
any guided modes, and its emission into the radiation
modes is suppressed owing to the cavity effect experi-
enced by the radiation modes. (The cavity effect is
caused by the waveguide surface.) From Fig. 4 we see
that the axial dipole emits only into the radiation modes
with a normalized rate of 0.04. Considering all these
factors, the value is then given by ,B = 2.4/(2.4 + 0.05 +
0.04) = 0.96. We note that this is only the best-case esti-
mate, considering our approximation in the treatment of
the radiation modes.

In the worst case, where there is no cavity-suppression
effect for the radiation modes, the normalized emission
rates into the radiation modes from the dipoles are at
most as bad as in the case of the large core diameter limit
discussed in Section 5. In that case the total emission
rate into the radiation modes from the two radial dipoles
and one axial dipole is (0.227 2 + 0.428) = 0.882 [from
Eq. (5.4)]. This gives a worst-case ,B value of ,B = 2.4/
(2.4 + 0.882) = 0.73.

The ideal structure discussed above is not easily real-
ized in practice. A more practical structure is shown in
Fig. 6(b), where the waveguide has a rectangular cross
section and the active medium is a planar structure such
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Fig. 8. Cavity resonance (solid curve), free-space spontaneous-
emission (dashed curve), and decay rate into HE,, mode (dotted
curve). The x axis is read as a function of the frequency propor-
tional to nD/A.

as a quantum well. In this structure the main problem is
again the lack of resonant suppression for emission into
the radiation modes. Furthermore, since the gain me-
dium is not at the waveguide axis, the z dipole will no
longer be prevented from radiating into the lowest-order
guided modes. However, this situation will only enhance
the emission into the lasing modes and help to increase
the value. Hence we would expect for this structure a
maximum value of better than 0.7, similar to that given
by the worst-case situation mentioned above. We can ex-
pect this maximum value to be achieved when the wave-
guide diameter is just below the cutoff diameter for the
second guided mode.

It is also of interest to see how large the ring diameter
can be before the value decreases. The resonant fre-
quencies of the ring cavity are given approximately by
vp = cp/(nDL), where p is an integer that indicates the
mode number and L = 7rdring is the perimeter of the ring.
Since the x axis of Fig. 3 is dDnD/A, if we keep dD fixed
then the x axis can be read as a function of nD/A (A is
free-space wavelength), which is proportional to the fre-
quency. As an example, let us assume that the value L
is chosen so that the spontaneous-emission frequency
coincides with the peak of the HE,, mode. Let the
spontaneous-emission width be Av.p. We would expect
the spontaneous emission to go into one single-cavity reso-
nance mode, provided that Avsp is smaller than the cavity
intermode frequency spacing given by AlVmode = c/(nDL).
Hence the size of the ring is really determined by Av;p <
AVmode. This relationship is sketched in Fig. 8, where the
x axis is read as a function of the frequency proportional
to nD/A, the dotted curve is the emission rate into the HE,,
mode, the dashed curve is the free-space spontaneous-
emission curve, and the solid curve is the cavity resonance
curve. A typical spontaneous-emission frequency width
from quantum-well excitons is -0.01 of the optical fre-
quency. In that case we can satisfy Ap < Almode with

L as large as L = A/(0.OlnD) = 29.4 ,um (i.e., ding =
9.4 /um). In this 8-value calculation we have not included
the effect of waveguide bending. With our large core-to-
cladding refractive-index ratio, this effect is important
only when the ring diameter is of the order of an optical
wavelength.

To complete the discussion, we reiterate that it is pos-
sible further to increase the p values by using a short cav-
ity so that the spontaneous-emission width is smaller than
the cold cavity transmission width. However, as is
pointed out in Section 6, the cavity must be carefully de-
signed to yield a beneficial reduction in the laser thresh-
old. This is especially so if the waveguide effect already
gives a reasonably high p value.

Our analysis can also be applied to the laser structure
shown in Fig. 9, where the laser cavity is simply a vertical
cylindrical dielectric waveguide with high-reflection-
coated end facets. The active medium can be a quantum
well between the two mirrors, placed at the enhanced re-
gion of the cavity standing-wave field. This is similar to
the structure of some currently fabricated vertical-cavity
surface-emitting lasers.2 6 This case is basically no dif-
ferent from the ring-cavity case without resonant sup-
pression for the radiation modes. We conclude that, when
the waveguide diameter is near 223.5 nm, the P value for
this structure should also be near 0.7 (with a unity cavity-
enhancement factor). Similarly, if the spontaneous-
emission width is 1% of the optical frequency, then the
length of the cavity can be as long as 100A/nD without af-
fecting the value. This is a great advantage over the
nonguided vertical-cavity structure, for which a microcav-
ity effect can be achieved only if the length of the cavity is
of the order of one wavelength. In this simple estimation
we have not included additional enhancement of the emis-
sion into the lasing mode when the active medium is
placed at an antinode of the cavity standing-wave field.

8. CONCLUSION

We have studied the modification of spontaneous emission
from excitons in a cylindrical dielectric waveguide. The
waveguide is assumed to have a high reflective index of 3.4,
which is typical for most semiconductor materials. The
excited dipoles that represent the excitons are assumed to
be situated along the axis of the waveguide. From the
study we conclude that with an appropriately chosen
waveguide diameter a substantial amount of spontaneous
emission can be channeled into the two orthogonally po-

Area A

/I

Mirror

gain medium

Mirror

Fig. 9. Vertical-cavity surface-emitting laser with vertical
waveguiding through a cylindrical waveguide structure.
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larized lowest-order guided modes. The waveguide is
then joined end to end to form an ideal ring laser cavity,
for which we show that a p value of -0.96 can be achieved.
Our study shows that to achieve this optimal p value the
waveguide diameter should be just below the cutoff di-
ameter for the second-lowest-order guided mode (near
220.0 nm) at a 1-jm wavelength). We then consider a
more easily realized ring laser cavity structure. We show
that the value for this structure still can be near 0.7.
The analysis is then applied to estimate the 83 value of a
vertical-cavity laser with vertical waveguiding. Again, a
,p value of better than 0.7 is estimated.

In our analysis we show that the high /3 value can be
obtained even when the effective cavity length of the ring
laser or vertical-cavity laser is much longer than an opti-
cal wavelength. This result is due to the one-dimensional
nature of the cavities. In conclusion, microlasers based
on strongly guided single-mode dielectric waveguides are
promising for achieving high /3 values and low lasing
thresholds.

Appendix A

In this appendix we show some examples of the mode
functions Fm (r, /) that are used for calculating the rate of
spontaneous emission into the guided modes, rg. Since
the structure of the dielectric waveguide under consider-
ation is a step-index cylindrical waveguide, all the field
components of the guided modes throughout the structure
can be solved by means of the wave equation in the cylin-
drical coordinates.2 7 The field vector Fm(r, 4) can be ex-
pressed in terms of the coordinates as

Fm(r,4, z) = Fr + F + F. (Al)

In the core region nD, Fr, F, and F, are given by

Fr = [ ik,' AJi'(hr) + £o$! BJi(hr) exp(i-q), (A2)

F4 , = -[k Ihrexp(i-), (A3)
h2 r h 

F = AJi(hr)exp(i-q), (A4)

whereas in the cladding region of index n they are given by

Fr = [ikn`CKj'(qr) - 011DK(hr)]exp(iqi), (A5)Lq q 2r ](5

Fe, = [- k.CK(qr) - Ž?-tDKi'(qr) ]exp(i1), (A6)

F = CK1(qr)exp(i'-), (A7)

where -q = cot + l - kz. J is the Bessel function of
the first kind of order 1, and K is the modified Bessel
function of the second kind of order 1. k is the propaga-
tion constant of the guided mode. Also, h = k2 - k 2
and q2 = kmz2 - k2 determine the values of h and q. The
field components must satisfy the boundary conditions,
which in turn determine the propagation constant k 2 .
The ratios between four constants, A, B, C, and D, can be
obtained from the boundary condition that E , and E be
continuous at the core-to-cladding interface. These ra-

tios are given by

C = J1(ha)

A K (qa)

B = ikmzl (1
A coalq2a2

D Jz(ha) B
A K(qa) A

1 Jz'(ha)+ Kl'(qa) -1
h2a2 haJi(ha) qaKi(qa)

(A8)

(A9)

(A10)

The value of the propagation constant k 2 for each
guided mode can be found from the following mode equa-
tions:

HE mode,

J1_1 (ha) nD2 + n2 Kl'(qa) 1 1
haJ(ha) 2nD2 qaK(qa) L(ha)2

EH mode,

+ ;

J1+1(ha) nD2 + n2 Kl'(qa) + [I
haJi(ha) 2nD2 qaK(qa) [(ha)2

TE mode,

Ji(ha) Kl(qa)
haJo(ha) qaKo(qa)'

TM mode,

Ji(ha) _ n2K,(qa)
haJo(ha) qanD2KO(qa)

The variable R in Eqs. (All) and (A12) is given by{( ~~ ~ ) i(a 2 

R = 2nD2 qaKi(qa)

+ Ikn 2 1 1 2 1/2

+ ( o ja)2( h 2a2)

(All)

(A12)

(A13)

(A14)

(A15)

These mode equations can be solved graphically and nu-
merically. The eigenvalue solutions, i.e., k_ for different
radii of the core nD, are essential for obtaining the field
components and the decay rates of each mode. The
modes of main interest to us are those modes with = 0
and = 1. Those modes with I = 0 are linearly polar-
ized, and their coupling to the dipoles can be easily ob-
tained. Those modes with 1 = 1, such as the hybrid
modes, can be made into linearly polarized modes by
means of linear combinations of the I = 1 and = -1
mode functions.
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