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Single-beam squeezed-state generation in semiconductor
waveguides with x s3d nonlinearity at below half-band gap
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We analyze a new scheme for generating squeezed states in a short semiconductor AlxGa12xAs waveguide
with x s3d nonlinearity at below half the band-gap energy. We find that for a Gaussian pulse the amount
of squeezing achievable is limited by the squeezed-state detection phase mismatch caused by the pump self-
phase modulation and is also degraded slightly by the pump–probe phase mismatch that is due to the different
nonlinear refractive indices experienced by the pump and the probe beams. We show theoretically that the
amount of squeezing observed can be increased by use of either a short pulse or a pulse with matched phase
variation as the local oscillator. In a centimeter-long AlxGa12xAs waveguide more than 85% (8.2 dB) of
squeezing potentially can be obtained, limited mainly by two-photon absorption.
1. INTRODUCTION
We analyze in detail the generation of squeezed-state
light in semiconductor waveguides with x s3d nonlinear-
ity at below half the band-gap energy. Because of the
low two-photon absorption below half the band-gap en-
ergy, we find that a substantial amount of squeezing
can be achieved. However, the use of Gaussian pump
pulses can seriously limit the amount of observed squeez-
ing if the input laser beam is used as the local oscil-
lator (LO). Various methods to improve the amount of
observed squeezing with different types of LO beams are
analyzed and discussed.

2. BACKGROUND AND MOTIVATION
It has been shown that squeezed-state light can be used
to circumvent the shot-noise limit and consequently to en-
hance the ultimate sensitivity of an interferometer,1 re-
duce the bit error rate, and increase the channel capacity
of quantum communication systems.2,3 Squeezed-state
light has been generated in both x s2d and x s3d media.4 – 11

Compared with x s3d media, x s2d media usually have sev-
eral advantages, such as their high nonlinearity and gen-
erally fast response time and low losses, which enable
one to generate large amounts of squeezing. However,
in x s2d media the squeezed-state sidebands generated are
centered at a frequency ns that is half the frequency of
the pump light ne. Because the LO beam that one needs
to detect the squeezed-state sidebands through homodyne
detection must have a frequency equal to ns, frequency
doubling is needed for generation of the pump beam so
that part of the original beam at half of the pump fre-
quency can be used as the LO. Moreover, because the
pump beam does not have the same frequency as the
LO beam, it cannot be reused as the LO and is there-
fore wasted after the generation of squeezing. On the
other hand, squeezed-state light generated in x s3d me-
dia has the same frequency as the pump, thus elimi-
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nating the need for additional frequency conversion. In
addition, the pump can be reused as the LO in subse-
quent homodyne detection. Hence one may expect that
if squeezed-state light were successfully generated in x s3d

media, simpler squeezed-states generation schemes could
be constructed.

In spite of the above-mentioned promise of simplicity,
attempts to generate squeezed-state light in x s3d media
have encountered various difficulties. In the following
we review some of the problems discussed in the litera-
ture relative to the use of x s3d media to generate squeez-
ing. We also discuss the various solutions attempted,
which will be related to our interest in investigating the
feasibility of squeezed-state generation in x s3d semicon-
ductor waveguides. For example, in the early attempts
to generate squeezed states in x s3d media it was found
that systems such as atomic vapor, which use interaction
geometries involving beam propagation in free space, are
limited by the differential nonlinear focusing effect be-
tween the pump and the probe beams (the probe beams
are the squeezed vacuum beams).10 This nonlinear fo-
cusing effect is due to the lenslike refractive index in the
medium induced by the Gaussian pump beam intensity
through the nonlinear (intensity-dependent) refractive in-
dex inherent in x s3d media. The differential nonlinear fo-
cusing effect is due to the fact that the strong pump and
weak probe beams see a factor-of-2 difference in the non-
linear refractive indices and hence experience different
focusing in spite of the fact that they have the same fre-
quency and polarization.12 A more familiar context hav-
ing the same origin as the nonlinear focusing effect is
the factor-of-2 difference between (the pump’s) self-phase
modulation and (pump-induced) cross-phase modulation
on the probe.12 – 14 This difference in nonlinear focusing
is detrimental to squeezing because when the pump in-
tensity is high enough to create a large amount of squeez-
ing it is also high enough to create a strong differential
focusing between the pump and probe beams, which seri-
ously reduces the spatial overlap between them, thereby
 1995 Optical Society of America
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leading to weak interaction and hence to weak squeez-
ing. One way to overcome the differential nonlinear fo-
cusing is to confine the pump and the probe beams in
an optical waveguide. The use of a waveguide helps be-
cause the nonlinear change in the spatial profiles of the
waveguide refractive indices (as seen by the pump and
the probe beams) induced by the pump is in general weak
compared with the waveguide core-to-cladding step index
difference and hence will not substantially affect wave-
guiding. This means that in a single-mode waveguide
the pump and the probe beams will remain spatially well
overlapped (highly mutlimode waveguides will degener-
ate to free-space propagation). We should mention that,
although the differential nonlinear focusing problem is
eliminated with the use of a single-mode waveguide, there
is an associated effect that still remains. It is the factor-
of-2 difference between self-phase modulation and cross-
phase modulation mentioned above that causes the pump
and the probe beams to experience different nonlinear
phase shifts. This difference in nonlinear phase shift can
give rise to the (nonlinear) pump–probe phase mismatch
in four-wave mixing interaction that is responsible for the
parametric gain needed to produce squeezing.12,13 As a
result, the presence of nonlinear pump–probe phase mis-
match will lead to a reduction in the effective interaction
strength for a given medium length, resulting in reduced
squeezing. It turns out that the problem of nonlinear
pump–probe phase mismatch is not a fundamental one,
as one can compensate for it by increasing the medium
length (i.e., it does not impose a maximum limit on the
amount of squeezing achievable).12 However, as we dis-
cuss below, in a lossy medium this increase in medium
length can give rise to increased losses, which will reduce
the amount of squeezing.

The early attempts to generate squeezed-state light
with waveguides made use of optical fibers as the non-
linear waveguiding media.5 However, it was later found
that there was a problem associated with the use of
fibers because of the presence of additional noise from
guided acoustic-wave Brillouin scattering (GAWBS),15,16

which is inherent in all solid waveguiding media. This
noise results from the random phase modulation of
the incident light by the thermally excited vibrational
eigenmodes that modulate the refractive index of the
waveguide. The optical noise power generated by
GAWBS is proportional to the length of the waveguide.15

Because a long fiber length is needed to generate substan-
tial amounts of squeezing, the effect of GAWBS noise can
be serious enough to mask the observation of quantum
noise reduction or squeezing. In fact, the early squeezed-
state generation experiments in fiber were seriously lim-
ited by GAWBS noise.5 It turns out that GAWBS noise
can be reduced by various methods such as cooling down
the fiber. Recently it was shown that GAWBS noise
could also be reduced by the use of short pulses instead
of a continuous-wave (cw) beam to generate the squeezed
state.17 Short pulses help to reduce GAWBS noise be-
cause the excess phase noise resulting from the slow
thermal refractive-index fluctuations scales linearly with
the average power of the pulse train, whereas nonlinear
effects such as squeezing scale with the peak power of the
pulse.17 – 19 Thus less GAWBS noise will be generated by
use of a pulse train with low average power. Moreover,
the use of high-intensity pulses allows one to use a shorter
length of waveguide, resulting in reduced GAWBS noise
power. Recently it was also pointed out that the use
of pump pulses with a gigahertz repetition rate can de-
crease GAWBS noise by reducing the folding over of the
high-frequency GAWBS noise that occurs when a mega-
hertz pulse train is used (the GAWBS noise spectrum
generally extends to the gigahertz frequency range).20

It was also found recently that some fibers actually gen-
erate much less GAWBS noise at certain frequencies21,22

and that GAWBS noise can be partially canceled out at
the homodyne detection by use of a dual-pulse-excitation
scheme in a fiber.23,24 The dual-pulse-excitation scheme
reduces the GAWBS noise detected by generation of pairs
of squeezed vacuum pulses and LO pulses that possess
the same phase modulation induced by the GAWBS noise.

Although the use of high-intensity pulses can assist in
the reduction of GAWBS noise and also compensate for
the generally low nonlinearity of x s3d media, it is not with-
out penalty. It turns out that using nonsquare pump
pulses such as the Gaussian pulses can seriously affect
the amount of squeezing observable. This is basically be-
cause the phase quadrature angle at which the maximum
squeezing is generated is a function of the pump intensity.
The phase quadrature angle is usually specified relative
to the pump phase before the medium (because the input
pump phase is the only phase reference in the system).
For a cw pump beam with intensity Ip, let us call the
phase quadrature angle at which maximum squeezing is
generated (at the medium’s output) FM sIpd, where FM sIpd
takes values between 0 and p (the squeezed quadrature
angle is unique only up to a phase of p) and FM ­ 0 corre-
sponds to the case when the phase quadrature is in phase
with the input pump. To detect the maximum amount
of squeezing for the cw pump one has to tune the phase
of the LO, which is also a cw beam, to FM sIpd. If the
pump beam does not experience self-phase modulation,
then the value of FM sIpd is dependent only on the nature
of the intensity-dependent four-wave mixing interaction.
In the case when the pump experiences an additional
nonlinear phase shift that is due to self-phase modula-
tion, there will be a corresponding additional phase shift
to FM sIpd (simply because the squeezed quadrature is
relative to the pump phase), which will be referred to as
F

SPM
M sIpd. So in general we can write FM sIpd as a sum

of two parts: FM sIpd ­ F
SPM
M sIpd 1 F

FWM
M sIpd, in which

F
FWM
M sIpd is the part that is due solely to four-wave mixing

interaction.25 For x s2d media F
SPM
M sIpd is generally ab-

sent. For x s3d media the presence of F
SPM
M makes FM sIpd

more intensity dependent, which can seriously affect the
detection of pulsed squeezing.

The problem of FM sIpd on pulsed squeezing is as fol-
lows: Because FM sIpd is intensity dependent, the value
of FM sIpd will vary across the pump pulse according
to the pump pulse intensity variation when a non-
square pump pulse is used. Correspondingly, for the
maximum squeezing for the whole squeezed pulse to be
detectable the LO pulse is required to have a phase vari-
ation matching the values of FM sIpd across the squeezed
pulse. An ordinary unchirped, transform-limited LO
pulse with a uniform phase under its pulse profile cannot
meet this phase-matching requirement, and consequently
phase mismatch is introduced. We refer to this as the
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squeezed-state detection (SSD) phase mismatch. Owing
to SSD phase mismatch, less squeezing or even noise
will be detected when a transform-limited LO pulse is
used, and the observed squeezing for the whole pulse
is thus reduced. In the case of fiber squeezing with a
Gaussian pulse it was found that the amount of squeezing
observed23 was increased when the output pump pulse
was used as the LO. When the output pump pulse is
used as the LO the LO pulse will have a nonlinear phase
chirp under its pulse envelope as a result of the pump’s
self-phase modulation, which exactly cancels the part of
SSD phase mismatch that is due to the F

SPM
M sIpd part

of FM sIpd. The SSD phase mismatch that is due to the
F

FWM
M sIpd part of FM sIpd, however, is not canceled and will

still impose some limit on the observed squeezing. The
problem of SSD phase mismatch caused by F

FWM
M and its

solution are discussed below. Before we leave this sec-
tion, it should be pointed out that the use of lowest-order
optical solitons as the pump pulses can also avoid the
SSD phase-mismatch component that is due to F

SPM
M be-

cause the lowest-order optical solitons do not suffer from
the pulse chirping problem.26

To obtain large amounts of squeezing by using a x s3d

nonlinearity it is necessary to address the problems dis-
cussed above judiciously. The proper choice of the x s3d

material and structure and the careful design of the
experimental scheme, including a proper choice of LO
pulses, need to be considered carefully.

The maximum amount of squeezing achieved in atomic
vapor, which was the first medium used to generate
squeezing,4 is approximately 25%, or 1.2 dB,10 and this
value is limited by the nonlinear differential focusing.
Rosenbluh and Shelby pioneered squeezing in optical
fibers by the use of optical solitons.26 However, the maxi-
mum amount of squeezing in their experiments has been
limited to 32% (1.7 dB) because of serious GAWBS noise
and SSD phase mismatch owing to F

FWM
M sIpd. Recently a

great improvement in the amount of squeezing observed
in optical fibers was achieved by Bergman et al.20 – 23 By
injecting pulses into a nonlinear Mach–Zehnder fiber in-
terferometer, they achieved squeezing as high as 5.1 dB.
To circumvent GAWBS noise they used a special fiber
yielding very low GAWBS noise,21,22 or pump pulses with
a gigahertz repetition rate that is out of the bandwidth
of the GAWBS,20 or a dual-pulse-excited fiber ring to
cancel out GAWBS noise.23 The SSD phase-mismatch
component that is due to F

SPM
M is canceled out in their

experiments because the output pump pulse from the fiber
interferometer is reused as the LO pulse in homodyne de-
tection. However, the SSD phase mismatch that is due
to F

FWM
M sIpd still remains. Our numerical results in this

paper show that this residual SSD phase mismatch can
reduce squeezing by more than 10%.

In this paper we propose a new scheme of generating
squeezed-state light by using an AlxGa12xAs waveguide
with x s3d nonlinearity27 and present the results of our
theoretical study on the amount of squeezing achiev-
able in such a waveguide. The unique feature of the
AlxGa12xAs semiconductor waveguide, compared with a
fiber, is that a substantial amount of squeezing can be
achieved in centimeter-long AlxGa12xAs semiconductor
waveguides with negligible GAWBS noise. This makes
it possible to build a compact and simple scheme with
an AlxGa12xAs semiconductor waveguide to generate
squeezing. It turns out that with the same pump power
the waveguide length needed to generate large amounts
of squeezing in an AlxGa12xAs semiconductor wave-
guide is approximately 104 times less than that in a
silica fiber. The reason is twofold. First, the nonlinear
four-wave mixing gain coefficient of AlxGa12xAs is 100
times that of typical optical fibers. Second, the mode
cross-sectional area of a single-mode AlxGa12xAs rib
waveguide is approximately 100 times smaller than that
of a single-mode fiber. The much smaller cross-sectional
area is a result of the higher material refractive index
and stronger optical confinement found in AlxGa12xAs
semiconductor waveguides than in optical fibers. Be-
cause of the short length of the semiconductor wave-
guide, GAWBS noise will be negligible.15,28 This elimi-
nates the additional apparatus and techniques needed to
combat GAWBS noise and further simplifies the experi-
mental setup for generating squeezing in semiconductor
waveguides.

To combat the SSD phase mismatch, besides the reused
pump scheme we analyze two other schemes in this paper.
We show that, besides the LO pulse from the reused pump
pulse, there are two kinds of LO pulse that can be used
to minimize further the SSD phase mismatch. One is a
short LO pulse whose width is narrower than that of the
pump pulse or the squeezed vacuum pulse; the other is a
nearly matched LO pulse whose nonlinear phase variation
is optimized in another similar semiconductor waveguide
to cancel out SSD phase mismatch. We show that both
of the schemes can yield a higher degree of squeezing than
the reused pump scheme (the narrow LO scheme requires
the LO pulse width to be approximately one eighth (or
less than one eighth) that of the pump pulse to yield a
substantial advantage).

Losses are also considered in this paper, which are po-
tentially problems for the generation of large amounts of
squeezing in semiconductor waveguides. Typically, the
linear loss for a high-quality AlxGa12xAs semiconductor
rib waveguide is a few decibels per centimeter. This is
much larger than the typical linear loss of an optical fiber,
which can be as low as 0.2 dBykm. However, the length
of the semiconductor waveguide required for generation
of a large amount of squeezing is usually no more than a
few centimeters. As a result, the linear loss of the whole
waveguide is still small and is not a serious problem. Be-
sides linear loss, another important loss comes from non-
linear absorption, including two-photon absorption and
three-photon absorption. Two-photon absorption is pro-
portional to the pump intensity, and three-photon absorp-
tion is proportional to the square of the pump intensity.
As a result, the absorption can be large enough to destroy
squeezing when the pump intensity is too high. For a
x s3d medium to be useful for squeezed-state generation,
its nonlinear loss must be small at the pump intensity
that is needed to generate a substantial amount of squeez-
ing. Because of the relation between the four-wave mix-
ing gain coefficient and the nonlinear refractive index29 it
turns out that when the pump intensity is high enough
to generate a substantial amount of squeezing it is also
high enough to cause the pump to experience a nonlin-
ear phase shift of the order of p. The nonlinear phase
shift is given by dFNL ­ 2pns2dIplyl, where ns2d is the non-
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linear refractive index, Ip is the pump intensity, and l is
the medium length. The medium absorption is given by
asIpdl, where asIpdl is the intensity-dependent loss. For
a given pump intensity Ip the medium length needed to
yield p phase shift is given by l ­ lyf2ns2dIpg, at which the
loss will be asIpdl ­ asIpdlyf2ns2dIpg. For the medium to
be useful for squeezing, we want this loss to be smaller
than unity. Let us define a figure of merit F ; 1yG,
where G ; lasIpdyf2ns2dIpg (G will be called the inverse
figure of merit). For the loss to be smaller than unity
we must have G , 1, which is the condition needed for
the medium to be useful for squeezing. asIpd can be ex-
panded as asIpd ­ as1d 1 as2dIp 1 as3dIp

2 1 . . . , where as1d,
as2d, and as3d are the linear, two-photon, and three-photon
absorption coefficients, respectively. We can write G ­
G1 1 G2 1 G3 1 . . . , where Gn ; lasndI sn21d

p yf2ns2dIpg is
the nth-photon inverse figure of merit, which is the in-
verse figure of merit when nth photon absorption is dom-
inating. Whereas all the Gn with n fi 2 are dependent
on the pump intensity Ip, G2 is independent of Ip and is
dependent solely on the material property given by the ra-
tio between the two-photon absorption coefficient as2d and
the nonlinear refractive index ns2d. Clearly the value of
F is fundamentally lower bounded by 1yG2 and hence by
the material two-photon absorption. Three-photon ab-
sorption alone is not a fundamental limitation to F, as one
can reduce the value of F3 by reducing the pump inten-
sity Ip hwhich means an increase in the required medium
length l, as l is related to Ip by l ­ lyf2ns2dIpgj. How-
ever, when the linear absorption is high, G1 1 G3 is a
fundamental limitation to F, as G1 is inversely propor-
tional to Ip and G3 is proportional to Ip, and hence there
is a lower bounded value for G1 1 G3. Semiconductors
are known to have large x s3d at just below the band-gap
energy. However, in that region the two-photon absorp-
tion coefficient is high, giving a low figure of merit F.
Recently it was shown that, if one operates at the fre-
quency region below half the band-gap energy, two-photon
absorption will be drastically reduced while x s3d is only
slightly reduced, giving a large figure of merit. For ex-
ample, a AlxGa12xAs semiconductor waveguide operating
at just below half the band-gap energy (with pump wave-
length at 1.55 mm) has ns2d ­ s3.6 6 0.5d 3 10214 cm2yW ,
as2d ­ 0.26 3 1024 cmyMW , and as3d ­ 0.004 cm3yGW 2.27

With a 1-cm-long waveguide it turns out that as2d is the
main contribution to F, giving F . 5. Because of this
high figure of merit our numerical results in this paper
show that for the case of an AlxGa12xAs waveguide op-
erating below half the band-gap energy a large amount
of squeezing can be achieved. The maximum amount of
squeezing achievable is 10% lower than for the ideal loss-
less case and is limited mainly by the two-photon absorp-
tion. For three-photon absorption it can be large for the
case of short waveguides, for which one may need high
pump intensity to achieve a p phase shift. However, in
the case of an AlxGa12xAs waveguide we found that the
three-photon absorption coefficient is low enough that its
effect is negligible for the intensity required for a nonlin-
ear p phase shift in a centimeter-long waveguide.

The contents of this paper are as follows. In Section 3
we review the theory of generating a squeezed state in
a guided x s3d medium through nearly degenerate four-
wave mixing (NDFWM) processes. We show the origin
and the effects of pump–probe phase mismatch and SSD
phase mismatch. In Section 4, through numerical calcu-
lations, we further analyze the effects of these two kinds
of phase mismatch and nonlinear absorption. We show
that the effect of pump–probe phase mismatch is very
small, whereas SSD phase mismatch is the most impor-
tant effect. We discuss various schemes to combat SSD
phase mismatch in detail. In Section 5 we present our
conclusions.

3. THEORETICAL BACKGROUND:
SQUEEZED-STATE GENERATION IN A
GUIDED x s3d MEDIUM THROUGH NEARLY
DEGENERATE FOUR-WAVE MIXING
The scheme for the generation of squeezed light in a wave-
guide is shown in Fig. 1. A single strong pump beam Ep

with two vacuum sidebands, to which we refer as probe
signal beam âs and probe conjugate beam âs0 , respec-
tively, is sent into the waveguide. The frequencies of
âs and âs0 , given by vs and vs0 , satisfy 2vp ­ vs 1 vs0

and are nearly degenerate with vp. Here we consider
the four-wave mixing process in the nearly degenerate re-
gion where the frequency detuning of vs from vp (or of vs0

from vp) is smaller than the inverse of the medium’s non-
linear response time tM (i.e., jvp 2 vsj ,, 1ytM ).30 For
an AlxGa12xAs waveguide tM can be considered instan-
taneous, as it is of the order of 200 fs or faster. Through
the NDFWM process the two probe beams are trans-
formed into squeezed vacuum at the output end of the
waveguide, similar to the case of single-beam squeezed-
state generation in atomic vapor.4,10,12 For plane waves
the NDFWM process can be described by the following
equations12,13:

≠Ep

≠z
­ ikpIpEp , (1)

≠âs

≠z
­ 2gâs 1 iksIpâs 1 iXsIp expsi2kpIpzdây

s0 1 Ĝsszd ,

(2)

≠ây

s0

≠z
­ 2gây

s0 2 iksIpây

s0 2 iXp
s Ip exps2i2kpIpzdâs

1 Ĝy

s0 szd . (3)

We should note here that the dispersion terms were
neglected in the above equations. The reason for this
neglect is that dispersion effects are negligible for the
material used in our specific investigation. We have
found experimentally that dispersion effects are negli-
gible for pulses propagating in a 1-cm-long AlGaAs wave-
guide at half the band-gap energy, provided that the pulse
length is longer than 100 fs. In the calculations pre-
sented in this paper the pulses are 500 fs wide, which
is in the region where dispersion effects are negligible.
Therefore in this paper we neglect the dispersion effects.

Here we treat the pump as a classical field, neglect-
ing its loss. The probe beams âs and âs0 are quantized.
In the above equations Ip ­ Ep

p Ep is the pump intensity,
g ­ 2fas2d 1 as3dIpgIp is the nonlinear absorption coeffi-
cient including both two- and three-photon absorption,
and Xs is the nonlinear coupling coefficient. In the nearly
degenerate frequency limit Xs has a simple relation to ks
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Fig. 1. Scheme to generate squeezing in an AlxGa12xAs wave-
guide. Ep is a strong classical pump, and âs and âs0 are its
vacuum sidebands (quantized probes).

and g and is given by Xs ­ s1y2d fks 1 isgyIpdg.12 The
nonlinear coefficients for the pump and the two probe
beams are kp and ks, respectively, and are proportional
to the nonlinear refractive index ns2d experienced by the
pump. For the case in which the polarizations of the
pump and the probe fields are the same, they are related
by ks ­ 2kp ­ s4pyldns2d. As discussed above, the factor
of 2 between ks and kp will give nonlinear pump–probe
phase mismatch, which reduces the parametric gain of
the probe beams. Because we are in the NDFWM re-
gion we can assume that the two probe beams have the
same g, ks, and Xs. The Langevin noise terms that are
due to losses are denoted Ĝsszd and Ĝy

s0 , with fĜaszd,
Ĝy

bsz0dg ­ 2gdabdsz 2 z0d and a, b ­ s, s0.
In our calculations we take the effect of the waveguide

into account by introducing mode overlapping integrals
into the nonlinear terms of the above equations. Let
upsx, yd, ussx, yd, and us0 sx, yd be the transverse spatial
mode profiles of the pump and the two probe beams,
respectively. The equation for âsszd in the waveguide can
be written as follows:

≠âs

≠z
­ 22fas2dIpF s2d

s 1 as3dIp
2F s3d

s g

3 âs 1 iksIpF s2d
s âs 1 iXsIpF s2d

s

3 expsi2kpF s2d
p Ipzdâ1

s0 1 Ĝsszd , (4)

where

F s2d
s ­

ZZ
ussx, ydup

2sx, ydus0 sx, yddxdyZZ
us

2sx, yddxdy

. (5)

In a similar way, modified equations for Ep and âs0 can be
obtained by the use of similar mode overlapping integrals
F s2d

p and F s2d
s0 , respectively. In our case we assume only

the lowest-order guided modes, and we can make the fol-
lowing approximations: upsx, yd ­ ussx, yd ­ us0 sx, yd ­

cosskxxdcossky yd and F s2d
p ­ F s2d

s ­ F s2d
s0 ­ 0.5625, where

kx ­ pydx, ky ­ pydy , and dx and dy are the transverse di-
mensions of the waveguide. In Eq. (4) we have included
both the two-photon absorption term as2d and the three-
photon absorption term as3d. We can obtain the corre-
sponding overlapping integral F s3d

s for the as3d term by re-
placing the integrand up

2sx, yd in Eq. (5) with up
4sx, yd.
To see the origin of the nonlinear pump–probe phase
mismatch clearly, we perform a slowly varying ampli-
tude approximation âs ­ ãs expfiksF s2d

s Ipzg, ây

s0 ­ ãy

s0

expf2iksF s2d
s Ipzg to transform away the fast varying

imaginary part [term iksF s2d
s Ip in Eq. (4)]:

≠ãs

≠z
­ 2gãs 1 iXsIp expfi2skp 2 ksdIpzg

3 ãy

s0 1 Ĝsszdexps2iksIpzd , (6)

≠ãy

s0

≠z
­ 2gãy

s0 2 iXp
s Ip expf2i2skp 2 ksdIpzg

3 ãs 1 Ĝy

s0 szdexpsiksIpzd , (7)

where g, Xs, kp, and ks are taken to be their new values
with the overlapping integrals included. The phase mis-
match between the pump and the probe beams is denoted
Dk ­ 2skx 2 kpdIp. It originates from the different non-
linearities experienced by the pump and the probe beams.

To solve the coupled-mode equations (6) and (7) we
define b̂s and b̂s0 through ãs ­ b̂s exps2iDkzy2d, ãy

s0 ­
b̂y

s0 expsiDkzy2d, in terms of which we obtain the following
equations with constant coefficients:

≠b̂s

≠z
­ s2g 1 iDky2db̂s 1 iXsIpb̂y

s0 1 Ĝs exps2ikpIpzd ,

(8)

≠b̂y

s0

≠z
­ s2g 2 iDky2db̂y

s0 2 iXp
s Ipb̂s 1 Ĝy

s0 expsikpIpzd .

(9)

Equations (8) and (9) can be readily solved by stan-
dard linear algebra, giving us the solutions for b̂sszd and
b̂y

s0 szd.12,13 After that, we transform b̂s and b̂y

s0 back to âs

and ây

s0 , resulting in

âssld ­ exps2gldexpsikpIpldf msldâss0d 1 nsldây

s0s0dg

1 Ĝ1sldexpsikpIpld , (10)

ây

s0 sld ­ exps2gldexps2ikpIpldf mpsldây

s0 s0d 1 npsldâss0dg

1 Ĝ
y
2 sldexpsikpIpld , (11)

where we have set z ­ l as the waveguide length and

msld ­ coshsVld 1 siDky2VdsinhsVld , (12)

nsld ­ siXsIpyVdsinhsVld , (13)

V ­ sjXsIpj2 2 Dk2y4d1/2 , (14)

Ĝ1sld ­
Z l

0
dz0 expf2gsl 2 z0dg fexps2ikpIpz0d

3 msl 2 z0dĜssz0d 1 expsikpIpz0d

3 nsl 2 z0dĜy

s0 sz0dg , (15)

Ĝ
y
2 sld ­

Z l

0
dz0 expf2gsl 2 z0dg fexpsikpIpz0d

3 mpsl 2 z0dĜy

s0 sz0d 1 exps2ikpIpz0d

3 npsl 2 z0dĜsz0dg . (16)

In Eqs. (10) and (11) the canonical transformation
described by the square-bracketed terms is called a
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Bogoliubov transformation. Note here that, with non-
linear absorption and nonlinear pump–probe phase
mismatch, both of the coefficients of the Bogoliubov
transformation, msld and nsld, are complex. Equation
(14) shows that the parametric gain V is reduced by the
nonlinear pump–probe phase mismatch Dk.

To calculate the amount of squeezing at a particu-
lar phase quadrature of the probes, we define the phase
quadrature operator for the probes as follows:

X̂swd ­ fsâs 1 âs0 dexps2iwd 1 sây
s 1 ây

s0 dexpsiwdgys2
p

2d ,

(17)

where w is the relative phase between the LO beam
and the input pump beam, which will be simply referred
to as the LO phase. The detector photocurrent output
of a homodyne detection system gives the fluctuation of
the probe quadrature that can be calculated by using
Eqs. (10) and (11):

kfDX̂swdg2l ­ 1/4 1 1/2 fc 1
p

a2 1 b2

3 sins2w 2 2kpIpl 1 Fabdg , (18)

where

a ­ exps22gldRes mnd 1 ReskĜ1Ĝ2ld , (19)

b ­ exps22gldIms mnd 1 ImskĜ1Ĝ2ld , (20)

c ­ exps22gldjnj2 1 kĜ1
1 Ĝ1l , (21)

Fab ­ arctansaybd . (22)

The expressions for Res mnd, Ims mnd, ResG1G2d, ImsG1G2d,
jnj2, and kGy

1 G1l are given in Appendix A.
The amount of squeezing as a percent is defined as

S ­ f1 2 4ksDXswdg2ld 3 100% . (23)

Squeezing is achieved whenever kfDX̂swdg2l , 1y4 or S .

0. From Eq. (18) we see that the amount of squeezing
achievable is affected by two factors: (1) the phase of
the sinf2w 2 2kpIpl 1 FabsIpdg term and (2) the ampli-
tude, given by

p
a2 1 b2. Note that the 22kpIpl phase

term comes from the nonlinear phase shift of the pump
kpIpl after waveguide length l, whereas the FabsIpd term
originates from the four-wave mixing process. They are
the F

SPM
M and F

FWM
M terms mentioned in Section 1 [i.e.,

F
SPM
M sIpd ­ kpIpl and F

FWM
M sIpd ­ FabsIpd]. The probe

nonlinear phase affects only the pump–probe phase mis-
match Dk, which is embedded in variables a, b, c, and
Fab. For a given amplitude, maximum squeezing occurs
when sins2w 2 2kpIpI 1 Fabd ­ 21, leading to the phase-
matching condition

2w 2 2kpIpl 1 Fab ­ 2np 2 py2 . (24)

Equation (24) describes the SSD phase-matching con-
dition. We see that detecting maximum squeezing re-
quires an appropriate LO phase w. The simplest case is
described by a square pump pulse, where both 22kpIpl
and FabsIpd are constant for the entire pulse so that a
single phase value w can meet the SSD phase-matching
condition across the whole pulse. Physically, this means
that the LO pulse that satisfies the SSD phase-matching
condition across the entire pulse will be one that has an
unchirped uniform sine wave under the LO pulse enve-
lope. Such a LO pulse will be referred to as a uniform-
phase LO. Hence, for a square pump pulse or a cw pump,
the SSD phase-matching condition can be easily satisfied
experimentally by use of a uniform-phase LO obtained
by splitting out the input pump beam and by applying a
linear phase shift on the LO. In contrast, a Gaussian
pump pulse has a position-dependent intensity profile Ip

under the pulse’s spatial–temporal envelope, resulting in
position-dependent values for 22kpIpl and FabsIpd. In
this case, if a uniform-phase LO pulse is used the SSD
phase can be matched at certain points, say, at the peak
point of the pulse, whereas at all the other points the
SSD phase is mismatched. As a result the LO will pick
up the squeezed quadrature at its pulse center and some
degree of the antisqueezed quadrature (i.e., noise) off the
LO pulse center. This additional noise will reduce the
amount of squeezing substantially.

The effect of pump–probe phase mismatch Dk on
squeezing is embedded in variables a, b, and c in Eq. (18).
From Eqs. (19)–(22) and (A1)–(A6) below one can see that
these variables are complicated functions of Dk, and thus
the effect of Dk is not obvious from the equations. It is
studied numerically in Subsection 4.A.1.

4. DISCUSSION AND
NUMERICAL RESULTS
From the above discussion we know that there are three
factors that potentially limit the amount of squeezing
achievable: pump–probe phase mismatch, SSD phase
mismatch, and nonlinear absorption. The effects of
pump–probe phase mismatch and nonlinear absorption
exist for any type of pump pulse, including cw pump. The
effect of SSD phase mismatch is present for either Gauss-
ian pulses or any other pulses without uniform intensity
profiles when a uniform-phase LO pulse is used. In this
section we discuss these three effects through numerical
analysis. In the analysis we use the parameters mea-
sured in Ref. 27. These are, for the AlxGa12xAs wave-
guide at wavelength l ­ 1.55 mm, two-photon absorption
coefficient as2d ­ 0.26 3 1024 cmyMW , three-photon ab-
sorption coefficient as3d ­ 0.004 cm3yGW 2, and nonlinear
refractive index ns2d ­ s3.6 6 0.5d 3 10214 cm2yW . When
the pump and the probe beams have the same polar-
ization, ks ­ s4pyldns2d and g ­ 2fas2d 1 as3dIpgIp. To
simplify the discussion we first present the case in which
the nonlinear absorption is neglected and then discuss
the effect of nonlinear absorption. For the purpose of
discussion we choose a typical pump pulse peak intensity
of 4.5 GWycm2, which can be achieved in a laboratory.

A. Case 1: Without Nonlinear Absorption

1. Pump–Probe Phase Mismatch
To see the effect of pump–probe phase mismatch only, we
choose a square pulse as the pump pulse because it does
not have SSD phase mismatch. In this case we calcu-
late the amount of squeezing by using Eqs. (18) and (23)
and take the LO pulse to be a uniform-phase square pulse
with the same pulse width as that of the pump.31 To find
the quadrature that gives maximum amount of squeezing,



Ho et al. Vol. 12, No. 9 /September 1995 /J. Opt. Soc. Am. B 1543
Fig. 2. Effect of nonlinear pump–probe phase mismatch Dk

on the amount of squeezing as function of waveguide length for
a square pump pulse with 4.5-GWycm2 pulse peak intensity,
uniform-phase LO pulse, and no nonlinear absorption: (a)
Dk fi 0 calculated with Dk ­ 2sks 2 kpdIp and the parameters
given in the text; (b) Dk ­ 0.

that is, the value of w in Eq. (23) that maximizes S, we
vary w numerically until we obtain the maximum value
for S. Figure 2 shows the results of our numerical cal-
culations using a square pump pulse with a pulse peak
intensity of 4.5 GWycm2. For curve (a) the pump–probe
phase mismatch was taken into account fDk fi 0, with
Dk ­ 2sks 2 kpdIp and its value calculated with the pa-
rameters given in the text]; for curve (b) we removed it by
setting Dk ­ 0. Comparing these two curves, one can see
that in the short-waveguide region the amount of squeez-
ing is reduced by less than 5% by pump–probe phase
mismatch, whereas for long-waveguide length the maxi-
mum amount of squeezing approaches 100% in both cases
with no apparent difference between them. Hence the
pump–probe phase mismatch reduces the effective inter-
action strength but does not limit the amount of squeez-
ing achievable. We now discuss the amount of squeezing
achievable with a Gaussian pump pulse, which describes
more closely the pulses obtained experimentally in the
laboratory.

2. Squeezed-State Detection Phase Mismatch
As discussed above, a Gaussian pump pulse with a
uniform-phase LO pulse will result in SSD phase mis-
match. The intensity profile of the Gaussian pump pulse
is described by

Ipszcd ­ Ips0dexps2zc
2d , (25)

where Ips0d is the pulse peak intensity and we have
normalized the Gaussian pulse width to be 1, with zc the
normalized distance to the pulse center. In all the nu-
merical calculations for Gaussian pulses in this paper,
Ips0d is taken to be 4.5 GWycm2. To take into account
the effect of SSD phase mismatch, we carried out our nu-
merical analysis by dividing the Gaussian pulse into many
slices parameterized by zc. Each slice is approximated
by a square pulse. The contribution to photocurrent
fluctuations from each slice is calculated as described
above with Eqs. (18) and (23). Let the contribution from
the slice at zc be Sszcd; then the net squeezing for the
whole pulse Stot is given as follows:

Stot ­

P
j Sszcj dILOszcj dP

j ILOszcj d
, (26)

where
P

j denotes the sum over each slice. Note that,
as the pulse propagates down the waveguide, each slice
sees a different pump phase because of the pump’s self-
phase modulation. The pump’s self-phase modulation is
given by kpIpszcdl, which is dependent on the location zc

of the slice inside the pulse. For the case when the LO
phase w is uniform (i.e., w ­ constant), different slices
of the Gaussian pulse will experience different amounts
of SSD phase mismatch, resulting in a deterioration in
the amount of squeezing detected. We first consider the
case in which the LO pulse is also chosen to be a Gauss-
ian pulse with the same width as the pump but with
uniform phase w. We obtained the maximum amount of
squeezing achievable as a function of waveguide length by
varying the LO phase as before. Figure 3 shows that in
this case the maximum amount of squeezing achievable
is ,50%, as illustrated by curve (a), and, as the wave-
guide length increases, the effect of SSD phase mismatch
is so strong that the amount of squeezing goes to zero.
As discussed above, this drastic decrease in squeezing
is attributed to noise that comes from the antisqueezed
quadrature because of SSD phase mismatch.

By choosing either a narrow or a matched LO pulse we
expect to improve the amount of squeezing achievable.
We now repeat our calculations, using a narrow LO pulse
with a width narrower than that of a squeezed vacuum
pulse, and overlap the center of the LO pulse with that of
the squeezed vacuum pulse. In this case the SSD phase-
matching condition can be satisfied in the neighborhood
of the pulse center. Squeezing will be detected in this
region, and noise will be ignored at all other places.
Physically this means that the narrow LO pulse sees
the overlapping region as approximately a square pulse.
Curves (b), (c), and (d) of Fig. 3 show the results for a

Fig. 3. Effect of SSD phase mismatch on squeezing for a Gauss-
ian pump pulse with uniform phase under its pulse profile
and without nonlinear absorption: (a) the LO pulse has the
same width as the Gaussian pump pulse; (b), (c), (d) narrow
uniform-phase LO pulses, where the LO pulse width is taken
to be one half, one fourth, and one eighth, respectively, of that of
the pump pulse. (e) The square pump pulse case for comparison.
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uniform-phase Gaussian LO pulse with pulse widths one
half, one fourth, and one eighth, respectively, of that of the
Gaussian pump pulse. In the case illustrated by curve
(d) we see that for short-waveguide length the maximum
amount of squeezing is close to 95%, approaching the ideal
square pump pulse case, which is illustrated in curve (a)
of Fig. 2 and reproduced in curve (e) of Fig. 3. For long-
propagation-medium length the amount of squeezing de-
creases, departing from the asymptote observed for the
square pulse case, possibly because the LO pulse begins
to pick up the antisqueezed components as the pump un-
dergoes further self-phase modulation.

Another way to overcome SSD phase mismatch is to
choose a matched LO pulse25,32 that provides matched
nonlinear phase variation such that the SSD phase-
matching condition described by Eq. (24) is satisfied for
the entire pulse. From the above discussion one can see
that the phase variation that needs to be matched is the
sum of 22kpIpl and Fab. By studying the characteris-
tics of these two nonlinear phase variations we can find
the requirement for a matched LO pulse.

As was pointed out above, the term 22kpIpl originates
from the nonlinear phase shift of the pump, so it has
Gaussian variation across the whole pulse. The FabsIpd
term, on the other hand, given by FabsIpd ­ arctansaybd ­
arctanfRes mndyIms mndg ­ 2Args mnd, originates from
pump intensity dependence of the four-wave mixing
process but has an indirect dependence on the pump in-
tensity Ip through the parameters a and b. (Remember
that losses and Langevin noises are not considered here.)
Figure 4 shows the variation of FabsIpd across the whole
Gaussian pump pulse as a function of waveguide length.
We see that for short-waveguide length the variation of
FabsIpd across the whole pulse is similar to that of the
Gaussian pump pulse intensity profile. However, as the
waveguide length increases, FabsIpd becomes saturated
around the peak intensity. Figure 5 shows the relative
values of FabsIpd [curve (a)], 22kpIpl [curve (b)], and their
sum [curve (c)] at the pump pulse center as a function of
the waveguide length l. From the curves we can see that
the magnitude of the term 22kpIpl is several times larger
than that of the FabsIpd term at the same pump intensity
Ip, and hence the effect of the former is dominant [e.g.,
at l . 0.4 cm, 2kpIpl . 3FabsIpdg. From Figs. 4 and 5
one can see that it is not trivial to produce a LO pulse
whose phase variation exactly matches both 22kpIpl and
FabsIpd or their sum because of the non-Gaussian varia-
tion of Fab. However, it is possible to obtain two kinds
of LO pulse that can give fairly good results:

(i) Output pump pulse from the same waveguide
(reused pump pulse): In this case the nonlinear phase
variation of this LO pulse matches exactly the phase
variation that is due to the 22kpIpl term and can there-
fore reduce the effect of SSD phase mismatch consid-
erably. Specifically, the phase of the LO pulse in this
case is also dependent on pulse position zc and can be
written as

wszcd ­ wc 1 kpIpszcdl , (27)

where wc is the constant part and kpIpszcdl is provided by
the waveguide. Substitute Eq. (27) into Eq. (24); it can
be seen that the nonlinear phase shift of the pump is can-
celed out. In the numerical calculation we vary the value
of wc to minimize Stot given by Eq. (26). (This physically
simulates the translation of the piezoelectric mirror used
to shift the LO phase.) The results are shown in curve
(a) of Fig. 6, for which we assume that the LO pulse has
the same pulse width as that of the pump pulse. It is
shown that ,86% squeezing can be achieved in this case.
This maximum amount of squeezing is still lower than
what was obtained for the square pump pulse case, and
it reflects the fact that corrections to the SSD phase mis-
match were not complete.

(ii) Output pump pulse from a second waveguide: In
this case we use a waveguide with the same characteris-
tics as the one used for the generation of squeezing, except
that it has a different length. We find that besides the
kpIpl term this new waveguide can provide an additional
nonlinear phase shift for the LO pulse, thus minimizing
the effect of Fab. Experimentally we accomplish this by
splitting the pump pulse into two beams, using a 50:50
beam splitter. One beam is sent into the waveguide for
the generation of squeezing, and the other is sent into the
second waveguide to produce the LO pulse. For clarity,
let us keep the same notation by calling the first beam the
pump pulse and the second beam the LO pulse. We cor-
respondingly call the first waveguide the squeezing wave-

Fig. 4. Variation of 2Fab across the Gaussian pump pulse as a
function of waveguide length.

Fig. 5. Waveguide length dependence of the nonlinear phase
terms Fab (dashed curve) and 22kpIpl (dotted curve) at the
pump pulse center. The solid curve represents their differ-
ence 22kpIpl 1 Fab. The dotted–dashed line corresponds to
phase p.
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Fig. 6. Improved detection of squeezing with two kinds of
matched LO pulse: (a) output pump pulse from the same
waveguide, (b) optimal LO pulse from another waveguide. (c)
For comparison, we also show the square pump pulse.

guide and the second one the LO waveguide. The LO
waveguide length is l0, and it is related to the squeezing
waveguide length l by l0 ­ l 1 Dl. In this case the phase
shift of the LO pulse can be written as

wszcd ­ wc 1 kpIpszcdl0

­ wc 1 kpIpszcdl 1 kpIpszcdDl , (28)

where the second term kpIpszcdl on the right-hand side
matches exactly the pump nonlinear phase shift and the
third term kpIpszcdDl can be used to minimize the ef-
fect of Fab by optimizing Dl. We shall call such a LO
pulse a nearly matched LO pulse and this scheme a two-
waveguide squeezer. In this case 95% squeezing can be
achieved, as illustrated by curve (b) of Fig. 6. Note that
when the reused pump LO pulse or the nearly matched
LO pulse is used, as described by curves (a) and (b) of
Fig. 6, the amount of squeezing as a function of waveguide
length follows the general behavior of curve (c), which
describes the case of a square pump pulse and is the re-
production of curve (a) of Fig. 2. These results are in
contrast to those obtained with uniform-phase Gaussian
LO pulses [see curves (a) and (b) of Fig. 3].

Actually, if the two waveguides have exactly the same
length, the LO pulse can be optimized in another way, i.e.,
by optimizing the intensity of the LO pulse. The prin-
ciples are the same, except that the extra nonlinear phase
variation is provided by the intensity difference between
the LO pulse and the pump pulse.

B. Case 2: Effect of Nonlinear Absorption
One can see more clearly the effect of nonlinear absorption
on the amount of squeezing achievable by analyzing two
limiting cases: gl ,, 1 (i.e., when the product of non-
linear absorption and waveguide length is much smaller
than unity) and gl .. 1. The results are investigated
numerically. To understand the results, we also derive
the results analytically in Appendix A with appropriate
approximations. These results are discussed in the fol-
lowing subsections.
1. Small Nonlinear Absorption gl ,, 1
Small nonlinear absorption corresponds to a x s3d medium
with a small nonlinear absorption coefficient or to a
relatively short x s3d medium. Figure 7 shows the results
for a square pulse and Gaussian pulses with various LO
pulses when the pump and the probe beams have parallel
polarizations. These numerical results are obtained in
the same way as for Fig. 6, except that nonlinear absorp-
tion is taken into consideration here. Curves (a)–(d)
are results of a Gaussian pump pulse with different LO
pulses. Curve (a) is for the nearly matched LO pulse.
In curve (b) the LO pulse is a reused pump pulse. In
curve (c) the LO pulse is a uniform-phase Gaussian pulse
with a width narrower than that of the pump pulse (one
eighth of the pump pulse width). In curve (d) the LO
pulse is simply a Gaussian pulse with uniform phase
and the same width as the pump pulse. Curve (e) is
the result of a square pump pulse. To see the nonlin-
ear loss at different waveguide lengths simultaneously,
we included the percentage of probe absorption as curve
(f ). By comparing Figs. 6 and 7 one can see the follow-
ing: (i) For all curves, when the nonlinear phase shift
is small (i.e., Xrl ,, 1 in the small-waveguide length
region l , 0.1 cm), the effect of nonlinear absorption
can be neglected, and the amount of squeezing increases
linearly with the nonlinear phase shift. This is mani-
fested by the analysis in Appendix A [see Eq. (A20)]. (ii)
As the waveguide length increases, the effect of nonlin-
ear absorption becomes important. From Eq. (A24) one
can see that, when the nonlinear phase shift is large
(i.e., Xrl .. 1) but nonlinear absorption is still small,
the nonlinear absorption reduces squeezing by the per-
cent of nonlinear probe absorption. This is verified in
curves (a)–(d) of Fig. 7 at 0.1 cm , l , 0.5 cm, where the
nonlinear absorption is less than 10%. For waveguide
length l . 0.5 cm the nonlinear absorption becomes so
large that the relation between the amount of squeezing
and the nonlinear absorption is not linear, and the squeez-
ing behavior cannot be simply predicted by Eq. (A24) in
this case. For curves (a)–(c), where there is no SSD

Fig. 7. Squeezing with nonlinear absorption: (a) Gaussian
pump pulse with a nearly matched LO pulse from another
waveguide, (b) Gaussian pump pulse with a reused pump pulse,
(c) Gaussian pump pulse with a narrower uniform-phase LO
pulse, (d) Gaussian pump pulse with a uniform-phase LO pulse
having the same pulse width as the pump, (e) square pump
pulse. (f ) Relative pump amplitude EpsldyEps0d.
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phase mismatch or the SSD phase mismatch is mini-
mum, the squeezing curves still approximately follow the
nonlinear absorption curve (f ). One interesting phenom-
enon to be noted here is that, at long-waveguide length
sl . 1.8 cmd, the squeezing observed for the case of a
Gaussian pump pulse with a nearly matched LO pulse
[curve (a)] is slightly larger than that for the square
pump pulse [curve (e)]. The reason for this small im-
provement is probably that a square pulse has the same
high intensity for the whole pulse and therefore the to-
tal nonlinear absorption experienced by the whole probe
pulse is larger than that experienced for the case of a
Gaussian pump pulse. For curve (d) of Fig. 7, where
a narrower LO pulse is used, the squeezing curve ini-
tially follows the loss curve somewhat but deteriorates
rapidly as the waveguide length increases. Also, for
curve (e), where the pump is a Gaussian pulse and LO is a
uniform-phase Gaussian pulse, the effect of the nonlinear
absorption is not obvious, as the amount of squeezing
deteriorates to zero before the amount of absorption be-
comes substantial.

From Fig. 7 we find that, even with nonlinear absorp-
tion, for the case of a Gaussian pump pulse ,85% squeez-
ing can be achieved when a narrow or nearly matched LO
pulse is used.

2. Large Nonlinear Absorption gl .. 1
Next we describe the limit of a x s3d medium with large
nonlinear absorption. From Eq. (A34) in Appendix A one
can see that in the limit of a long medium the amount
of squeezing achievable is a constant S`, whose value
depends only on the ratio of the nonlinear coupling co-
efficient to the nonlinear absorption, i.e., R ­ sXrIpygd.
Actually R is determined by the ratio ns2dyas2d. When
three-photon absorption is negligible, R is related to
the factor of merit F by R ­ 1ys2pF d [See Eq. (A38)].
Figure 8 shows the numerical results of Eq. (A34), and
one can see that in the limit of very large nonlinear ab-
sorption, i.e., R ! 0, more than 33% of squeezing can
still be achieved without SSD phase mismatch, whereas
for smaller nonlinear absorption satisfying the condition
gl .. 1 (resulting in large R, e.g., R . 14.0) the final
amount of squeezing achieved will be 50%. The nonzero
amount of squeezing in the long-medium limit is due to
the fact that nonlinear absorption as well as nonlinear
coupling coefficient Xs contributes to pure loss because
of the formation of the nonlinear loss grating. In Fig. 9
we calculate the amount of squeezing achievable by a
Gaussian pump pulse with a matched LO pulse for a
waveguide length up to 50 cm for three different ratios
R. The solid and the dashed curves have R ­ 16.5 and
R ­ 33, respectively. As expected, the amount of squeez-
ing achievable in a long waveguide is a constant of 50%.
The dotted curve corresponds to the case with R ­ 0.01,
and the limit of squeezing is ,33%, which is consistent
with Fig. 8.

In the above discussion we neglected the reduction of
pump intensity that results from nonlinear absorption
as it propagates through the medium and assumed that
the intensity is constant in the whole medium. Actually,
Ipsld ­ Ips0dexps2gld, and the assumption is valid for the
case when gl ,, 1 (in our numerical calculation the reduc-
tion of pump intensity is less than 15% in this case), but
it is invalid for the case when gl .. 1 because then the
pump is totally absorbed by the medium. However, the
case when gl .. 1 is still important because it gives in-
sight into the effect of nonlinear absorption on squeezing.
It represents the steady-state situation in which squeez-
ing occurs at the output end of the waveguide within
a length roughly given by the absorption length of the
medium.

5. CONCLUSIONS
In this paper we have examined in detail the feasibil-
ity of using a short AlxGa12xAs semiconductor wave-
guide with x s3d nonlinearity to generate squeezing. An
AlxGa12xAs waveguide has the advantage over fiber in
that GAWBS noise is negligible. To avoid two-photon
absorption, which can be large close to the band-gap
energy of AlxGa12xAs, we considered the wavelength
regime below the half-band-gap energy. We found that

Fig. 8. Limit of the amount of squeezing S` for different ratios
R ­ XrIpyg when gl .. 1.

Fig. 9. Amount of squeezing achievable in a long waveguide for
different ratios R. The pump pulse is a Gaussian pulse, and
the LO pulse is a matched one optimized in another waveguide.
Solid curve, R ­ 16.5; dashed curve, R ­ 33; dotted curve,
R ­ 0.01. All other parameters are the same as those that we
use for the practical waveguide discussed through this paper and
in Ref. 27.
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in that regime a reasonably large amount of squeezing can
be achieved. Our theoretical analysis took into account
various effects that can affect squeezing. They include
(i) nonlinear pump–probe phase mismatch, (ii) nonlin-
ear absorption, and (iii) squeezed-state detection (SSD)
phase mismatch. The first two factors affect the amount
of squeezing generated, whereas the third factor affects
the amount of squeezing detected. We found that the ef-
fect of nonlinear pump–probe phase mismatch does not
impose a fundamental limit on the amount of squeez-
ing achievable and can be easily overcome by use of a
long medium length or a higher pump intensity. The ef-
fect of nonlinear absorption, however, reduces the maxi-
mum amount of squeezing achievable by an amount that
is roughly equal to the percent of absorption. The SSD
phase mismatch exists only for pulsed squeezed-state
light generated by a nonsquare pump pulse, and it can
seriously affect the maximum amount of squeezing de-
tected. We pointed out that the SSD phase mismatch
has two contributions, one from the pump’s self-phase
modulation and the other from the nature of the four-
wave mixing interaction. We showed that if the pump
pulse is a Gaussian pulse and if the LO pulse is an ordi-
nary unchirped pulse that has a uniform phase under its
pulse profile (called a uniform-phase LO), then because of
SSD phase mismatch only 50% squeezing can be observed
(compared with .99% squeezing in the case when the
pump is a square pulse for which there is no SSD phase
mismatch). This is so even for the ideal case in which the
medium has no loss. We then discussed three methods
to overcome the effect of SSD phase mismatch, namely,
(i) the use of a narrow LO pulse (narrow LO scheme), (ii)
the use of the pump pulse after the medium as the LO
pulse (reused pump scheme), and (iii) the use of a sepa-
rate nonlinear waveguide to generate a LO pulse (sepa-
rate waveguide LO scheme). We analyzed the maximum
amount of squeezing detectable for these three types of LO
(assuming a Gaussian pump pulse) for the case in which
absorption is neglected. We showed that obtaining a sub-
stantial advantage with the narrow LO scheme requires
that the LO pulse width be &1y8 that of the pump pulse,
for which as much as 95% squeezing can be observed (com-
pared with 50% for the case of a uniform-phase LO); with
the reused pump pulse as the LO pulse (reused pump LO
scheme) as much as 85% of squeezing can be observed;
and with the use of a separate nonlinear waveguide to
optimize the phase matching between the phase profile of
the LO pulse and the squeezed-state light pulse (separate
waveguide LO scheme) as much as 95% of squeezing can
be observed. We call the LO pulse generated with the
separate waveguide LO scheme the nearly matched LO
pulse, as it allows us to cancel out completely the part
of SSD phase mismatch that is due to pump’s self-phase
modulation and partially to cancel out the part of SSD
phase mismatch that is due to the nature of the four-
wave mixing interaction. We pointed out that the LO
pulse generated with the reused pump LO scheme en-
ables one to cancel out only the part of the SSD phase
mismatch that is due to the pump’s self-phase modula-
tion and hence is not so good as the nearly matched LO
pulse. The reused pump LO scheme was used recently
to optimize the amount of squeezing detected in the case
of a fiber squeezer.
Finally we included the two-photon absorption and
three-photon absorption effects in the AlxGa12xAs semi-
conductor waveguide. We found that the effect of
nonlinear absorption is dominated by two-photon absorp-
tion and in the worst case gives a 10% reduction in the
maximum amount of squeezing observable. When non-
linear absorption effects are included, one of the best
schemes to achieve large amounts of squeezing is the
separate waveguide LO scheme. In that case the max-
imum amount of squeezing achievable with a 1-cm-
long waveguide and a pump pulse peak intensity of
4.5 GWycm2 is ,85% (compared with 79% with the
reused pump pulse LO scheme). The narrow LO pulse
scheme can give a similar amount of squeezing but may
be harder to realize in practice if the pump pulse is al-
ready very narrow, because then it will be difficult to
generate an even narrower pulse.

APPENDIX A. EFFECT OF
NONLINEAR ABSORPTION
To see the effect of nonlinear absorption clearly we sim-
plify Eq. (18) in two cases: gl ,, 1 and gl .. 1.

Case 1: gl ,, 1
First let us write the expressions for Res mnd, Ims mnd,
ResG1G2d, ImsG1G2d, jnj2, and kGy

1 G1l in Eqs. (19)–(22):

Res mnd ­ 2
XiIp

2V
sinhs2Vld 2

XrIpDk

2V2
sinh2sVld ,

(A1)

Ims mnd ­ 2
XrIp

2V
sinhs2Vld 2

DkXiIp

2V2 sinh2sVld ,

(A2)

ResG1G2d ­ 22gs2n 1 1d

√√√
XiIp

8V

(
fexpf2sV 2 gdlg 2 1

V 2 g

1
expf22sV 2 gdlg 2 1

V 1 g

)
1

XrIpDk

8V2

3

(
fexpf2sV 2 gdlg 2 1

V 2 g

2
fexpf2sV 2 gdlg 2 1

V 1 g
1

exps22gld 2 1
g

)!!!
,

(A3)

ImsG1G2d ­ 2gs2n 1 1d

√√√
XrIp

8V

(
fexpf2sV 2 gdlg 2 1

V 2 g

1
expf22sV 2 gdlg 2 1

V 1 g

)
2

XiIpDk

8V2

3

(
expf2sV 2 gdlg 2 1

V 2 g

2
expf22sV 2 gdlg 2 1

V 1 g

1
2fexps22gld 2 1g

g

)!!!
, (A4)

jnj2 ­
jXsIpj2

V2
sinh2sVzd , (A5)
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kGy
1 G1l ­

1
4

gn

(
expf2sV 2 gdlg 2 1

V 2 g

2
expf22sV 2 gdlg 2 1

V 1 g

2
2fexps22gld 2 1g

g

)!!!

1

"
2gn

√
Dk

2V

!2

1 2gsn 1 1d

√
jXsIpj

V

!2#

3

(
expf2sV 2 gdlg 2 1

V 2 g

2
expf22sV 2 gdlg 2 1

V 1 g

1
2fexps22gld 2 1g

g

)
, (A6)

where Xr and Xi are the real part and the imaginary part,
respectively, of nonlinear coupling coefficient Xs, n is the
average thermal photon number, and, from Eqs. (1)–(3),

Xr ­ kp ­
2p

l
ns2d, Xi ­

g

2Ip

. (A7)

On the other hand, for parallel polarization

Dk ­ 2sks 2 kpdIp ­ 2XrIp . (A8)

So one can obtain V ­ gy2.
Assume that gl ,, 1 (the absolute nonlinear absorption

is small); then to the first order of gl one can obtain

Res mnd . 2 sXrIpld2 2 1/2sgld , (A9)

Ims mnd . sXrIpld 2 1/2 sXrIpldsgld , (A10)

RekG1G2d . 22/3 sXrIpld2sgld , (A11)

ImkG1G2d . sXrIpld sgld , (A12)

kGy
1 G1l . 2/3 sXrIpld2sgld , (A13)

jnj2 ­ sXrIpld2 . (A14)

Then

a . 2 sXrIpld2 1 f4/3sXrIpld2 2 1/2 gsgld , (A15)

b . sXrIpld 2 3/2sXrIpldsgld , (A16)

c . sXrIpld2f1 2 4/3sgldg . (A17)

Here we discuss two cases: (i). Small nonlinear
phase shift, i.e., sXrIpld ­ kpIpl ,, 1. Then

p
a2 1 b2 ­ sXrIpld h1 1 fs21/2 gld

1 sXrIpld2s1 2 8/3 gldgj1/2

. sXrIpld 2 1/4sXrIpldsgld . (A18)

Suppose that the phase is perfectly matched for homodyne
detection (this is correct in the case of a square pump
pulse or Gaussian pump pulse with matched LO), i.e.,
sins2w 2 2kpIpl 1 ad ­ 21; then the squeezed quadrature
is

kfDXswdg2l ­ 1/4 1 1/2 sc 2
p

a2 1 b2d ,

. 1/4 2 1/2 sXrIpld (A19)

and the amount of squeezing as a percent is

S ­ h1 2 4kfDXswdg2j 3 100% ­ 2sXrIpld 3 100% ,

­ 2kpIpl 3 100% . (A20)

One can see that, in this case, the amount of squeezing
increases linearly with the increase of nonlinear phase
shift of the pump or is simply the nonlinear phase shift
of the probe pulse.

(ii). Large nonlinear phase shift, i.e., sXrIpld .. 1.
Then p

a2 1 b2 ­ sXrIpld2h1 1 f28/3 s gld

1
1

sXrIpld2 s1 2 1/2 gldgj1/2

. sXrIpld2f1 2 4/3sgldg . (A21)

Also, if it is assumed that the phase is perfectly matched
for homodyne detection, then

kfDXswdg2l . 1/8 sgld , (A22)

and the amount of squeezing is

S ­ f1 2 1/2 sgldg 3 100% . (A23)

Because of nonlinear dispersion, the nonlinear absorption
of the probe is also twice of that of the pump. Suppose
that gp is the nonlinear absorption of pump; then g ­ 2gp

and then

S ­ f1 2 sgpldg 3 100% , (A24)

which means that in this case the reduction of the amount
of squeezing is simply the nonlinear absorption of the
pump amplitude.

Case 2: gl .. 1
Here

RekG1G2l . 2
1
3

1
2
3

√
XrIp

g

! 2

, (A25)

ImkG1G2l .
XrIp

3g
, (A26)

exps22gldRes mnd . 0 , (A27)

exps22gldIms mnd . 0 , (A28)

exps22gldjnj2 . 0 , (A29)

kGy
1 G1l . 2/3

√
XrIp

g

!2

1
1
6

, (A30)

and, if we let R ­ XrIpyg, then
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a ­ exps22gldResmnd 1 RekG1G2l . 21/3 2 2/3 R2 , (A31)

b ­ exps22gldImsmnd 1 ImkG1G2l . 1/3 R , (A32)

c ­ exps22gldjnj2 1 kGy
1 G1l . 2/3 R2 1 1/6 . (A33)

Assume perfect SSD phase matching; then

kfDXswdg2l ­ 1/4 1 1/2 sc 2
p

a2 1 b2d

­ 1/4 1 1/2

(
s2/3 R2 1 1/6d

2

"
s22/3 R2 2 1/3d2 1

R2

9

# 1/2)
. (A34)

Here we also discuss two cases: (i). R ,, 1 or g ..

XrIp. Then

kfDXswdg2l ­ 1/4 1 1/2 hs2/3 R2 1 1/6d

2 1/3 f1 1 s4R4 1 5R2dg1/2j

. 1/4 2 1/12 s1 1 R2d , (A35)

S ­ 1/3 s1 1 R2d 3 100% . (A36)

Note that, even when R ­ 0 sXr ­ 0 or g ! `), S ­ 33%
can still be achieved.

(ii). R .. 1 or g ,, XrIp. Then

kfDXswdg2l ­ 1/4 1 1/2

(
s2/3 R2 1 1/6d 2 s1/3 1 2/3 R2d

3

"
1 1

R2y9
s2/3 R2 1 d2 1/3

# 1/2)
, (37)

And then S ­ 50%. The amount of squeezing achievable
is always a constant.

Actually, if three-photon absorption is small, R is de-
termined simply by the ratio of nonlinear refractive index
to two-photon absorption coefficient, i.e., ns2dyas2d. From
Eqs. (A7),

R ­
XrIp

g
­

s2pyldns2dIp

2fas2d 1 as3dIpgIp
.

p

l

ns2d

as2d
. (A38)

Our discussion here shows that the limit of squeezing in
a long x s3d medium is actually determined by the ratio
ns2dyas2d. The larger the ratio, the larger the squeezing
achievable in a long x s3d medium (limited to a maximum
of 50%).

The above results are probably due to the fact that non-
linear absorption contributes to both pure loss and non-
linear coupling between the two noise sidebands because
of the formation of the nonlinear loss grating.
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