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Theory of light detection in the presence of feedback
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The usual open-loop quantum and semiclassical theories of light detection are extended to include closed-loop
operation in which there is feedback from the detector to the source. It is shown that the unmistakable signatures
of nonclassical light associated with open-loop detection, such as sub-shot-noise spectra and sub-Poisson photo-
counts, do not carry over to closed-loop systems. This behavior is illustrated through quantitatively indistinguish-
able quantum and semiclassical analyses of two recent closed-loop experiments in which sub-Poisson photocount
statistics were produced. It turns out that if the open-loop illumination does not require the use of quantum
photodetection theory, then neither does the closed-loop illumination. Conversely, if the open-loop illumination is
nonclassical, then the closed-loop behavior must be analyzed quantum mechanically. The use of nonclassical field
correlations to obtain light beams that give sub-Poisson open-loop photocounts from these closed-loop arrange-
ments is discussed and generalized into a synthesis procedure for producing light beams with arbitrary open-loop
photocount statistics.

1. INTRODUCTION

The usual formulations of the quantuml5 and semiclassi-
cal5 -8 theories of photodetection presume open-loop config-
urations, i.e., that there are no feedback paths leading from
the output of the photodetector to the light beam impinging
on that detector. In such configurations, the qualitative
and quantitative distinctions between the quantum and
semiclassical theories are well understood. In the quantum
theory, photocurrent and photocount randomness arise
from the quantum noise in the illumination beam, whereas
in the semiclassical theory the fundamental source of ran-
domness is associated with the excitations of the atoms
forming the detector. Nevertheless, the quantum theory
subsumes the semiclassical theory in a natural way in that
their open-loop predictions coincide exactly when the quan-
tum field illuminating the photodetector in the former ap-
proach is in a classical state, i.e., a Glauber coherent state or
a classically random mixture of such states.3-5 Inasmuch as
it is only recently,9 -15 and with some difficulty, that light
beams have been generated whose quantum statistics fall
outside the classical states, it is not surprising that the semi-
classical theory has continued to be the mainstay of photo-
detection sensitivity calculations.

The clarity of understanding associated with open-loop
photodetection does not extend to closed-loop configura-
tions in which there is a feedback path leading from the
output of the detector back to the light beam at the detector
input. In this paper, we develop the quantum and semiclas-
sical theories of light detection for closed-loop configura-
tions.'6 The fundamental quantity of interest in these theo-
ries is the random point process formed by the photodetec-
tion event times. Thus we begin, in Section 2, with a high-
level review of such processes, focusing on their application
to open-loop photodetection. In particular, we introduce
the doubly stochastic Poisson process (DSPP)7 ,18 of semi-
classical open-loop theory5-8 and the more general self-excit-
ing point process (SEPP)1 7 ,18 of quantum open-loop theory. 3

This material both establishes the analytical framework that
we need for the closed-loop treatment and summarizes the
semiclassical limits and nonclassical signatures of open-loop
operation.

Our analysis of closed-loop photodetection begins in Sec-
tion 3. Here we use the incremental point-process descrip-
tor from Section 2 to show that both the semiclassical and
quantum theories lead to SEPP's for the closed-loop case.
As a result, the unmistakable open-loop signatures of non-
classical light, such as sub-shot-noise spectra and sub-Pois-
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son photocounts, do not carry over to closed-loop systems.
We illustrate this behavior by providing quantitatively in-
distinguishable quantum and semiclassical explanations for
two recent closed-loop experiments in which sub-Poisson
photocounts were produced.19 -2' There is, nevertheless, a
vital distinction between the two theories as applied to these
experiments. According to the quantum theory, nonclassi-
cal open-loop beams can be extracted from these closed-loop
arrangements by augmenting them to exploit the nonclassi-
cal light-beam correlations associated with photon twins22 23

or Kerr-effect quantum nondemolition (QND) measure-
ments.21 24 Indeed, the former approach was recently used
to produce a nonclassical open-loop beam.25 We address
these field-extraction procedures in Section 4 and show that
they can be generalized to a schema for synthesizing light
beams of arbitrary photocount statistics.

2. POINT PROCESSES AND OPEN-LOOP
PHOTODETECTION

For the purposes of this paper, the general photodetection
construct of interest, be it semiclassical or quantum, open or
closed loop, takes the form shown in Fig. 1. A quasi-mono-
chromatic paraxial scalar light beam of nominal frequency v0
illuminates the active region of the photodetector.2 6 The
quantities of interest at the detector output are the photo-
current it and the photocount record Nt. The former is a
train of impulses (each of area q, with q the electron charge)
located at the photodetection event times iti. 27 The latter
counts the number of such events that have occurred in the
time interval [0, t) and is given by

Nt = q' J idT-. (1)

The event times til that underlie both it and Nt comprise a
random point process. For convenience, they will be ar-
ranged in increasing order with t denoting the first event in
the interval [0, a), as sketched in Fig. 2.

A. Point-Process Statistics
Without loss of generality, we shall confine ourselves to
point processes that are conditionally orderly'7 ; in essence,
this means that events occur one at a time. More precisely,
with

function) is the conditional probability per unit time for
there to be an event at t, given the history of the process up
to t.28 In general, At may be an arbitrary nonnegative func-
tion of tt, NtI, in which case Eqs. (3)-(5) constitute the
incremental statistical generator of the general SEPP.17"18
In its simplest form, At does not depend on the event history,
and Eqs. (3)-(5) then describe the Poisson process with rate
function pt. Of interest in the sequel is the DSPP, whose
incremental statistics are given by Eqs. (3)-(5) with"",8

(6)

where angle brackets denote expectation and Xt is a nonneg-
ative random process that is not directly influenced by the
point process, i.e., Xt is conditionally independent of tt, Ntj
given knowledge of AX: T < t. As its name implies, the
DSPP is a Poisson process whose rate function is the random
process Xt. It is worth noting here that the class of SEPP's is
known to be broader than that of DSPP's; this point will be
illustrated below in the context of open-loop photodetec-
tion.

A useful alternative specification of point-process statis-
tics can be made through multicoincidence rates
(MCR's).2 317 The kth-order MCR is

Wk('Tl,, 2, ... , Ir) ln (At)k Pr (i AN = (7)

for k = 1, 2, .... Basically, Wk('rl, T2, ... , k)Atk is the
probability that events are registered within At intervals
about the distinct times -ri, 2, . . ., Tk. No ordering is im-
plied among the {-i}, nor is the possibility of additional
events excluded. For a Poisson process with rate function
Ht, we have that

(8)Wk(Tl, T2 . , T) = Ti;
1='

for a DSPP with random rate function Xt we have that

LIGHT PHOTO- PHOTOCOUNT11GIT DETECTOR- PHOTO- CONE t RECORD
CURRENT

Fig. 1. Generic photodetection configuration.
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(2)

being the number of events that occur during [t, t + At), a
point process is conditionally orderly if its incremental prob-
abilities obey

lim At-[1 - Pr(AN = oitt, Nt)] = t'
At- 0

lim At-' Pr(ANt = 11tt, Nt) = At,
At-0O

lim At-' Pr(ANt > 21tt, Nt) = 0,
At-0
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where tt (t, t2, . . , tt) is the vector of event times occur-
ring in [0, t). Physically, t (called the conditional rate

'0 T '4 t
Fig. 2. Pictorial of relationships between the photodetection event
times til, the photocurrent it, and the photocount record Nt.
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Wk(T1, T2, . ., k) ( 1 1 XT) (9)
i=l

There is a more general result connecting MCR's to condi-
tional rate functions for arbitrary SEPP's, but it is not suffi-
ciently explicit to warrant inclusion here.' 7

In terms of the MCR's, we have the following results for
the photocount and photocurrent statistics associated with
the point process til. The count probability distribution is

Pr(Nt = n) = E (m ) n! odTlJ dT 2
m=n

rt
fo dTMWM(Tl, T2, . . . T);

it has a mean

(Nt) = J wl(r)dr

stationary random process with mean (P) and noise spec-
trum Spp(f), then our DSPP formulas yield

(i) = q (P) /hv 0 (19)

and

Sil() = q (i) + (qn/hv 0 )2SPp(f) (20)

for the like statistics of the photocurrent. Here we see the
well-known shot-noise lower limit of semiclassical photode-
tection, i.e.,

Sifi~) q (i), (21)

with equality at all frequencies only if Pt equals (P) with
(10) probability one.

In the open-loop quantum theory, the event times under-
lying it and Nt form a SEPP whose kth-order MCR is

(11)

and a variance

var(Nd) = (Nt) + J dT J dT'[W2(T, r') - wj(T)wj(T')]. (12)

For a stationary point process w, is a constant and w2 de-
pends only on the difference between its arguments. In this
case the mean photocurrent is

(i) = qwl, (13)

and its noise spectrum (bilateral covariance spectrum) is

SiL(f) = q (i) + q2 J dT[W2 (T) - W1 2]exp(-i2rfr). (14)

Equations (10)-(12) reduce to the familiar Poisson limits
when the MCR's are given by Eq. (8). Their behavior for
DSPP's and SEPP's forms the core of our overview of open-
loop photodetection.

B. Open-Loop Photodetection
In the open-loop semiclassical theory, the event times un-
derlying both it and Nt form a DSPP with random rate
function given by

Xt = ?Pt/ho, (15)

in terms of the detector quantum efficiency -q, the (possibly
random) power illuminating the detector Pt, and the photon
energy hvo. Equations (9) and (10) then yield Mandel's
rule6 for the count probability distribution

Pr(Nt = n) -- ( W )'(16)

where
t

W J d 1 qP/hvo. (17)

It is well known that this distribution does not permit sub-
Poisson behavior, viz., from Eqs. (9), (11), (12), (15), (17),

var(Nt) = (Nt) + var(W) > (Nt), (18)

with equality if and only if W is nonrandom. If Pt is a

W(T11, T2, . T. ., lk) = o Tr{p J dxl ... Ad dxk

[ n ti j, Pr (xi, T)} , (22)

where is the density operator for the field, B(x, t)
exp(-i2rvot) is the positive-frequency photon-units field
operator for x = (x, y) in the plane of the photodetector,2 9

and Ad represents the active area of the photodetector.
When p is a classical state, it has a proper P representation,
namely,

= J d2. P(a; .*)1,) (,I (23)

for P a classical probability density and a) the multimode
coherent state. Equation (22) then becomes

Wk(Tl, T2, .. ., T) = J d'aP(a; a*) I (P 7/hV0),
i=1

where

Pt = hvo(al JAd dxt(x, tP(x, t)Ia)

(24)

(25)

is a nonnegative classical stochastic process whose statistics
are specified by P(a; a*), and all the semiclassical formulas
are reproduced. States that do not have proper P represen-
tations are called nonclassical. Their photocount and pho-
tocurrent statistics require SEPP's that, in general, are not
DSPP's. For example, if p is a photon eigenstate that has
exactly N photons within the space-time region Ad X [0, T),
then Eqs. (10) and (22) yield the binomial distribution2 330

Pr(NT = n) = (N) qn(l - q)N-f (26)

for n = 0, 1, 2, . . ., N. This distribution is sub-Poissonian
for all 0 < -q < 1 and collapses to the expected nonrandom
behavior as the quantum efficiency goes to unity. 30' 3'

Sub-Poisson photocounts and sub-shot-noise photocur-
rent spectra provide unmistakable signatures for nonclassi-
cal light in open-loop photodetection. Such effects have
now been observed in a variety of experiments. Short and
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Mandel'0 produced conditionally sub-Poisson light by
means of resonance fluorescence from sodium vapor. Their
experiment required that the starting time of the photo-
counting interval coincide with the entry of a single atom
into the field of view of the apparatus and that the light be
generated only by a single atom. Subsequently, Teich and
Saleh" produced unconditionally (continuous-wave) sub-
Poisson light by using a space-charge-limited electron beam
to excite the Franck-Hertz effect in mercury vapor. More
recently, Slusher et al.,' 2 Shelby et al.,'3 and Maeda et al.' 5

have seen sub-shot-noise photocurrent spectra in homodyne
detection of light that has undergone four-wave mixing, as
have Wu et al.14 in a three-wave mixing experiment. It is
relevant to note that self-exciting point processes play a role
in all these cases. In the Short-Mandel experiment, the
self-excitation is provided by the dead time associated with
successive atomic emissions.10 In the Teich-Saleh experi-
ment, it is provided by the space charge associated with the
electron beam. Indeed, they modeled3 2 the statistics of this
beam as a renewal point process, which of course, is a special
kind of SEPP. Self-excitation, in the multiwave mixing
experiments, can be attributed to the quantum correlations
between the pump and probe beams produced by photon
exchanges occurring through the nonlinear optical process.

3. CLOSED-LOOP PHOTODETECTION

Most theoretical results for open-loop systems do not carry
over to closed-loop photodetection. We proceed now to
reexamine the semiclassical and quantum photodetection
properties of it and Nt when the output of the photodetector
is permitted to affect the light at its input through a causal,
but possibly nonlinear, feedback loop, as shown in Fig. 3. In
both the semiclassical and quantum formulations it then
turns out that the photodetection event times form a SEPP.
Semiclassically, this is most easily seen through the incre-
mental point-process description [Eqs. (3)-(5)]. In the ab-

ready requires SEPP descriptions; passing to the closed-
loop configuration modifies many of the detailed results but
does not break out of the general SEPP structure. For
example, in the open-loop configuration it is known4 5 that
the photocurrent it realizes the quantum measurement3 3

it - q f dxP't(x, t)A'(x, t), (29)

with

B7(x, t) = 7'/12P(x, t) + (1 - n)/2P(x, t), (30)

where P9(x, t) is a vacuum-state field operator representing
subunity quantum efficiency noise. In Eqs. (29) and (30),
P(x, t) and PS(x, t) are commuting free-field operators that
do not explicitly depend on {i,:r < t. When the loop is
closed, Eqs. (29) and (30) continue to apply but with A(x, t)
explicitly dependent on past measurements.

Because both the semiclassical and quantum theories lead
to SEPP's, there are no unmistakable signatures for nonclas-
sical light in the closed loop. To be specific, for a SEPP the
quantity w2 (t, s) - wj(t)wj(s) need not be positive semide-
finite, so that [see Eqs. (12) and (14)] sub-Poisson photo-
counts and sub-shot-noise photocurrent spectra are possible
in both theories. In what follows, we shall explore this
behavior for two feedback configurations, which we term the
dead-time-modified Poisson process (DTMPP) and the neg-
ative-linear-feedback process (NLFP).

A. Dead-Time-Modified Poisson Process
It has long been known that semiclassical photocounting
statistics are impacted by dead time in the detection system.
Consider the nonparalyzable DTMPP, which is a renewal
process and hence a SEPP. 7

,
3
4-

36 For a detector with fixed
dead time d, illuminated, in the semiclassical theory, by
nonrandom light of constant power P, the photocount prob-
ability distribution is35 36

n n-1

I po[k, X(t - nd)] - 1 pok, X[t - (n - l)rd]j
k=O k=O

n-l
1- pok, [t (n -1)d] I

k=O

O

for n < t/Td

for t/Td < n < t/rd + 1, (31)

for n td + 1

sence of feedback we have a DSPP, i.e., the semiclassical
conditional rate obeys

At= (Pt/hvo1ttNt), (27)

where Pt, the illumination power, is a nonnegative random
process that is not directly influenced by the point process,
viz., Pt is conditionally independent of the photocount histo-
ry tt, Ntj given its own history PT:r < t. Closing the feed-
back loop leaves Eq. (27) formally intact but makes

Pt = Pt(Itt, Ntj) (28)

an explicit function of the photocount history. Thus the
DSPP condition is violated, indicating that closed-loop
semiclassical photodetection leads, in general, to a SEPP.

Quantum mechanically, open-loop photodetection al-

(32)

These results are valid for a detector that is unblocked at the
beginning of each counting interval, although exact number
distributions for counters that are blocked and for equilibri-

INPUT OPTICAL IN-LOOP PHOTO-
LIGHT MODULATOR LIGHT DETECTOR

CSIOGNTROL PHOTOCURRENT

CAUSAL c

Fig. 3. Closed-loop photodetection configuration.

Pr(Nt = n) =

where

po(k, a) -- ake-a/k!, X - 7P/hpo.
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time experiment shown in Fig. 5. Here, a coherent-state
signal field Ps(x, t) with mean

(aiPs(x, t)Ia) = (P/hvoAd)1/2

illuminates an in-loop photodetector of quantum efficiency
-q through a feedback-controlled flip mirror. For rd sec after
each in-loop photocount registration, the flip mirror directs
ts(x, t) to an out-of-loop photodetector of matched quan-
tum efficiency -q. During this dead-time interval, the in-
loop detector is illuminated by a vacuum-state field operator
PM(x, t). After this dead-time interval the mirror returns to
its previous position, in which Ps illuminates the in-loop
detector and .M illuminates the out-of-loop detector.

We derive the steady-state first and second moments
(means, variances, and covariance) of the in-loop and out-of-
loop photocount records Nt and Nt' in the high-mean-count
limit. Toward that end, we recast the flip-mirror subsystem
into the explicit lossless modulated beam-splitter form,
shown in Fig. 6, in which

Fig. 4. (a) Closed-loop photocounting experiment carried out by
Walker and Jakeman.19 (b) Photocounting experiment carried out
by Teich and Vannucci.36

um counters are also available. In the usual situation, the
mean count is much greater than unity, in which case the
differences arising from the three initial conditions are in-
substantial and a simple approximation for the photocount
distribution suffices.36 The photocount mean and variance
then take the asymptotic forms

(N) = Xt/(1 + Xrd)

AIN(x, t) = [T(t)]/2Bs(x, t) + [1 - T(t)]/2PM(x, t)

and

(33)

and

var(Nd) = (N)/(1 + XTd)2,

representing sub-Poisson behavior for all values of XTd.
The DTMPP results are relevant to experiments recently

carried out by Walker and Jakeman.19 The simplest form of
their experimental arrangement is illustrated in Fig. 4(a).
The registration of a photoevent at the detector operates a
trigger circuit that causes an optical gate to be closed for a
fixed period of time Td after the time of registration. During
this period, the power Pt of the (He-Ne) laser illuminating
the detector is set precisely equal to zero so that no photode-
tections are registered. The arrangement is therefore
equivalent to the one illustrated in Fig. 4(b), in which the
gating is electronic rather than optical, at least so far as the
photocount statistics are concerned. This latter arrange-
ment was used by Teich and Vannucci,36 and sub-Poisson
photocounts were observed in both cases. This is because
the point process seen by the counter in these experiments is
the DTMPP considered above. As Walker and Jakeman
understood, their observations can be explained without re-
course to the quantum theory of photodetection; under
closed-loop conditions, sub-Poisson photocounts are possi-
ble within the semiclassical framework. Nevertheless, it is
instructive to develop the quantum foundations for Eqs.
(33) and (34) in a manner conducive to generalization.

Consider the quantum version of a somewhat richer dead-

Fig. 5. Quantum-photodetection configuration that can be used to
represent the DTMPP experiments carried out by Walker and Jake-
man.19

EM( t)

ES(x t). it

Fig. 6. Modulated beam-splitter version of the flip-mirror subsys-
tem from Fig. 5; the beam splitter's intensity transmission obeys
T(t) = 1 - q- f ijhd(t - )dr, with hd(t) = 1 for 0 < t S 7-d.

(a)

LASER
LIGHT

(b)

LASER -
LIGHT*

(35)

(36)

(34)
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EOUT(X, t) = -[1 - T(t)]J112 S(x, t) + [T(t)]1 12AM(x, t), (37)

with beam-splitter transmission given by
(Nt) = q1 | (i,) dT n(IN) Adt

T(t) = 1 - q1 ihd(t - r)d,

in terms of the causal linear system impulse response

i for= 0 <tt rd
hd(t) =

10 otherwise

(38)
= Xt/(1 + X1-d)

and

(39)
= Xt - Xt/(1 + Xrd),

Because t has an impulse of area q at each in-loop photo-
event and because such events are impossible when the in-
loop detector is illuminated by the vacuum-state field AM, it
is easily verified that Eqs. (36)-(39) correctly describe the
flip-mirror arrangement.

To proceed further, we replace the classical in-loop and
out-of-loop photocurrents it and it' by their associated oper-
ator representations [cf. Eqs. (29), (30)]:

I = q | dxAIN t(X, ijAIN'(x, t)
AdL

where X = 1P/hvo, as in Eqs. (31)-(34). Equation (51) repro-
duces Eq. (33), as promised. Equation (52) is, in fact, self-
evident in that, by construction, Nt + Nt' corresponds to
performing quantum efficiency 11 photocounting on the co-
herent-state field As. Thus Nt + Nt' must be a Poisson
process of rate X. The less obvious results concern the sec-
ond moments, with which we deal below.

By using the high-mean-count linearization we know that

(40)
(53)

and

It= q |, dXBouT/t(X, t)oTUTU(x, t)

where

'(X, t) = 1 2 _j(x, t) + (1 - i)1 2Bj(X, t)

(41)

(42)

var(Nt') 47Ad(EOUT)2 ( dTAOUTl ()]

and

cov(Nt, Nt') 477Ad(BIN) (EOUT) (f dTrAINl'(r)

for j = IN, OUT, and IAIN,, OUTvI are vacuum-state field
operators. We next employ the high-mean-count condition
to justify the following linearization37 of Eqs. (36)-(38):

X J dAEOUTl' () 

(AIN) (T) 1 12 (AS) = ((T)P/hvoAd)1/ 2 ,

AEIN(X, t)- IN(X, t) - (IN)

(T)1/2AAS(x, t) + ( - (T)) 1/2AM(x t)

+ [AI(t)/2(T)"/2 ] (S),

(AOUT) -(1 -T))12(PS)

ABOUT(X, t) (1 - (T))1 /2 AS(x, t) + (T)'1 /2
X AM(X, t) + [AIT(t)/2(1 -(T))/2](s),

(T) 1 -J 7nAd(AIN)2hd(t -)dr

= 1 -Ad (AIN )2rd,

and

AP(t) - 2n 1/2(BIN)Re{J dx[n11/2AIN(X, )

+ (1 - E)1 /2
A1NV(X, T)] hd(t - T)dr.

(43) where

AA1'(t) 1- -1/2 J dx Re[Aj'(x, t) - ( 1'(x, t))] (56)

(44) for j = IN, OUT represents the field-quadrature fluctua-
tions that beat with the strong mean fields to produce the

(45) photocount fluctuations. From formulas (44) and (46)-(50)
we have that

(46) ARINl(t) = [/(1 + Xrd) 11/2ASl(t) + [XTd/(1 + a-rd)]1"2

X AMl(t) + (1 -n)"/2AINl(t) - (P/hvo)

(47)

and

AOUT1(t) =

(48)

X J dTrAINl'(T)hd(t -r) (57)

[lXrd/(l + Xrd)] 1/2AS 1(t)

+ /(l + Xird)]2Ml(t) + (1 - q)1/2
X AoUTvl(t) - [P/hO(krd) 2]

X J dTAINl(Tr)hd(t - ), (58)

The equations for the mean values are easily solved, yielding

(AIN) = (P/hvoAd)/[1 + (PTd/hvo)}l" 2 , (49)

(AOUT) = -[(P/hvoAd) - (IN) 2 ]" 2 (50)

from which it follows that

where the time-dependent quadrature operators are ob-
tained from the corresponding space-time-dependent field
operators, as in Eq. (56). Equations (57) and (58) are linear-
feedback forms that are easily solved by means of Fourier
transformation, i.e., with

(51)

(52)

(54)

(55)

Shapiro et al.
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the variance of the counts missed because of dead time; it is
super-Poisson for all XTd values. As a consistency check on
formulas (68) and (69), we note that they imply that

etcan s dth2o th(t)exp(-i2rft),

etc., we can show that

API l-f) - [n/l + XT)1/2[A.l(f) + ( )H1IM1(f)] + (1 - 0112h (60
ARINI I~~~~ + (nP/hvo)Hd(f) (0

and

OUT1() = -['Xrd/(1 + XTd)]12t2Sl(f)

+ [n/(1 + Xrd)] 
1 /2-k(f)

+ (1 - 1 OUTv1(f)

- [NP/hPO(Xrd)12]AIN,(f)Hd(f) (61)

where

Hd(f) = exp(-irfd)[sin(7rfTd)]hrf (62)

is the frequency response associated with the impulse re-
sponse hd(t). It is now a simple matter to use the coherent-
state quadrature-fluctuation statistics for AAS1, AM1, AINvl1

and AOUTv1 to prove that

(A2j'(t + T)AAk (t)) = J dfSEj,,Ek,(f)exp(i27rfr), (63)

for j, k = IN, OUT, where the noise spectra are as follows:

SEINI'EINM'(f) = 1/411 + (P/hVO)Hd(f)I 2

SEOUTITOUT1 (f) = 4-1 + I(n1p/hVo)Hd(f) 2/4X-d I'

+ (P/hvO)Hd(f) 12,

and

SEINI#EOUTI'(f) =-[fP/hvO(Xrd) l/2]Hd* (f)SEINMEIN'(f).

(64)

(65)

(66)

The behavior of the spectra [Eqs. (64) and (65)] is illustrated
in Fig. 7.

To complete the second-moment analysis, we note that
the high-mean-count limit requires that t >> Td so that only
the low-frequency behavior of the preceding noise spectra
contribute to the variance and covariance in formulas (53)-
(55). We then find

var(Nt) 4[Xt/(1 + TAd)]SEINEI'(0)

= Xt/(i + XTd)3 = (N,)/(1 + XTd)2, (67)

var(Nt') 4[XtXrd/(1 + XTd)]SEUTEOUTl'(°)

= [XtXrd/(1 + Xrd)] I[ + XTd/(1 + XTd)21

= (Nt') [1 + Xrd/(1 + Xrd)2],

and

cov(Nt, Nt') 4[Xt(Td) 1/2/(1 + Xrd)]SElNlEouTl(0)

= XtXTd/(1 + XTd)3.

(68)

(69)

Formula (67) reproduces the semiclassical dead-time result
[Eq. (34)]; it is sub-Poisson for all XTd values. Formulas (68)
and (69) are novel.38 In dead-time parlance, formula (68) is

var(N, + Nt') = var(Nt) + var(Nt') + 2 cov(Nt, Nt') = Xt, (70)

in agreement with the previously stated physical argument
that Nt + Nt' must be a Poisson process of rate X. Moreover,
even though we gave a quantum version of that argument, Nt
+ Nt' being a Poisson process of rate X also follows from the
semiclassical shot-noise descriptions.3 9

Before proceeding to the NLFP case, some elaboration on
what has just been shown is in order. Both the semiclassical
and the quantum theories of photodetection predict the
same mean and variance for the DTMPP in-loop count re-
cord Nt. This agreement is not coincidental. The semiclas-
sical statistics will be the same as those of the quantum
theory in any closed-loop photodetection arrangement in
which breaking the feedback loop leaves the photodetector

M _20 , . . . . . .

(f)U~~~~~~~~~a

lo
,N 10

OUT-OF-
LOOP

w 0

-lo

t - IN-LOOP (b) rd=1O
-20

(a)

6bOUT-OF

~ 2

~0

-6 IN-LOOP (a) =4 d= 4e- -
2 3 ~4

(b)

Fig. 7. Normalized first-quadrature noise spectra SEIN,'EINIV()/coh
and SE0UT1'E0UT'(f)/Soh (in decibels) versus normalized frequency
f-rd from the DTMPP quantum analysis. Scoh = 1/ is the coherent-
state noise spectrum. (a) X-rd = 4 and (b) Xrd = 10.
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illuminated by a classical state [in the usual open-loop sense,
cf. Eq. (23)]. In other words, despite our use of operator
representations for photocurrents, the actual quantum mea-
surement occurs at the photodetector, and the feedback
path is entirely classical. Thus, if the open-loop illumina-
tion does not require the use of quantum photodetection
theory, then neither does the closed-loop illumination.
Conversely, if the open-loop illumination is nonclassical,
then the closed-loop behavior must be analyzed quantum
mechanically. For example, suppose the A5 field in the
DTMPP analysis is in a broadband squeezed state with the
mean field given by Eq. (35) and low-frequency first-quadra-
ture noise squeezing 40

SES.ESl(f) y/4 for fI • l7rrd, (71)

with y << 1. Equations (67) and (68) then become

var(N,) (Ne) [1 - (1 - )n/(l + X'd)]/(1 + Xrd)2 (72)

and

var(N,') (N') [1 + Xid/(l + Xrd)2 - nXTd(l - 7)

X (2 + Xrd)2/(1 + XTd)3], (73)

respectively. For XTd >> 1 and t- 1, the out-of-loop photo-
counts Nt' are strongly sub-Poisson, a result that cannot be
obtained semiclassically as Nt' is an open-loop count record.

B. Negative-Linear-Feedback Process
Our second example of closed-loop photodetection is the
NLFP whose semiclassical construct is sketched in Fig. 8.
In this arrangement, the in-loop photocurrent it drives an
optical intensity modulator through a causal linear time-
invariant filter of impulse response hf(t). As a result, for
nonrandom input light of constant power Po, the optical
power emerging from the intensity modulator obeys the neg-
ative-feedback law

Pt(IT: r < t) = PO - (Pj/q) J_ ihf(t - r)dr, (74)

conditioned on knowledge of the in-loop event history. To
ensure that Eq. (74) represents negative feedback, it is suffi-
cient to require P1 > 0 and hf(t) > 0 for all t.41 Because
Pt(jiT:r < t) 0 must prevail under all circumstances, Eq.
(74) should be viewed as an approximation, even under the
preceding negative-feedback conditions, whose validity re-
quires that the feedback term on the right-hand side in Eq.
(74) be smaller than the input power with overwhelming
probability. It is interesting to note that the DTMPP is a
NLFP with hf(t) = hd(t) and P1 = Po. For the DTMPP no
probabilistic restriction was needed to guarantee that Pt > 0,
but stochastic linearization expedited the analysis. In what
follows, we treat the NLFP, with an arbitrary negative feed-
back hf(t), using a similar stochastic linearization both to
ensure Pt > 0 and to effect steady-state statistical analysis.
Moreover, to make explicit the behavior of our general re-
sults, we use the single-pole filter

loop photocurrent it' using the semiclassical and quantum
theories, beginning with the former.

We have from stationary-process MCR theory [see Eqs.
(13) and (7)] that

(i) = qw, = q lim [At-' Pr(ANt = 1)]
At- 0

(76)

and likewise

(i') = q lim [At-' Pr(ANt' = 1)].
At-0

(77)

If we employ iterated expectation on the right-hand side in
Eq. (76), using the incremental SEPP description [Eqs. (3)-
(5)] with t = ePt/hvo for e the beam splitter's intensity
transmission, we find that

(i) = q-qE (Pt) /hv0 = (q-E/hv 0)[Po - (Pj/q) (i) Hf(O)], (78)

where Hf(f) is the frequency response associated with hf(t).
Equation (78) can be solved for (i), yielding

(i) = (qnEP0 /hv0)/[1 + (P/hvo)Hf(0)],

which reduces to

(i) = (q7EP0 /hv0)/(1 + -qEPrf1/hV0)

(79)

(80)

for the single-pole filter example. In a similar manner we
can show that

(i') = qn(1 - ) (Pt) /hvo. (81)

Somewhat greater effort is required to deduce the second
moments, which are dealt with below.

From Eqs. (14) and (7) of the stationary-process MCR
theory, it follows that the in-loop photocurrent covariance is
of the form

cov(it+r, it) = q (i) 6(r) + jj('r),

with a symmetric nonsingular component given by

Nii(T) = q
2 lim (At)- 2 Pr[ANt+,AN = 1]) - (i)2

At-0

(82)

(83)

for r 0 0. By iterated expectation and the incremental
SEPP description, we obtain

LASER
LIGHT

.jt

hf (t) = {exp -t/Tf)

as a running example. We treat the first- and second-mo-
ment statistics of the in-loop photocurrent it and the out-of-

Fig. 8. Semiclassical-photodetection configuration for the NLFP
experiments carried out by Machida and Yamamoto'0 and Yama-
moto et al.

2
1

t>0
otherwise

(75)
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Xii(T)= (qnE/hv0) (Pt,÷i,) - (i)2 for T > 0, (84)

which is easily reduced to the following Wiener-Hopf equa-
tion4 2 :

ii(T) = -(neP11/hv0) [q (i) hf(T) + J Yii(r - s)hs)dsj (85)

for r > 0. With the same approach, we find that the out-of-
loop photocurrent covariance is

cov(it+/,' it') = q (i') 6(r) + ]ii(T), (86)

where the symmetric nonsingular component Ni4i satisfies

Wiqir) = -[1(l - )P1Ihv0] J cov(it+,-, i')hf(s)ds (87)

for > 0 and the nonsingular cross covariance between the
in-loop and out-of-loop photocurrents satisfies

cov(it+1, it') = [(1 - E)E]ii(T)
[e/(1 -

for r <0
for r > 0

The solutions to Eqs. (82)-(88) are not difficult to obtain
and are best expressed in terms of the noise spectral densi-
ties associated with the photocurrent covariances and the
noise cross-spectral density associated with the photocur-
rent cross covariance. The results are43

Sii(f) = q (i) /1 + (nEP1 /hv0)Hf(f) 12,

Sei,() = q (i') 1 + Iln[E(l - )] 12P1Hf(f)/hv 0 J2 /1

+ (nEP1 /hv0)Hf(f) 121,

and

Sii (t) = -q[(i) (i')e(l - )]l/2[t7PlHf*(f)Ihvo]/11
+ (nEP1/hvo)Hf(f) 12.

(89)

(90)

(91)

From these spectra, it follows that the normalized differ-
enced photocurrent, i_(t) [(1 - e)/eI" 2it - [e/( - )]1/2 it',
has a white-noise spectrum equal to the sum of the it and it'
shot-noise levels

Sii_(f) = q[(i) + (i')], (92)

whereas the in-loop photocurrent has a sub-shot-noise spec-
trum at frequencies for which 1 + (7EPi/hvo)Hf(f)l > 1, and
the out-of-loop photocurrent has a super-shot-noise spec-
trum at all frequencies. These characteristics are illustrat-
ed in Fig. 9, where we have plotted the normalized spectra
Sii(f)/q(i) and Siti'(f)/q(i') for the single-pole filter example
with e = /2.

The preceding results bear on the recent experiments of
Machida and Yamamoto2 0 and Yamamoto et al.21 These
authors used a GaAs/AlGaAs injection laser diode to gener-
ate light and a Si P-I-N photodiode to detect it. Negative
electrical feedback from the detector was provided to the
current driving the laser diode. Operation in a configura-
tion analogous to Fig. 8, with e = 1/2, then led to a sub-shot-
noise in-loop photocurrent spectrum, a super-shot-noise
out-of-loop photocurrent spectrum, and a sum of shot-noises
difference-current spectrum. Yamamoto et al.21 gave a
quantum treatment of the laser-photodetector-feedback ap-
paratus that predicts these results. Later, Haus and Yama-
moto,44 in their analysis of feedback-generated squeezed

states, showed there was an equivalent semiclassical formu-
lation for the experiments reported in Refs. 20 and 21. Our
preliminary semiclassical work appeared in Ref. 16; it sepa-
rates the feedback loop from the laser source by employing
an external intensity modulator, as shown here in Fig. 8. In
what follows we present our quantum analysis of the it and it'
statistics. After showing how Eqs. (80), (81), and (89)-(91)
are reproduced quantum mechanically, we contrast their
semiclassical and quantum interpretations.

Our quantum treatment of the NLFP parallels our quan-
tum DTMPP development. It is based on the arrangement
shown in Fig. 10, in which a coherent-state signal field Ps(x,
t) with mean given by Eq. (35) illuminates in-loop and out-
of-loop photodetectors through a lossless modulated beam
splitter and a lossless ordinary beam splitter. The modulat-
ed beam splitter yields both an in-loop field

B(x, t) = [T(t)] /2tS(x, t) + [1 - T(t)]/2 M(x, t), (93)

in terms of the beam-splitter transmission

T(t) = (PO/P) - (P1/Pq) f ihf(t - T)dr,

and a vacuum-state field operator BM(x, t).

(

\,, -4

4-

(I -

. -I:

S - (
._

(J

(94)

The in-loop

fTf

(a)

-2.

IN-LOOP

X -8 - / ~(a) e= 1/2,77PIrf/hi,0=8

E -10 /
-12 /

-14 4 

frf
(b)

Fig. 9. Normalized NLFP photocurrent spectra Sii(f)/q(i) and
Si (f)/q (i') (in decibels) versus normalized frequency fTf for single-
pole filter example. (a) /2, P1 rf1/hvo = 8; (b) = /2, PJTf1/hvo =
20.
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and out-of-loop photocurrents correspond to the operator
measurements, Eqs. (40) and (41), respectively, where the
effective fields PIN' and POUT' are obtained from Eq. (42)
and the ordinary beam-splitter relations

PIN(x, t) = e"12B(x, t) + (1 - e)1/2B(x, t),

PoUT(x, t) = -(1 - )1/2B(X, t) + E1/2P B(X t),

(95)

(96)

where yet another vacuum-state field operator BB is intro-
duced. The introduction of the vacuum-state fields PM, RBI

comes from the necessity of preserving open-loop commuta-
tor brackets after propagation through the beam splitters
when the feedback path is absent. The vacuum-state fields
IINV, OUTuI are required for lossy ( < 1) detectors because
of the fluctuation-dissipation theorem, which, loosely stat-
ed, implies that quantum noise is injected whenever loss is
encountered, again because of commutator conservation.4 5

An investigation of closed-loop NLFP commutator behavior

real-quadrature fluctuations, i.e., those in phase with the
mean field.

The first and second moments of it and it' are easily ob-
tained from Eqs. (98)-(102). With the linearized formula-
tion we know that

(it) = qAd((PIN )2

= (qnEP0 /hv0)/[1 + (EP 11/hv0)Hf(0)] (103)

and

(it') = Ad((BOUT )2

= [qn(l -,E)P0/hv0]/[1 + (eP 1 /hv0)Hf(0)], (104)

in agreement with the semiclassical results [Eqs. (79) and
(81)]. Moreover, by introducing Fourier transforms as in
Eq. (59), we can solve the first-quadrature relations in Eqs.
(100) and (101), with the following results:

[, (T)] 1 A2 sl (f) + [ (1 -
IN1 (f) =

(T))]S2 BMl(f) + (1 -e)11/2.Bl(f) + (1 -1)1/2I`(t
1 + (eP 1 /hv0 )Hf(f)

will be of interest below, and toward that end we introduce
here the auxiliary output-field relation for the modulated
beam splitter:

PAux(x, t) = -[1 - T(t)/2PS(x, t) + [T(t)]J/2PM(x, t).

(97)

At this juncture, the analysis can proceed rapidly. Invok-
ing an operator linearization of Eqs. (93)-(96), as was done
for the DTMPP, and introducing time-dependent quadra-
ture operators, in a manner similar to Eq. (56), we find that

(SIN') = InEPO/hvoAd[1 + (eP 1 /hv0 )Hf(0)11 112,

(-OUT') = [(1 - /2(RIN')

ARINj'(t) = [(T)]/2ARSj(t) + [(l-(T))11/2
X BMj(t) + [(1 - )]1/2PBJ(t)

+ (1- )1/22INvi(t) - j(neP1/hvo)

X JAIN1'(T)hf(t - T)dT,

and

(98)

(99)

(100)

and

AOUT1W(I) = -[n(1 - e) (T)]' 2A2S1(f)
- [(1 - E)(l - (T))]112hM1(f) + (e)1/2

X (B10

+ (1 _')112OUT1( + e' e)]1/

(106)

From these solutions we then obtain the quadrature noise
spectra [see Eq. (63)]

SEMl'EIN'(f) = 1/4 ii + (EP 1/hv 0)Hf(f) 12,

SEOuT1'EOuT'(f) = 4' + e(l - ) I (nP 1/hv0)Hf(f) 12/411

+ (p 11/hv 0 )H,(f) 12,

(107)

(108)

and

SEM'EOUT(f) = [e(l - )]/ 2(nP1/hV0) Hf*(f)SEIN1'E('f)

(109)

The quantum second-moment derivations are completed by
substituting Eqs. (107)-(109) into the relations

AROUT'(t) = -[n(l - ) (T)]"12ARSj(t) - [(1 - )
X (1 - (T))]1"2 RMj(t) + (E) 1 1/2_B(t)

+ (1 - 7)1 2WoUT .(t) + blj[e (-)]/2

X (P 1/hv0) J AIN1(Tr)hf(t - r). (101)

In Eqs. (100) and (101)

(T) = (Po/P)/[1 + (eP 1 Ihv0 )Hf(0)] (102)

is the average modulated beam-splitter transmission, and j
= 1, 2 denote the real and imaginary quadratures, respec-
tively [cf. Eq. (56)]. Note that the feedback affects only the

Si(f) = 4q (i) SEINIEINIf),

Sij,(D = 4q (i') SEoUT/Eo~uT1(f),

(110)

(111)

and

(112)

which follow from linearization [cf. formulas (53)-(55)].
The photocurrent spectra and cross spectrum thus obtained
coincide with the semiclassical formulas [Eqs. (89)-(91)].

Even though the semiclassical and quantum theories for
the NLFP yield identical statistics, their physical interpre-
tations are quite different. Consider the semiclassical Fig. 8

(105)
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system: When the feedback path to the intensity modulator
is broken, it and it' are statistically independent stationary
shot-noise processes arising from the independent random
atomic excitations occurring in the two detectors under
steady classical illumination. Closing the loop reduces the it
noise level at frequencies within the loop bandwidth as in
any negative-feedback stabilization scheme.4 6 This in-loop
reduction comes about by modulating the incoming light
with a filtered version of the it shot noise. Insofar as the out-
of-loop detector is concerned, said modulation constitutes
an excess noise on its illumination in the usual open-loop
sense. As a result, the out-of-loop photocurrent shows su-
per-shot-noise fluctuations within the loop bandwidth.
Subtracting the normalized photocurrents precisely cancels
the negative-feedback noise reduction on it, with the ran-
dom-modulation noise increase on it' leading to a sum-of-
shot-noise spectrum for L.

Quantum mechanically, the feedback loop reduces the in-
loop photocurrent spectrum by squeezing, within the loop
bandwidth, the quadrature fluctuations of PIN(x, t) that
spatially match and are in phase with its mean field. Be-
cause of the 7r-rad phase shift that exists between the rela-
tive phases of the P and PB contributions to PIN and POUT,
which is a consequence of energy conservation, 4 7 the nega-
tive-feedback loop exacerbates the quadrature fluctuations
of PouT(X, t) that spatially match and are in phase with its
mean field.20'2' As a result, it' has a super-shot-noise spec-
trum within the loop bandwidth. When the photocurrents
are normalized and subtracted, the noise-current operator is

Ail.(t) -i(t) - (i_) = [(1 - )/E]1/2A4 - [e/(1 -E)/2A:it

= 2[q(1 - ) (i) /E] /2APIN1'(t)

+ 2[qe(i') /(1 - )]/2APouT1'(t)

= 2[q((i) + (i'))]1/ 2[(1 - E)/2 APIN1'(t)

+ E1/2A0ouT,(t)]

= 2[q((i) + (i'))]1/2PB1(t), (113)

from which the sum-of-shot-noises formula [Eq. (92)] fol-
lows immediately. 20 ,2'

C. Commutator Relations
Additional insight into closed-loop photodetection can be
developed by examining the field commutators for the quan-
tum NLFP configuration shown in Fig. 10. For notational
compactness, we limit our discussion to spatially integrated
time-dependent photon-unit field operators of the form

Ps(t) = Ad-/'2 fAd dxPs(x, t),

and

[P5 l(t), P52 (t')] = (i/2)6(t - t'). (118)

When the field fluctuations are statistically stationary, the
latter imply the Heisenberg uncertainty limit

SES1ES(fl)SES2EM2(f) - 1/16 (119)

for the quadrature fluctuation spectra. Coherent-state
light achieves the minimum-uncertainty product in expres-
sion (119) with equal noise strength in each quadrature;
squeezed-state light achieves the minimum-uncertainty
product in expression (119) with unequal noise strength in
each quadrature.

Consider the uncertainty products, similar to the left-
hand side member of expression (119), for the effective fields
PIN'(t) and PouT'(t) that drive the in-loop and out-of-loop
photodetectors. We already have expressions for the first-
quadrature noise spectra. The following second-quadra-
ture noise spectra can be deduced immediately from Eqs.
(100) and (101):

SEN 2'EIN2 '(f) = SEOUT2'EOUT2 (f) = 1/4. (120)

Equation (120) shows that both second-quadrature noise
spectra are coherent-state results. Physically, this is so
because the linearized intensity-modulation feedback does
not affect the second-quadrature fluctuations as the latter
are r/2 rad out of phase with the mean field. Because
SEOUT1'EOUT1'(f) > 1/4, we see that the free field POUT' obeys
the usual uncertainty principle [expression (119)]. On the
other hand, SE 1N1'EIN1'(f) < 1/4 prevails within the loop band-
width, so that EIN' violates the free-field uncertainty princi-
ple. If we use the frequency-domain result [Eq. (105)] and
the corresponding formula for AIN2'(f), we can easily show
that

[PIN'(t), IN'(t')] = 0 (121)

and

APN'(t), PN't(t/] = df cos[27rf(t - C')]
J 1 + (nePj/hvo)Hf(f)

from which the Heisenberg inequality

(122)

SEIN1'EIN1'(f)SEIN2'EIN 2 '(f) > 1/1611 + (eP 1/hvo)Hf(f) 2 (123)

(114)

etc. Free fields of this type have the following commutators:

[PS(t), PS(t')] = 0

Es(xit)

(115)

and

[PS(t), pst(t')] = (t - ),

which are equivalent to the quadrature operator comr
tors

[Ai(t), ps5 (t')] = [PS2(t), PS 2 (t')] = 0

nuta-
Fig. 10. Quantum-photodetection configuration for the NLFP ex-
periments carried out by Machida and Yamamoto20 and Yamamoto

(117) et al.
21

(116)
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follows readily. The in-loop effective field is operating at
this uncertainty-product limit at all frequencies.

The peculiar nature of the in-loop effective-field commu-
tator might be evidence that we have inadvertently omitted
a quantum-noise contribution from our closed-loop analysis.
It is germane, therefore, to examine the commutators for all
the field operators involved in the arrangement shown in
Fig. 10. The input operators IPS(t), PM(t), PB(t), PINv(t),
PouTV(t)} are commuting free-field operators obeying

[:j(t), P1 ,(t')] = 0 (124)

and

[By~), pj'ftw)] = jj6(t -t') (125)

for j, j' = S, M, B, INv, OUTv. Whether or not the feedback
loop is closed, the open-loop output operators JPAUX(t),
PouT(t), PouT(t)j are free fields whose commutators must

also satisfy Eqs. (124) and (125). That they do so can be
deAonstrated by means of Eqs. (93)-(97) and the lineariza-
tion procedure used to derive the quadrature-noise spectra,
without recourse to additional quantum-noise sources.

The in-loop field operators P(t), 4PIN(t), PIN'(t)1 are not
free fields when the loop is closed, and thus they need not
have the usual commutators. We have already found the
PN'(t) commutators. By similar calculations we obtain

[P(t), P(t')] = [PIN(t), P1N(t')] = 0 (126)

and

[EV), Rt(0) = [EINWt, EA00t')

= df cos[2irf(t - t)]
1 + (EP/hv 0)Hf(f)

(127)

optical propagation delay has on the quantum NLFP statis-
tics and field commutators.

Suppose that there is a rp-sec propagation delay between
the modulated beam splitter and the ordinary beam splitter
and that there is no propagation delay between the ordinary
beam splitter and the in-loop and out-of-loop photodetec-
tors. In place of Eqs. (95) and (96) we then have

PIN(X, t) = El/2P(X, t - rp ) + (1 - e)1/2PB(x, t), (128)

POUT(X, t) = -(1 - )/2 (x, t - T) + Ei/2PB(X, t). (129)

Mimicking the development of the no-delay case, we can
show that the mean photocurrents, the photocurrent spec-
tra, and the cross spectrum all take the forms given previous-
ly with Hf(f) replaced by

H'(f) = exp(-i27rf7p)Hf(f). (130)

Thus the physical discussion concluding Subsection 3.B con-
tinues to apply, insofar as moment behavior is concerned,
subject to the impact of the delay factor on the right-hand
side of Eq. (130) on the achievable noise squeezing. Said
impact is illustrated in Fig. 11, where we have plotted Si(f)/q(i)
for the single-pole filter example with = /2, fPlrf/hvo = 8,
and various rp/rf values.4 8

Now let us consider the commutator behavior when opti-
cal delay is included. Here we find that the open-loop out-
put operators PAUX(t), PouT(t), PouT(t)1 continue to have
the free-field commutators [Eqs. (124) and (125)], whereas
the in-loop field operators {E(t), PIN(t), PIN'(t)} have the
commutators given in Eqs. (121), (122), (126), and (127) with
Hf(f) replaced by Hf(f) from Eq. (130). If we now write

df cos[27rf(t - t)]
J 1 + (P1/hvo)Hf/(f)

i.e., all three in-loop fields share the same non-free-field
commutator behavior.

The special character of the in-loop commutators [Eqs.
(122) and (127)] is, we believe, the hallmark of the quantum
closed-loop theory. It permits the in-loop photocurrent to
have a sub-shot-noise spectrum, which is the semiclassical
signature of the closed loop, even though all the free-field
input operators are in coherent states. Indeed, were we to
have [PIN'(t), PIN'(t)] = 0 and [PIN'(t), PIN't(t')] = (t -
with PIN'(t) being a linear combination of only the coherent-
state field operators [S(t), BM(t), PB(t), IN(t)], it would
have to be a DSPP. Its spectrum could then never reach
sub-shot-noise levels.

The preceding discussion confers a special closed-loop
status on the in-loop fields [(t), PIN(t), PIN'(t)] in the appa-
ratus shown in Fig. 10. This extraordinary behavior can,
nevertheless, be reconciled with the obvious facts that P(x,
t) represents a field in the free-space region between the
modulated and ordinary beam splitters and PIN(X, t) repre-
sents a field in the free-space region between the ordinary
beam splitter and the in-loop photodetector. The key is
optical propagation delay.

Our entire closed-loop analysis is of a lumped-element
character, viz., no propagation delay whatsoever is included
between the optical elements of the configuration of Fig. 10.
It is well known that delay in a classical feedback loop can
strongly affect its performance. Let us see what effects

= 6(t - t') - df (nEP1/hv)H/(f)cos[2if(t - t')]
J 1 + (nEP1/hv0)H/(f)

(131)

we can use the causality of Hf(f) to prove that the integral
term on the right-hand side in Eq. (131) is zero for It - t <
Tp. Thus, for time differences smaller than the optical prop-
agation delay, the in-loop fields have free-field commutator
behavior. Physically, this means that, at any time t, the
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Fig. 11. Normalized NLFP in-loop photocurrent spectra Sii(f)/
q (i) (in decibels) versus normalized frequency ff for the single-pole
filter example: e = 1/2; ?1Plrf/hvo = 8; rp/rf = 0, 0.1, 0.5.
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fields present in the free-space regions between the modu-
lated beam splitter and the ordinary beam splitter and be-
tween the ordinary beam splitter and the in-loop photode-
tector have no special closed-loop status. It is the feedback
action over time intervals in excess of the optical propaga-
tion delay that leads to the non-free-field forms in Eqs. (122)
and (127). These interpretations can be tested, conceptual-
ly, by studying the transient behavior of the in-loop photo-
current statistics when the feedback path is suddenly bro-
ken. If the field that exists at any one time between the
modulated beam splitter and the in-loop detector is, in es-
sence, a classical-state free field, then breaking the feedback
path at time to, when the loop was in its steady state, must
make it:t > to) a DSPP. The proof is as follows.

Suppose that the closed-loop system, incorporating the
i-p-sec propagation delay, is in its statistical steady state at t
= to and that the feedback path is broken by freezing the
modulated beam splitter's intensity transmission for t 2 to,
i.e., by forcing

T(t) = (T) - 2P(ne (T) /Phv0 ) 1 2 J AIN,'(r)hf (to-o)d

(132)

to prevail for t > to, where hf(t) is the impulse response
associated with H((f) and (T) is still given by Eq. (102). We
then find that Eq. (100) becomes

AINj'(t) = [,e (T)]"12ASj(t -rp) + [(l-(T))]1 

X -pMj(t - Tp) + [(1 - E)]1/2PBJ(t)+ (1 -)1/2PINj(t) -bl GeP/hvo)
X J APINl'(T)hf(to- T - T)dT (133)

for t 2 to,j = 1, 2. Using the remarks surrounding Eq. (131),
we can show from Eq. (133) that

[PIN'(t), PIN'(t')] = 0 (134)

and

(135)

hold for t, t' 2 to. Thus the effective photon-units field
driving the in-loop photodetector for the t 2 to transient
regime has free-field commutator behavior. To prove lit:t >
to} is a DSPP, we need only show that IPIN'(t):t > to) is in a
classical state.

Using our frequency-domain solution to the steady-state
feedback form [Eq. (100) with delay included], we can show
that

AINj(t) = AEFFj(t) - |i fAEFF1(r)hEFF(tO - T)dT

(136)

for j = 1, 2 and t 2 to, where

APEFF(t) (fle(T))1 2AS(t - r) + [(l-(T))]12

X PM(t - Tp) + [(1-

+ (1 - 0)1/2N(t) (137)

is a vacuum-state field-fluctuation operator with free-field

commutators for all times and hEFF(t) is the impulse re-
sponse associated with the frequency response:

H 2 (ijeP1/hvo)Hf(f) 
HEFF() ~1 + (eP1/hvo)H'(f)

(138)

So, because hEFF(t) is zero for t < tp [cf. Eq. (131)], the
integral term multiplying 6,j on the right-hand side of Eq.
(136) can be replaced with a classical zero-mean real-valued
Gaussian random variable of variance 4-1 SdAHEFF()12. This
demonstrates that AIN'(t) differs from the coherent-state
field operator APEFF(t) on t > to only by a c-number random
variable. Hence IPIN(t):t > tol is in a classical state, and it:t
> to) is a DSPP.

4. NONCLASSICAL FIELD EXTRACTION

In this our concluding section, we address the use of nonclas-
sical light-beam correlations to extract nonclassical open-
loop fields from closed-loop photodetection systems.

A. Dead-Time-Modified Poisson Process/Photon-Twins
Field Extraction
Parametric downconversion and atomic-cascade emission
processes both yield the photon-twin light beams that were
suggested 2 2 23 and recently used25 for producing open-loop
sub-Poisson light by gating procedures akin to the arrange-
ment that we have dubbed the DTMPP.4 9 A basic structure
for such experiments is shown in Fig. 12. The photon-twin
source produces two spatially disjoint quantum fields that
illuminate identical in-loop and out-of-loop photodetectors
through flip-mirror arrangements driven by the in-loop pho-
tocurrent in the manner of Fig. 5. In parametric fluores-
cence, the photon-units fields BREF(X, t) (center frequency
VREF) and BSIG(x, t) (center frequency VSIG) are each in clas-
sical states50 ; yet, because of energy conservation at the
photon-generation level, they have perfect photon-flux cor-
relation, namely,

var{J dx[sIGt(Xt)SIG(X, t) - BREFt(X, t)PREF(x, t)]} = O.
Ad

(139)

EMdJx t)

Fig. 12. Schematic for open-loop sub-Poisson beam generation by
the DTMPP/photon-twins experiment. The fields BMR and BMS
are quantum-mechanically independent vacuum-state photon-
units operators at the reference and signal frequencies, respectively.
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This correlation is exploited by using photodetections from
the reference field to gate both the reference and the signal
fields, resulting in a sub-Poisson out-of-loop photocount
record, as will be shown below.

Let us assume that the detection area Ad comprises a
sufficiently large number of spatial modes of the parametric
fluorescence that the low-photon coherence condition5 ' ap-
plies. We can then linearize the in-loop and out-of-loop
effective photon-flux operators about their mean values and
show, using techniques similar to those in Subsection 3.A,
that

(Nd = (N') = t/( + XTd) (140)

and

var(Nt) = (Nt)/(l + Xd)2, (141)

var(N,') = (Nt')[I + (1 - n)2XTd(l + Xd)]/(1 + XTd)2. (142)

Here, X = PREF/hVREF = PSIG/hvSIG gives the average open-
loop photoemission rate in terms of the average fluorescence
power P divided by the photon energy hv at the reference
and signal frequencies, and the detector quantum efficiency
77 was assumed to be the same at both of these frequencies.
When Xd >> 1 the out-of-loop photocount record will be sub-
Poisson with a variance limited by the imperfect effective
photon-flux correlation caused by the quantum-mechanical-
ly independent < 1 quantum noise introduced at the in-
loop and out-of-loop detectors, viz.,

var(Nt') (Nt')2(1 - ). (143)

Production of strongly sub-Poisson open-loop light by using
the DTMPP/photon-twins route will therefore require near-
unity photodetector quantum efficiencies at both REF and
VSIG.

B. Negative-Linear-Feedback Process/Quantum
Nondemolition Field Extraction
Yamamoto et al.2' suggested that a Kerr-effect QND mea-
surement 2 4 be used to extract a sub-shot-noise open-loop
field from their feedback-modulated semiconductor-laser
NLFP system. They also showed2",44 how the back action of
the QND measurement increases the second-quadrature
(phase) noise on the extracted sub-shot-noise out-of-loop
field, imparting to this field sufficient quantum noise to
make its commutators take on the requisite free-field char-
acteristics. These results can easily be reproduced in our
NLFP construct, wherein the modulation is external to the
laser, as sketched out below. The behavior of the semicon-
ductor laser itself plays no part in our treatment.

Consider the NLFP/QND arrangement shown in Fig. 13.
In this setup, two strong coherent-state fields, the center-
frequency Vs signal field s(x, t), and the center-frequency
vp probe field p(x, t) are the principal inputs. The former
transits a modulated beam splitter, in the manner of the
ordinary (Fig. 10) NLFP experiment, before interacting with
the probe field in the Kerr medium. The cross-phase-mod-
ulation interaction occurring over an Lm path in that medi-
um engenders nonclassical coupling between the photon-
flux density of the center-frequency vs signal field ouT(x, t)
and the phase of the center-frequency vp probe field IN(x,
t) that emerge. As shown by Imoto et al.,24 this quantum

correlation permits the photon-flux behavior of the signal
field to be inferred from a homodyne-detection phase mea-
surement on the probe field. This, in turn, permits the
feedback loop to be closed by using the probe-field phase
measurement instead of the signal-field direct-detection
measurement.2 '
To make the preceding remarks explicit, let the input signal

and probe fields have strong mean values

(Pj(x, t)) = (Pj/hvjAd)"/2 (144)

for j = S, P, where Ad will be regarded not only as a photode-
tector active area but also the cross section over which the
Kerr interaction transpires. We neglect self-phase modula-
tion, loss, and dispersion and assume that the phase shifts
produced by cross-phase modulation are very small com-
pared with a radian. In terms of the spatially integrated
fields we then have

EOUT(t) = 1 + iKL[(Pp/hvp) + 2(Pplhvp)1/2
X ARp,(t - rp)]IP(t - rp)

and

PN(t) = {1 + iL[(P) 2Ad + 2(P)A d/2
X AP,(t - rT)]IpR(t - Tp),

where we have linearized about the strong mean fields.
Here, K is the cross-phase-modulation coupling constant, p
= Lc is the propagation delay, and subscript 1 denotes first
field quadrature. The homodyne measurement on the in-
loop probe field PIN is arranged to sense the second field
quadrature. The operator representation for the resulting
homodyne photocurrent is then5

i = 2qfl(PLo/hvp) 1/
2fKL (Pp/hvp) 1/2[(P) 

2Ad
+ 2(P)Ad"/2ABi(t - rp)] + P2(t -Tp)

+ vac(t), (147)

where PLO is the local-oscillator power and ivac is a zero-mean
white Gaussian noise process of spectrum q 2n(1 - )PLo/hvp
that represents the - < 1 quantum noise incurred in the
homodyne apparatus. The feedback loop is closed by pass-
ing it through an amplifier of gain K = hvp/2KL(PLoPp)"12

EM(xt)

_i,

Fig. 13. Schematic for open-loop sub-shot-noise beam generation
by the NLFP/QND experiment. The fields s and p are quan-
tum-mechanically independent coherent-state photon-units opera-
tors at the signal and probe frequencies, respectively.
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and the causal linear filter q'lh(t). From this point on, it is
straightforward to derive the following field-quadrature and
photocurrent fluctuation spectra and commutators for the
out-of-loop signal field PoUT(t):

SEOUTEOUT()

1 + InP1H/(f)/hvsI2/4(xL)2 (T) 7 (Pp/hvp)(PS/hvs)

411 + (nP/hvS)H(f)I12
(148)

SEOTEOUT2() = 4-1[1 + 4(KL)2 (T) (Pp/hvp)(PS/hvS)],

(149)

Sii,(f = q (i') [4nSEOUTEOUT) + (1 (150)

[POUT(t), PoUT(t')] = 0, (151)

and

[POUT(t), BOUTI(t/)] = 6(t - t'), (152)

where (T = (Po/P)/[l + (Pi/hv)H/(0)] is the mean
beam-splitter transmission.

We see from Eqs. (148) and (150) that when the probe
power is sufficiently large the free-field output POUT will be
first-quadrature squeezed, within the loop bandwidth, and
yield a sub-shot-noise out-of-loop photocurrent spectrum
over this frequency range. We see from Eq. (149) that the
second-quadrature (phase) noise on this output beam has
been raised above the coherent-state level by the photon-
flux (first-quadrature) probe noise introduced through the
Kerr interaction [cf. Eq. (145)]. Moreover, this back action
exactly reclaims the appropriate free-field commutator rela-
tions [Eqs. (151) and (152)] and therefore forces the uncer-
tainty product obtained from Eqs. (148) and (149) to satisfy
formula (119). Indeed, if we adjust the probe power Pp to
minimize this uncertainty product at a selected frequency fo,
we get

min [SEOUT1EOUT1(fo)SEouT2EOU,.(fO)]
pp

(1 + n"/2 PlH/(fo)I/hvs)2 > 1/16 (153)

1611 + nP1H (fo)/hvsI2

C. Quasi-State Synthesis
The overwhelming majority of our analysis of closed-loop
photodetection has dealt with linearized feedback loops.
We close by returning briefly to the general nonlinear con-
struct. Our goal is to show how the preceding closed-loop
field-extraction techniques lead to an in-principle synthesis
procedure for producing an open-loop quantum light beam
of arbitrary prescribed direct-detection (photocount) statis-
tics.

Consider the open-loop photodetection of a quantized
light beam using a detector of unity quantum efficiency. If
the density operator (state) of this beam is totally uncon-
strained by previous information, then the resulting photo-
detection event times will comprise a similarly uncon-
strained SEPP. Now consider the closed-loop photodetec-
tion system in Fig. 3, where once again unity quantum
efficiency is assumed. Suppose that the input light is a

highly intense beam, and the optical modulator is an infi-
nite-bandwidth electro-optic intensity modulator driven by
an arbitrary causal time-varying nonlinear system run from
the photocurrent. Then this photocurrent can also be an
arbitrary SEPP. In other words, using the semiclassical

. closed-loop theory, which is valid when the input light is in a
classical state, we can synthesize any SEPP by choosing the
feedback function to be such that the power falling on the
photodetector satisfies5 2

[Pt(Itt, Ntl)]/hvo = t, (154)

where t is the conditional rate function for the desired
SEPP. By this technique, we can use coherent-state light to
create a closed-loop beam whose direct-detection statistics
match those of any desired (classical or nonclassical state)
open-loop beam. It should be clear from Subsections 4.A
and 4.B and IV.B that quantum-beam correlations of either
the photon-twins or Kerr-effect QND variety will permit
extraction of said closed-loop field, leading to the aforestat-
ed synthesis procedure for open-loop beams of arbitrary
prescribed direct-detection statistics. It should be noted,
however, that open-loop direct-detection statistics do not
uniquely determine the density operator of a quantum
field,5 so we cannot say that the procedure that we laid out
can synthesize arbitrary prescribed field states. Such a syn-
thesis procedure may perhaps be attainable from closed-
loop heterodyne detection, inasmuch as it is known that
open-loop heterodyne detection statistics do determine the
density operator.5
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