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Abstract—We consider the automated recognition of human actions in surveillance videos. Most current methods build classifiers

based on complex handcrafted features computed from the raw inputs. Convolutional neural networks (CNNs) are a type of deep

model that can act directly on the raw inputs. However, such models are currently limited to handling 2D inputs. In this paper, we

develop a novel 3D CNN model for action recognition. This model extracts features from both the spatial and the temporal dimensions

by performing 3D convolutions, thereby capturing the motion information encoded in multiple adjacent frames. The developed model

generates multiple channels of information from the input frames, and the final feature representation combines information from all

channels. To further boost the performance, we propose regularizing the outputs with high-level features and combining the predictions

of a variety of different models. We apply the developed models to recognize human actions in the real-world environment of airport

surveillance videos, and they achieve superior performance in comparison to baseline methods.

Index Terms—Deep learning, convolutional neural networks, 3D convolution, model combination, action recognition

Ç

1 INTRODUCTION

RECOGNIZING human actions in the real-world environ-
ment finds applications in a variety of domains including

intelligent video surveillance, customer attributes, and
shopping behavior analysis. However, accurate recognition
of actions is a highly challenging task due to cluttered
backgrounds, occlusions, and viewpoint variations, etc. [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. Most of the current
approaches [12], [13], [14], [15], [16] make certain assump-
tions (e.g., small scale and viewpoint changes) about the
circumstances under which the video was taken. However,
such assumptions seldom hold in the real-world environ-
ment. In addition, most of the methods follow a two-step
approach in which the first step computes features from raw
video frames and the second step learns classifiers based on
the obtained features. In real-world scenarios, it is rarely
known what features are important for the task at hand since
the choice of features is highly problem-dependent. Espe-
cially for human action recognition, different action classes
may appear dramatically different in terms of their appear-
ances and motion patterns.

Deep learning models [17], [18], [19], [20], [21] are a class

of machines that can learn a hierarchy of features by

building high-level features from low-level ones. Such

learning machines can be trained using either supervised
or unsupervised approaches, and the resulting systems have
been shown to yield competitive performance in visual object
recognition [17], [19], [22], [23], [24], human action recogni-
tion [25], [26], [27], natural language processing [28], audio
classification [29], brain-computer interaction [30], human
tracking [31], image restoration [32], denoising [33], and
segmentation tasks [34]. The convolutional neural networks
(CNNs) [17] are a type of deep models in which trainable
filters and local neighborhood pooling operations are applied
alternatingly on the raw input images, resulting in a hierarchy
of increasingly complex features. It has been shown that,
when trained with appropriate regularization [35], [36], [37],
CNNs can achieve superior performance on visual object
recognition tasks. In addition, CNNs have been shown to be
invariant to certain variations such as pose, lighting, and
surrounding clutter [38].

As a class of deep models for feature construction, CNNs
have been primarily applied on 2D images. In this paper, we
explore the use of CNNs for human action recognition in
videos. A simple approach in this direction is to treat video
frames as still images and apply CNNs to recognize actions at
the individual frame level. Indeed, this approach has been
used to analyze the videos of developing embryos [39].
However, such an approach does not consider the motion
information encoded in multiple contiguous frames. To
effectively incorporate the motion information in video
analysis, we propose to perform 3D convolution in the
convolutional layers of CNNs so that discriminative features
along both the spatial and the temporal dimensions are
captured. We show that, by applying multiple distinct
convolutional operations at the same location on the input,
multiple types of features can be extracted. Based on the
proposed 3D convolution, a variety of 3D CNN architectures
can be devised to analyze video data. We develop a 3D CNN
architecture that generates multiple channels of information
from adjacent video frames and performs convolution and
subsampling separately in each channel. The final feature
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representation is obtained by combining information from all
channels. To further boost the performance of 3D CNN
models, we propose to augment the models with auxiliary
outputs computed as high-level motion features and inte-
grate the outputs of a variety of different architectures in
making predictions.

We evaluated the developed 3D CNN model on the TREC
Video Retrieval Evaluation (TRECVID) data, which consist
of surveillance video data recorded at London Gatwick
Airport. We constructed a multimodule event detection
system, which includes the 3D CNN as a major module, and
participated in three tasks of the TRECVID 2009 Evaluation
for Surveillance Event Detection [25]. Our system achieved
the best performance on all three participating action
categories (i.e., CellToEar, ObjectPut, and Pointing). To
provide an independent evaluation of the 3D CNN model,
we report its performance on the TRECVID 2008 develop-
ment set in this paper. We also present results on the KTH
data as published performance for this data is available. Our
experiments show that the developed 3D CNN model
outperforms other baseline methods on the TRECVID data,
and it achieves competitive performance on the KTH data,
demonstrating that the 3D CNN model is more effective for
real-world environments such as those captured in the
TRECVID data. The experiments also validate that the
3D CNN model significantly outperforms the frame-based
2D CNN for most tasks.

The key contributions of this work can be summarized as
follows:

. We propose to apply the 3D convolution operation
to extract spatial and temporal features from video
data for action recognition. These 3D feature
extractors operate in both the spatial and the
temporal dimensions, thus capturing motion infor-
mation in video streams.

. We develop a 3D convolutional neural network
architecture based on the 3D convolution feature
extractors. This CNN architecture generates multi-
ple channels of information from adjacent video
frames and performs convolution and subsampling
separately in each channel. The final feature repre-
sentation is obtained by combining information
from all channels.

. We propose to regularize the 3D CNN models by
augmenting the models with auxiliary outputs
computed as high-level motion features. We further
propose to boost the performance of 3D CNN
models by combining the outputs of a variety of
different architectures.

. We evaluate the 3D CNN models on the TRECVID
2008 development set in comparison with baseline
methods and alternative architectures. Experimental
results show that the proposed models significantly
outperforms 2D CNN architecture and other base-
line methods.

The rest of this paper is organized as follows: We
describe the 3D convolution operation and the 3D CNN
architecture employed in our TRECVID action recognition
system in Section 2. Some related work for action recogni-
tion is discussed in Section 3. The experimental results on

the TRECVID and KTH data are reported in Section 4. We
conclude in Section 5 with discussions.

2 3D CONVOLUTIONAL NEURAL NETWORKS

In 2D CNNs, 2D convolution is performed at the convolu-
tional layers to extract features from local neighborhood on
feature maps in the previous layer. Then an additive bias is
applied and the result is passed through a sigmoid function.
Formally, the value of an unit at position ðx; yÞ in the
jth feature map in the ith layer, denoted as vxyij , is given by

vxyij ¼ tanh bij þ
X
m

XPi�1

p¼0

XQi�1

q¼0

wpqijmv
ðxþpÞðyþqÞ
ði�1Þm

 !
; ð1Þ

where tanhð�Þ is the hyperbolic tangent function, bij is
the bias for this feature map, m indexes over the set of
feature maps in the ði� 1Þth layer connected to the current
feature map, wpqijk is the value at the position ðp; qÞ of the
kernel connected to the kth feature map, and Pi and Qi

are the height and width of the kernel, respectively. In the
subsampling layers, the resolution of the feature maps is
reduced by pooling over local neighborhood on the feature
maps in the previous layer, thereby enhancing the invar-
iance to distortions on the inputs. A CNN architecture can
be constructed by stacking multiple layers of convolution
and subsampling in an alternating fashion. The parameters
of CNN, such as the bias bij and the kernel weight wpqijk, are
usually learned using either supervised or unsupervised
approaches [17], [22].

2.1 3D Convolution

In 2D CNNs, convolutions are applied on the 2D feature
maps to compute features from the spatial dimensions only.
When applied to video analysis problems, it is desirable to
capture the motion information encoded in multiple
contiguous frames. To this end, we propose to perform
3D convolutions in the convolution stages of CNNs to
compute features from both spatial and temporal dimen-
sions. The 3D convolution is achieved by convolving a 3D
kernel to the cube formed by stacking multiple contiguous
frames together. By this construction, the feature maps in
the convolution layer are connected to multiple contiguous
frames in the previous layer, thereby capturing motion
information. Formally, the value at position ðx; y; zÞ on the
jth feature map in the ith layer is given by

vxyzij ¼ tanh bij þ
X
m

XPi�1

p¼0

XQi�1

q¼0

XRi�1

r¼0

wpqrijmv
ðxþpÞðyþqÞðzþrÞ
ði�1Þm

 !
; ð2Þ

where Ri is the size of the 3D kernel along the temporal
dimension, wpqrijm is the ðp; q; rÞth value of the kernel
connected to the mth feature map in the previous layer. A
comparison of 2D and 3D convolutions is given in Fig. 1.

Note that a 3D convolutional kernel can only extract one
type of features from the frame cube since the kernel weights
are replicated across the entire cube. A general design
principle of CNNs is that the number of feature maps should
be increased in late layers by generating multiple types of
features from the same set of lower level feature maps.
Similarly to the case of 2D convolution, this can be achieved
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by applying multiple 3D convolutions with distinct kernels to
the same location in the previous layer (Fig. 2).

2.2 A 3D CNN Architecture

Based on the 3D convolution described above, a variety of
CNN architectures can be devised. In the following, we
describe a 3D CNN architecture that we have developed for
human action recognition on the TRECVID data set. In this
architecture, shown in Fig. 3, we consider seven frames of
size 60� 40 centered on the current frame as inputs to the 3D
CNN model. We first apply a set of hardwired kernels to
generate multiple channels of information from the input
frames. This results in 33 feature maps in the second layer in

five different channels denoted by gray, gradient-x, gradient-
y, optflow-x, and optflow-y. The gray channel contains the
gray pixel values of the seven input frames. The feature maps
in the gradient-x and gradient-y channels are obtained by
computing gradients along the horizontal and vertical
directions, respectively, on each of the seven input frames,
and the optflow-x and optflow-y channels contain the optical
flow fields along the horizontal and vertical directions,
respectively, computed from adjacent input frames. This
hardwired layer is employed to encode our prior knowledge
on features, and this scheme usually leads to better
performance as compared to the random initialization.

We then apply 3D convolutions with a kernel size of
7� 7� 3 (7� 7 in the spatial dimension and 3 in the
temporal dimension) on each of the five channels sepa-
rately. To increase the number of feature maps, two sets of
different convolutions are applied at each location, result-
ing in two sets of feature maps in the C2 layer each
consisting of 23 feature maps. In the subsequent subsam-
pling layer S3, we apply 2� 2 subsampling on each of the
feature maps in the C2 layer, which leads to the same
number of feature maps with a reduced spatial resolution.
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Fig. 1. Comparison of (a) 2D and (b) 3D convolutions. In (b) the size of
the convolution kernel in the temporal dimension is 3 and the sets of
connections are color-coded so that the shared weights are in the same
color. In 3D convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

Fig. 2. Extraction of multiple features from contiguous frames. Multiple
3D convolutions can be applied to contiguous frames to extract multiple
features. As in Fig. 1, the sets of connections are color-coded so that the
shared weights are in the same color. Note that all six sets of
connections do not share weights, resulting in two different feature
maps on the right.

Fig. 3. A 3D CNN architecture for human action recognition. This architecture consists of one hardwired layer, three convolution layers, two

subsampling layers, and one full connection layer. Detailed descriptions are given in the text.



The next convolution layer C4 is obtained by applying 3D
convolution with a kernel size of 7� 6� 3 on each of the
five channels in the two sets of feature maps separately. To
increase the number of feature maps, we apply three
convolutions with different kernels at each location, leading
to six distinct sets of feature maps in the C4 layer, each
containing 13 feature maps. The next layer S5 is obtained by
applying 3� 3 subsampling on each feature map in the C4
layer, which leads to the same number of feature maps with
a reduced spatial resolution. At this stage, the size of the
temporal dimension is already relatively small (3 for gray,
gradient-x, gradient-y, and 2 for optflow-x and optflow-y),
so we perform convolution only in the spatial dimension at
this layer. The size of the convolution kernel used is 7� 4 so
that the sizes of the output feature maps are reduced to
1� 1. The C6 layer consists of 128 feature maps of size
1� 1, and each of them is connected to all 78 feature maps
in the S5 layer.

After the multiple layers of convolution and subsam-
pling, the seven input frames have been converted into a
128D feature vector capturing the motion information in the
input frames. The output layer consists of the same number
of units as the number of actions, and each unit is fully
connected to each of the 128 units in the C6 layer. In this
design, we essentially apply a linear classifier on the 128D
feature vector for action classification. All the trainable
parameters in this model are initialized randomly and
trained by the online error back-propagation algorithm as
described in [17]. We have designed and evaluated other 3D
CNN architectures that combine multiple channels of
information at different stages, and our results show that
this architecture gives the best performance.

2.3 Model Regularization

The inputs to 3D CNN models are limited to a small number
of contiguous video frames due to the increased number of
trainable parameters as the size of input window increases.
On the other hand, many human actions span a number of
frames. Hence, it is desirable to encode high-level motion
information into the 3D CNN models. To this end, we
propose computing motion features from a large number of
frames and regularizing the 3D CNN models by using these
motion features as auxiliary outputs (Fig. 4). Similar ideas
have been used in image classification tasks [35], [36], [37], but
its performance in action recognition is not clear. In
particular, for each training action we generate a feature

vector encoding the long-term action information beyond the
information contained in the input frame cube to the CNN.
We then encourage the CNN to learn a feature vector close to
this feature. This is achieved by connecting a number of
auxiliary output units to the last hidden layer of CNN and
clamping the computed feature vectors on the auxiliary units
during training. This will encourage the hidden layer
information to be close to the high-level motion feature.
More details on this scheme can be found in [35], [36], and
[37]. In the experiments, we use the bag-of-words features
constructed from dense SIFT descriptors [40] computed on
raw gray images and motion edge history images (MEHI) [41]
as auxiliary features. Results show that such a regularization
scheme leads to consistent performance improvements.

2.4 Model Combination

Based on the 3D convolution operations, a variety of 3D CNN
architectures can be designed. Among the architectures
considered in this paper, the one introduced in Section 2.2
yields the best performance on the TRECVID data. However,
this may not be the case for other data sets. The selection of
optimal architecture for a problem is challenging since this
depends on the specific applications. An alternative ap-
proach is to construct multiple models and combine the
outputs of these models for making predictions [42], [43],
[44]. This scheme has also been used in combining traditional
neural networks [45]. However, the effect of model combina-
tion in the context of convolutional neural networks for
action recognition has not been investigated. In this paper,
we propose constructing multiple 3D CNN models with
different architectures, hence capturing potentially comple-
mentary information from the inputs. In the prediction
phase, the input is given to each model and the outputs of
these models are then combined. Experimental results
demonstrate that this model combination scheme is very
effective in boosting the performance of 3D CNN models on
action recognition tasks.

2.5 Model Implementation

The 3D CNN models are implemented in C++ as part of
NEC’s human action recognition system [25]. The imple-
mentation details are based on those of the original CNN as
described in [17] and [46]. All the subsampling layers apply
max sampling as described in [47]. The overall loss function
used to train the regularized models is a weighted
summation of the loss functions induced by the true action
classes and the auxiliary outputs. The weight for the true
action classes is set to 1 and that for the auxiliary outputs is
set to 0.005 empirically. All the model parameters are
randomly initialized as in [17] and [46] and are trained
using the stochastic diagonal Levenberg-Marquardt method
[17], [46]. In this method, a learning rate is computed for
each parameter using the diagonal terms of an estimate of
the Gauss-Newton approximation to the Hessian matrix on
1,000 randomly sampled training instances.

3 RELATED WORK

CNNs belong to the class of biologically inspired models for
visual recognition, and some other variants have also been
developed within this family. Motivated by the organiza-
tion of visual cortex, a similar model, called HMAX [48], has
been developed for visual object recognition. In the HMAX

224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 1, JANUARY 2013

Fig. 4. The regularized 3D CNN architecture.



model, a hierarchy of increasingly complex features is
constructed by alternating applications of template match-
ing and max pooling. In particular, at the S1 layer a still
input image is first analyzed by an array of Gabor filters at
multiple orientations and scales. The C1 layer is then
obtained by pooling local neighborhoods on the S1 maps,
leading to increased invariance to distortions on the input.
The S2 maps are obtained by comparing C1 maps with an
array of templates which were generated randomly from C1
maps in the training phase. The final feature representation
in C2 is obtained by performing global max pooling over
each of the S2 maps.

The original HMAX model is designed to analyze 2D
images. In [16], this model has been extended to recognizing
actions in video data. In particular, the Gabor filters in the
S1 layer of the HMAX model have been replaced with some
gradient and space-time modules to capture motion
information. In addition, some modifications to HMAX,
proposed in [49], have been incorporated into the model. A
major difference between CNN and HMAX-based models is
that CNNs are fully trainable systems in which all the
parameters are adjusted based on training data, while all
modules in HMAX consist of hard-coded parameters.

In speech and handwriting recognition, time-delay
neural networks have been developed to extract temporal
features [50]. In [51], a modified CNN architecture has been
developed to extract features from video data. In addition to
recognition tasks, CNNs have also been used in 3D image
restoration problems [32].

4 EXPERIMENTS

We focus on the TRECVID 2008 data to evaluate the
developed 3D CNN models for action recognition in
surveillance videos. Meanwhile, we also perform experi-
ments on the KTH data [13] to compare with previous
methods.

4.1 Action Recognition on TRECVID Data

The TRECVID 2008 development data set consists of
49-hour videos captured at London Gatwick Airport using
five different cameras with a resolution of 720� 576 at
25 fps. The videos recorded by camera number 4 are
excluded as few events occurred in this scene. In the current
experiments, we focus on the recognition of three action
classes (CellToEar, ObjectPut, and Pointing). Each action is
classified in the one-against-rest manner, and a large
number of negative samples were generated from actions
that are not in these three classes. This data set was
captured on five days (20071101, 20071106, 20071107,
20071108, and 20071112), and the statistics of the data used
in our experiments are summarized in Table 1. Multiple 3D
CNN models are evaluated in this experiment, including
the one described in Fig. 3.

As the videos were recorded in real-world environments,
and each frame contains multiple humans, we apply a
human detector and a detection-driven tracker to locate
human heads. The detailed procedure for tracking is
described in [52], and some sample results are shown in
Fig. 5. Based on the detection and tracking results, a
bounding box for each human that performs an action was
computed. The procedure to crop the bounding box from
the head tracking results is illustrated in Fig. 6. The multiple
frames required by the 3D CNN model are obtained by
extracting bounding boxes at the same position from
consecutive frames before and after the current frame,
leading to a cube containing the action. The temporal
dimension of the cube is set to 7 in our experiments as it has
been shown that 5-7 frames are enough to achieve a
performance similar to the one obtainable with the entire
video sequence [53]. The frames were extracted with a step
size of 2. That is, suppose the current frame is numbered 0;
we extract a bounding box at the same position from frames
numbered �6, �4, �2, 0, 2, 4, and 6. The patch inside the
bounding box on each frame is scaled to 60� 40 pixels.
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TABLE 1
The Number of Samples on the Five Dates Extracted from the TRECVID 2008 Development Data Set

Fig. 5. Sample human detection and tracking results from camera numbers 1, 2, 3, and 5 (left to right).



To evaluate the effectiveness of the 3D CNN model, we
report the results of the frame-based 2D CNN model. In
addition, we compare the 3D CNN model with four other
methods which build state-of-the-art spatial pyramid
matching (SPM) features from local features computed on
dense grid or spatiotemporal interest points (STIPs). For
these methods, we construct SPM features based on local
invariant features computed from each image cube as used
in 3D CNN. Then a one-against-all linear SVM is learned
for each action class. For dense features, we extract SIFT
descriptors [40] from raw gray images or motion edge
history images [41]. Local features on raw gray images
preserve the appearance information, while MEHI is
concerned with the shape and motion patterns. The dense
SIFT descriptors are calculated every 6 pixels from 7� 7
and 16� 16 local image patches. For features based on
STIPs, we employ the temporally integrated spatial
response (TISR) method [54], which has shown promising
performance on action recognition. The local features are
softly quantized (each local feature can be assigned to
multiple codebook words) using a 512-word codebook. To
exploit the spatial layout information, we employ the
spatial pyramid matching method [55] to partition
the candidate region into 2� 2 and 3� 4 cells and
concatenate their features. The dimensionality of the entire
feature vector is 512� ð2� 2þ 3� 4Þ ¼ 8;192. We denote
the method based on gray images as SPMcube

gray , the one
based on MEHI as SPMcube

MEHI, and the one based on TISR as
SPMcube

TISR. We also concatenate SPMcube
gray and SPMcube

MEHI

feature vectors into a single vector, leading to the
16,384D feature representation denoted as SPMcube

grayþMEHI.
In the first set of experiments, we report the performance

of the 3D CNN architecture described in Fig. 3 as this model
achieved the best performance. This architecture is denoted
as 3D-CNNs

332 since the five channels are convolved
separately (the superscript s) and the first two convolu-
tional layers use 3D convolution and the last convolutional
layer use 2D convolution (the subscript 332). We also report
the performance of the regularized 3D CNN model based
on 3D-CNNs

332. In this model, denoted as 3D-RCNNs
332, the

auxiliary outputs are obtained by applying PCA to reduce
the dimensionality of 8,192D SPMcube

gray and SPMcube
MEHI features

to 150 dimensions and then concatenating them into a 300D
feature vector.

We report the fivefold cross-validation results in which the
data for a single day are used as a fold. The performance

measures we used are precision, recall, and area under the
ROC curve (ACU) at multiple values of false positive rates
(FPR). The performance of the seven methods is summarized
in Table 2, and the average performance over all action classes
is plotted in Fig. 7. We can observe from these results that the
3D CNN models outperform the frame-based 2D CNN
model, SPMcube

gray , and SPMcube
MEHI significantly on the action

classes CellToEar and ObjectPut in all cases. For the action class
Pointing, the 3D CNN model achieves slightly worse
performance than the other three methods. Concatenation
of the SPMcube

gray and SPMcube
MEHI features yields improved

performance over individual features, but the performance
is still lower than that of the 3D CNN models. We can also
observe that our models also outperform the method based
on the spatiotemporal feature TISR. Overall, the 3D CNN
models outperform other methods consistently, as can be
seen from the average performance in Fig. 7. In addition,
the regularized model yields higher performance than the
one without regularization in all cases. Although the
improvement by the regularized model is not significant,
the following experiments show that significant performance
improvements can be obtained by combining the two models.

To evaluate the effectiveness of model combination in
the context of CNN for action recognition, we develop the
three alternative 3D CNN architectures described below:

. 3D-CNNm
332 denotes the architecture in which the

different channels are “mixed,” and the first two
convolutional layers use 3D convolution, and the last
layer use 2D convolution. “Mixed” means that the
channels of the same type (i.e., gradient-x and
gradient-y, optflow-x, and optflow-y) are convolved
separately, but they are connected to the same set of
feature planes in the first convolutional layer. In the
second convolutional layer, all five channels are
connected to the same set of feature planes. In contrast,
for models with superscript s, all five channels are
connected to separate feature planes in all layers.

. 3D-CNNm
322 denotes a model similar to 3D-CNNm

332, but
only the first convolutional layer uses 3D convolution
and the other two layers use 2D convolution.

. 3D-CNNm
222 denotes a model similar to 3D-CNNm

332, but
all three convolutional layers use 2D convolution.

The average performance of these three models, along with
that of 3D-CNNs

332, is plotted in Fig. 8. We can observe that
the performance of these three alternative architecture is
lower than that of 3D-CNNs

332. However, we show in the
following that combination of these models can lead to
significant performance improvement.

To evaluate the effectiveness of model combination, we
tuned each of the five models (3D-RCNNs

332, 3D-CNNs
332,

3D-CNNm
222, 3D-CNNm

322, and 3D-CNNm
332) individually and

then combined their outputs to make prediction. We
combine models incrementally in order of decreasing
individual performance. That is, the models are sorted in
decreasing order of individual performance and they are
combined incrementally from the first to the last. The
reason for doing this is that we expect individual models
with high performance will lead to more significant
improvements when they are combined. We report the
combined performance for each combination in Table 3 and

226 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 1, JANUARY 2013

Fig. 6. Illustration of the procedure to crop the bounding box from the
head tracking results.



plot the average performance in Fig. 9. We can observe that
combination of models leads to significant performance
improvements in almost all cases except the combination of

3D-CNNm
332, which leads to slight performance degradation.

This shows that the different architectures encode comple-
mentary information, and combination of these models
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TABLE 2
Performance of the Seven Methods under Multiple False Positive Rates

The AUC scores are multiplied by 103 for ease of presentation. The highest performance in each case is shown in bold face.

Fig. 7. Average performance comparison of the seven methods under different false positive rates. The AUC scores at FPR ¼ 0:1 and 1 percent are
multiplied by 105 and 103, respectively, for better visualization.



effectively integrates this information though the perfor-
mance of some of the individual models is low. Figs. 10, 11,
and 12 show some sample actions in each of the three
classes that are classified correctly and incorrectly by
the combined model. It can be observed that most of the
misclassified actions are hard to recognize even by human.

To highlight the performance improvements over our
previous result in [26], we report the best performance

achieved by the methods in [26] and that of the new methods
proposed in this paper in Table 4. We can observe that our
new methods in this paper improve over the previous results
significantly in all cases.

4.2 Action Recognition on the KTH Data

We evaluate the 3D CNN model on the KTH data [13],
which consist of six action classes performed by 25 subjects.
To follow the setup in the HMAX model, we use a 9-frame
cube as input and extract foreground as in [16]. To reduce
the memory requirement, the resolutions of the input
frames are reduced to 80� 60 in our experiments as
compared to 160� 120 used in [16]. We use a similar 3D
CNN architecture as in Fig. 3, with the sizes of kernels and
the number of feature maps in each layer modified to
consider the 80� 60� 9 inputs. In particular, the three
convolutional layers use kernels of sizes 9� 7, 7� 7, and
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Fig. 8. Average performance comparison of the four different 3D CNN architectures under different false positive rates. The AUC scores at FPR =
0.1 percent and 1 percent are multiplied by 105 and 103, respectively, for better visualization.

TABLE 3
Performance of Different Combinations of the 3D CNN Models

In this table, numbers 1 through 5 represent the models 3D-RCNNs
332, 3D-CNNs

332, 3D-CNNm
222, 3D-CNNm

322, and 3D-CNNm
332, respectively. The

highest performance in each case is shown in bold face.



6� 4, respectively, and the two subsampling layers use
kernels of size 3� 3. By using this setting, the 80� 60� 9
inputs are converted into 128D feature vectors. The final
layer consists of 6 units corresponding to the six classes.

As in [16], we use the data for 16 randomly selected
subjects for training and the data for the other nine subjects
for testing. Majority voting is used to produce labels for a
video sequence based on the predictions for individual
frames. The recognition performance averaged across five
random trials is reported in Table 5 along with published
results in the literature. The 3D CNN model achieves an
overall accuracy of 90.2 percent as compared with 91.7 per-
cent achieved by the HMAX model. Note that the HMAX

model uses handcrafted features computed from raw images
with fourfold higher resolution. Also, some of the methods in
Table 5 used different training/test splits of the data.
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Fig. 9. Performance of different combinations of the 3D CNN architectures. The AUC scores at FPR = 0.1 and 1 percent are multiplied by 105 and
103, respectively, for better visualization. See the caption of Table 3 and the text for detailed explanations.

Fig. 10. Sample actions in the CellToEar class. The top row shows actions that are correctly recognized by the combined 3D CNN model, while the
bottom row shows those that are misclassified by the model.

Fig. 11. Sample actions in the ObjectPut class. The top row shows actions that are correctly recognized by the combined 3D CNN model, while the
bottom row shows those that are misclassified by the model.

Fig. 12. Sample actions in the Pointing class. The top row shows actions that are correctly recognized by the combined 3D CNN model, while the
bottom row shows those that are misclassified by the model.

TABLE 4
Comparison of the Best Performance Achieved
by Our Previous Methods in [26] (ICML Models)

with the New Methods Proposed in This Paper (New Models)



5 CONCLUSIONS AND DISCUSSIONS

We developed 3D CNN models for action recognition in
this paper. These models construct features from both
spatial and temporal dimensions by performing 3D
convolutions. The developed deep architecture generates
multiple channels of information from adjacent input
frames and perform convolution and subsampling sepa-
rately in each channel. The final feature representation is
obtained by combining information from all channels. We
developed model regularization and combination schemes
to further boost the model performance. We evaluated the
3D CNN models on the TRECVID and the KTH data sets.
Results show that the 3D CNN model outperforms
compared methods on the TRECVID data, while it achieves
competitive performance on the KTH data, demonstrating
its superior performance in real-world environments.

In this paper, we considered the CNN model for action
recognition. There are also other deep architectures, such as
the deep belief networks [19], [23], which achieve promising
performance on object recognition tasks. It would be
interesting to extend such models for action recognition.
The developed 3D CNN model was trained using a
supervised algorithm in this paper, and it requires a large
number of labeled samples. Prior studies show that the
number of labeled samples can be significantly reduced
when such a model is pretrained using unsupervised
algorithms [22]. We will explore the unsupervised training
of 3D CNN models in the future.
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