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Abstract

Recent years have witnessed significant progress in de-
tection of basic human actions. However, most existing
methods rely on assumptions such as known spatial lo-
cations and temporal segmentations or employ very com-
putationally expensive approaches such as sliding window
search through a spatio-temporal volume. It is difficult for
such methods to scale up to handle the challenges in real
applications such as video surveillance.

In this paper, we present an efficient and practical ap-
proach to detecting basic human actions, such as making
cell phone calls, putting down objects, and hand-pointing,
which has been extensively tested on the challenging 2008
TRECVID surveillance event detection dataset . We propose
a novel action representation scheme using a set of motion
edge history images, which not only encodes both shape and
motion patterns of actions without relying on precise align-
ment of human figures, but also facilitates learning of fast
tree-structured boosting classifiers. Our approach is robust
with respect to cluttered background as well as scale and
viewpoint changes. It is also computationally efficient by
taking advantage of human detection and tracking to reduce
the searching space. We demonstrate promising results on
the 50-hour TRECVID development set as well as two other
widely-used benchmark datasets of action recognition, i.e.
the KTH dataset and the Weizmann dataset.

1. Introduction

Detecting human actions from a monocular video is
an important task for many emerging applications such as
advanced video surveillance and intelligent video content
analysis. Recently, we have seen huge advances in action
detection or recognition in well-controlled (e.g. laboratory
or studio-like) environment [26, 4, 27, 32, 2, 10, 22, 9, 6,
25, 30] or in movie or sports videos [5, 11, 13, 19, 24].
Not surprisingly, in order to make this difficult problem
more tractable, most of the existing approaches have made
assumptions such as known spatial locations and temporal
segmentations of actions, no (or very little) scale and view-

Figure 1. Sample actions of interests in 4 different camera views
in the 2008 TRECVID surveillance event detection dataset.

point changes, as well as static and clean background, so
that human figures can be reliably extracted and aligned.

Unfortunately, these assumptions seldom hold in real-
world videos such as surveillance videos. In addition, when
being recorded in a staged environment, people tend to act
very carefully and thus not as naturally as in everyday life.
Not to mention that it is very difficult to capture enough
variance of the same action performed by various people
as in our real life. This indicates that there is a large gap
between the existing research efforts and the challenges we
are facing in real applications.

To our best knowledge, 2008 TREC Video Retrieval
Evaluation (TRECVID 2008) [21] has made the largest
effort so far to bridge this gap by providing an exten-
sive 99-hour surveillance video dataset recorded in London
Gatwick Airport. As shown in Fig. 1, the highly crowded
scenes, the severely cluttered background with noticeable
reflections and shadows, the large variance in viewpoints
and people subjects (and thus the action execution styles),
and the huge amount of data to analyze, combined together,
make action detection on this dataset a formidably challeng-
ing task. As far as we know, human action detection perfor-
mance on such a challenging dataset with these practical
concerns has been barely evaluated and reported before.
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All these challenges have to be addressed jointly in a
practical action detection approach in which action repre-
sentations and search scheme shall be able to tolerate enor-
mous variance and be computationally feasible as well. In
this paper, we propose a novel action representation based
on a set of motion edge history images (MEHIs), which
not only effectively encodes both shape and motion pat-
terns of actions but also facilitates learning of fast tree-
structured boosting classifiers. Specifically, after detecting
edges from frame difference images, the motion edges on
objects’ boundaries are accumulated with different forget-
ting factors incrementally to build a set of 2D motion edge
history images. These MEHIs only preserve shapes of mov-
ing objects and record their non-local temporal orders, thus,
they are inherently insensitive to the versatility of individ-
ual’s appearances. Furthermore, it is very efficient to cal-
culate 2D Haar features on the MEHIs and learn a variant
of probabilistic boosting tree classifiers [29, 28] for various
actions. This is tantamount to analyze multiple space-time
volumes with different lengths simultaneously, thus we ob-
tain a time invariant action model in some sense. Exhaus-
tive search throughout a space-time volume to evaluate all
hypotheses [27, 2, 11] is computational prohibitive for an-
alyzing long-duration videos with high resolution, e.g. 50
hours of 720×576 videos. Therefore, we take advantage of
human detection and tracking to reduce the searching space
so as to build a complete action detection system.

The main merit of the proposed method is the balance be-
tween the need for discriminative power and computational
efficiency. The motion edge history images are inherently
not sensitive to appearance variations or clutters. Thus, by
boosting 2D Haar feature responses from multiple MEHIs,
the classifiers can largely learn the motion patterns of differ-
ent action categories, which relieves the demands for pre-
cise temporal or spatial alignment of human figures. This
set of MEHIs support analyzing different actions at multi-
ple locations and scales simultaneously. Further, leveraging
human detection and tracking to identify candidate regions
makes the system computationally feasible. The feature ex-
traction and classification modules run at 20 fps for videos
with resolution 720 × 576 and the entire system runs at 2
fps including human detection and tracking.

Actions of interest are generally application depen-
dent [25]. In this paper, we consider basic actions that are
articulated motions of a single human body which cannot
be easily decomposed to simpler actions. In particular, we
focus on 3 required actions in the 2008 TRECVID Surveil-
lance Event Detection Evaluation: CellToEar, ObjectPut,
and Pointing 1. On average, the proposed method achieves
detection rate 9.73% vs. false positive rate 1%. The sys-
tem incorporating the proposed method as one of the major

1The detailed definitions of these actions are elaborated in
www.nist.gov/speech/tests/trecvid/2008/doc/TRECVid08 Guidelines v1.6.pdf

components is among the top performers in the TRECVID
evaluation. To compare with previous algorithms and show
the generalization ability, we also evaluate our method on
two widely-used benchmark datasets, i.e. the KTH [26]
and the Weizmann [2] datasets, and demonstrate competi-
tive performance.

2. Related Work

The key of action detection is how to represent actions.
Explicit inference of human poses or articulated body mo-
tion are supposed to be very helpful, however, they are hard
problems themselves, if not even harder. So, we restrict to
review related work where actions are regarded as patterns
in 3D space-time volumes. Apparently, actions are funda-
mentally different from rigid 3D objects in that variations
in the time domain are typically much larger than that in
the spatial domain. In terms of different strategies to orga-
nize features in space-time volumes, the action representa-
tions in existing approaches can be mainly summarized into
4 categories: 1) a graphical model of key poses or exam-
plars; 2) a holistic space-time template; 3) a bag-of-words
model of sparse space-time interest points; and 4) a vast
pool of spatio-temporal features. Their respective strengths
and concerns are discussed as follows.

As the execution speed of the same type of actions may
vary, it is natural to model actions using a hidden Markov
model (HMM) [8, 18, 31] or a Conditional Random Field
(CRF) model [20] of key poses and recognize actions by in-
ferring the hidden pose sequences. Since direct inference of
poses is difficult, these approaches resort to 3D human mod-
els to synthesize 2D projections and estimate the key poses
by matching with silhouettes extracted from input videos.
By employing this analysis-by-synthesis idea, these action
representations are view-invariant to some extent.

By representing actions as holistic space-time templates
based on their global spatio-temporal characteristics, ac-
tion detection can be formulated as querying the nearest
neighbors of template actions. Given a figure-centric se-
quence, the action templates can be motion-energy and
motion-history images [3], half-wave rectified optical flow
fields [5], or space-time gradients of many small space-time
patches [27]. Alternatively, actions can be delineated by
geometrical properties of 3D templates, e.g. stacked silhou-
ettes of human figures, analyzed by the Poisson equation [2]
or differential geometric surfaces [32]. As a retrieval task,
a single action template may be sufficient to detect similar
actions. However, the computation is intensive in these ap-
proaches even assuming one fixed scale of all actions.

The bag-of-words paradigm is quite successful in ob-
ject and scene categorization. When it is applied to action
detection, SIFT-like descriptors [17] are extracted around
space-time interest points, then actions are abstracted by
histograms of a vocabulary of space-time visual words. For
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instance, the space-time interest points include 3D Harris
corners [12, 26] or space-time structures that show strong
responses to Gabor-like spatio-temporal filtering [4]. Along
this line of research, many bag-of-words approaches [23,
22, 16, 19] demonstrate superb performance in recognizing
actions in clean background. In practice the interest point
detection may be sensitive to clutters and scale variations.

Actions can also be represented by discriminative mod-
els, e.g. SVM or Adaboost classifiers, based on a vast pool
of spatio-temporal features. [10] extracts 3D Haar features
from optical flow fields in a fixed-size cube, which is ex-
tended to extract histograms of orientations of spatial gra-
dients and optical flow in [13]. Motivated by biological
vision systems, [9] computes optical flow and Gabor fil-
tering over video segments, then the maximal responses of
correlation with thousands of small templates are used to
learn SVM classifiers. [6] first learns Adaboost classifiers
from many small cuboids based on pixel-level optical flow
responses [5], then utilizes these classifiers as mid-level fea-
tures to train a higher level Adaboost classifier. Generally,
these approaches require a large number of training samples
to obtain good generalization performance.

Our method can be categorized to the 4th category. We
learn discriminative boosting tree classifiers [28] from 2D
Haar feature responses on a set of motion edge history im-
ages. The motion features are inspired by motion history
images [3], however, we maintain multiple MEHIs with var-
ious forgetting factors and extract sparse responses rather
than using them as templates. Therefore, our motion fea-
tures are time invariant to some extent and do not rely
on accurate spatial alignment. Our work is also related
to [10, 13]. Besides using new motion features, we eval-
uate 2D Haar features so that the method is less memory
consuming than using integral videos [10] or integral video
histograms [13].

3. Our Approach

3.1. Overview of our approach

Our approach intends to learn discriminant models us-
ing efficient motion features for individual actions. Given
the grey-level input video sequences, we incrementally up-
date a set of motion edge history images, meanwhile, lo-
cate the candidate regions to analyze by human detection
and tracking. For each detected human, an enlarged region
around the tracked head is cropped from all MEHIs. Then,
a large number of 2D Haar features are extracted to train a
one-against-all boosting tree classifier [28] for each action
category of interest. During testing, only the Haar features
in the learned classifier need to be evaluated. Note though
human detection and tracking results are available, we do
not align individual human figures accordingly.

Specifically, for consecutive frames, we first calculate
the frame difference image which retains motion informa-

tion only, then perform edge detection on it to extract the
approximate shapes of moving objects. Afterwards, the
motion edges are accumulated to a set of history images
with various forgetting factors. This kind of motion fea-
tures is a tradeoff between retaining all relevant informa-
tion and efficient processing. On one hand, a set of MEHIs
preserves more motion information than pure frame-based
features, on the other hand, to analyze multiple 2D images
is computationally more affordable than analyzing spatio-
temporal volumes. Further, we extract 2D Haar features
from these MEHIs in enlarged neighborhoods of tracked
human heads to train a boosting tree classifier. The block
diagram is shown in Fig. 2. Throughout the paper, the grey-
level MEHIs are drawn with pseudo colors.

3.2. Feature extraction

As appearances of individuals performing actions may
vary dramatically, we intend to extract features only re-
lated to the shape and motion patterns and ignore appear-
ance information as much as possible. Denote the grey-
level intensity of a pixel at (x, y) in the t-th input frame
by It(x, y). The frame difference Dt(x, y) of the con-
secutive frames is calculated by thresholding dt(x, y) =
|It(x, y) − It−1(x, y)| with a conservative threshold Td

(Td = 10 in all our experiments), as

Dt(x, y) =
{

0 if dt(x, y) ≤ Td

dt(x, y) if dt(x, y) > Td
. (1)

Then, a binary motion edge image Mt(x, y) is obtained by
performing Canny edge detection on Dt(x, y). Mt(x, y)
preserves the approximate shapes of moving objects. In or-
der to be insensitive to varying execution speeds of the same
type of actions, we maintain a set of N motion edge history
images Hi

t(x, y) with different forgetting factors αi < 1
(N = 4 and α = {0.6, 0.7, 0.8, 0.9} in our experiments), as

Hi
t(x, y) =

{
1 if Mt(x, y) > 0
αiH

i
t−1(x, y) if Mt(x, y) = 0 . (2)

Thus, Hi
t(x, y) is a grey-level image where larger intensity

indicates some motion occurs more recently. These MEHIs
are incrementally updated on-the-fly, as shown in Fig. 2.

MEHIs are efficient to calculate and less sensitive to
noise and clutters than optical flow. In addition, conven-
tional optical flow only preserves local temporal informa-
tion between a pair of frames, but MEHIs retain motion in-
formation within a variable of relative long periods. Sample
MEHIs of 3 different actions are shown in Fig. 3.

3.3. Classification

For action detection, the space of negative samples is ex-
tremely large including both persons not performing actions
of interests and all non-human background regions, which
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Figure 2. The block diagram of the proposed human action detection approach.

Figure 3. Sample MEHIs for the actions: CellToEar, ObjectPut,
and Pointing from left to right (α = 0.8). The green rectangle
indicates the tracked human head and the red rectangle indicates
the region used to analyze.

is an issue for learning discriminative classifiers and even
collecting negative training samples. In fact, distinguishing
human from non-human regions in images has been inves-
tigated intensively for decades. So, it is a natural choice to
limit the candidate regions by taking advantage of human
detection and tracking. By this means, not only the num-
ber of candidate regions is significantly reduced but also the
tough requirements of collecting sufficient negative samples
are mitigated to make this learning task tractable.

The positive samples of an action could appear quite
different from diverse view angles, as shown in Fig. 6.
To account for these intra-class variations, we follow the
divide-and-conquer strategy to train a variant of probabilis-
tic boosting-tree classifier [28]. Specifically, given the hu-
man head of a positive sample X, we crop an enlarged re-
gion, e.g. 4×6 size of the head for the TRECVID dataset or
4× 8 size of the head for the KTH and Weizmann datasets,
and normalize it to 40×40 conceptually. A large number of

2D Haar features hj(Hi
t) are extracted from all MEHIs us-

ing integral image technique to train an Adaboost classifier
C, i.e. a weighted sum of decision stumps fj(·) on hj(Hi

t),

C(X;H1
t , · · · ,HN

t ) =
M∑

j=1

βjfj(hj(Hi
t)), (3)

where M is the number of features selected with the weight
βj . Then, X is divided to build a binary tree according to
its probability p(+1|X) at the classifier C,

p(+1|X) =
exp{2C(X;H1

t , · · · ,HN
t )}

1 + exp{2C(X;H1
t , · · · ,HN

t )} . (4)

If p(+1|X) > 0.5−e, X is divided to the left sub-tree, or if
p(+1|X) < 0.5+e, it is put to the right sub-tree. Note those
X falling in the range of [0.5 − e, 0.5 + e] are put to both
sub-trees. A cascaded Adaboost classifier [29] is trained
at each leaf node to make the final classification. By this
means, positive samples with large intra-class variations are
handled seperately. The depth of this binary tree is set to 2
empirically and e = 0.1. The entire classification procedure
is illustrated in Fig. 4.

T
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T

F

A Boosting tree classifier
2D Haar features

x4

x6

C

C

C

C C

…

C C

…

C C

…

C C

…

T

F F

TP(+1|X)>0.5-e

P(+1|X)<0.5+e

Figure 4. The feature extraction and classification procedures.

In implementation, the Haar feature responses are nor-
malized w.r.t the area of the candidate region, instead of ac-
tual image normalization or down-sampling, which leads to
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some kind of scale and translation invariance of the Haar
feature responses. The Haar feature pool includes 12 types
uniformly sampled on the candidate regions. In particu-
lar, line-like Haar features are preferred since the MEHIs
mainly contain edge segments, so we only keep those fea-
tures whose aspect ratios are larger than 3 : 1. The total
number of features is 35220 for one candidate from all 4
MEHIs. Since the numbers of positive and negative samples
are quite unbalanced, we generate more positive samples
by randomly shifting and zooming the annotated ground
truths, as well as mirroring their Haar responses. For the
TRECVID dataset, we train a one-against-all boosting tree
classifier for each action where the leaf node consists of up
to 10 stages. At each stage, target detection and false pos-
itive rates are set to 0.95 and 0.5. For the KTH and Weiz-
mann datasets, we train multiple one-against-all Adaboost
classifiers with the detection rate 0.995 and false positive
rate 0.001, which is sufficient to yield good performance.

3.4. Computational complexity

One of the prominent merits of our method is the com-
putational efficiency which is critical for detecting actions
from hours of real surveillance videos within reasonable
time. In our method, at the testing stage, the feature ex-
traction module only involves calculating the MEHIs and
their integral images, and the classifiers merely evaluate up
to several thousands of 2D Haar features.

Human detection and tracking are computational expen-
sive but still affordable. For a Core2Duo 3.16GHz desk-
top, if the image resolution is 160 × 120 (as in the KTH
dataset), the entire system including human detection and
tracking runs at over 25 fps. In contrast, recent work [6] re-
ports 0.75 sec per frame, and 2.4 sec per frame in [9] for the
same image resolution. Note most of existing approaches
only report the classification time while the processing time
for tracking and stabilizing human figures is unknown. For
videos at resolution 720 × 576 in the TRECVID dataset,
the feature extraction and classification modules run at 20
fps and the system runs at 2 fps including human detection
and tracking. Consequently, it is computationally feasible
to process 50 hours videos in parallel in about one day.

4. Experiments

The action detection task can be evaluated in terms of
the accuracy either frame-based or video-based. The video-
based results are typically obtained by majority voting of
the frame-based results if temporal segmentations of ac-
tions are known. We evaluate the proposed method on the
TRECVID dataset in terms of the frame-based performance
and compare with a bag-of-words approach and an optical
flow based approach. To further show the effectiveness of
this new action representation and the generalization ability

of the system, we also present both frame-based and video-
based performance on the KTH and the Weizmann datasets.

4.1. Human detection and tracking

In our system, we employ a human detector based on
Convolutional Neural Networks (CNN) [15] and a multi-
ple hypotheses based tracker [1, 7] to locate human heads.
For the TRECVID dataset, we annotated all human heads
every 750 frames to test the performance. For 4 different
camera views, the average number of true heads per frame
(avg. #), the recall rate (rec.) and precision rate (pre.) of de-
tection plus tracking are summarized in Tab. 1 with sample
frames in Fig. 5. Certainly, wrong human detections may
degrade the action detection performance later on. How-
ever, in practice, applications have to cope with such im-
perfect detection and tracking results especially in complex
and crowded scenes and do not expect accurate annotations.

CAM1 CAM2 CAM3 CAM4 Average

avg. # 5.94 25.36 11.93 7.71 12.72
rec. 61.58% 31.39% 60.46% 70.90% 49.25%
pre. 77.31% 60.56% 78.09% 55.68% 66.13%

Table 1. Performance of human detection plus tracking on the
TRECVID dataset.

Figure 5. Sample human detection and head tracking results.

4.2. The TRECVID surveillance event dataset

The 2008 TRECVID surveillance event detection
dataset [21] consists of 50-hour (5 days × 2 hours/day × 5
cameras) videos in the development set and 49-hour videos
in the evaluation set. There are about 190K frames per 2-
hour video with image resolution 720 × 576. The ground
truths of occurrences of actions in the development set were
provided by NIST [21]. We further labeled the locations of
the persons performing actions every 3 frames for training.
The actions of interests are 3 required events in the evalua-
tion: CellToEar, ObjectPut, and Pointing. Sample positive
training data are shown in Fig. 6, where we observe large
intra-class variations due to different view angles and di-
verse ways people performing the same type of actions.

Since the videos were recorded on 5 different days, we
perform 5-fold cross-validation accordingly, which guaran-
tees the same person hardly appears in both training and
testing sets. The positive training samples of an action are
the frame-based labeled instances and the negative samples
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Figure 7. Comparison of the average frame-based ROC curves for detecting CellToEar, ObjectPut, and Pointing.

Figure 6. Examples of positive training samples for CellToEar (1st
row), ObjectPut(2nd row), and Pointing (3rd row).

FPR CellToEar ObjectPut Pointing

1% 12.00% 9.65% 7.54%
2% 17.34% 13.41% 11.06%
5% 35.88% 26.70% 20.36%
10% 47.28% 39.21% 38.29%

Table 2. The detection rates at different false positive rates for the
3 actions on the TRECVID dataset.

are the human detection and tracking outputs including false
positives. We train one-against-all boosting-tree classifiers
for each action with up to 2200 Haar features. There are
2114, 2172, and 8725 positive samples of CellToEar, Ob-
jectPut, and Pointing, respectively, and about 188K nega-
tive training samples. As the actions are not segmented,
we evaluate the performance in terms of the frame-based
classification results. The average detection rates of 5-fold
cross-validation at different positive rates (FPR) are present
in Table 2. On average our method achieves about detection
rate 9.73% vs. false positive rate 1% for these 3 actions.
This performance is promising considering the huge varia-
tions in this dataset and the efficiency of the method.

We implement two baseline methods for comparison.
One is a bag-of-words approach where dense SIFT fea-
tures [17] are quantized with a 256-word codebook in a
candidate region. Then, up to 4× 4 spatial pyramid match-

ing [14] of the histograms is used to incorporate the spatial
layout information of these local features to train SVM clas-
sifiers. This method is denoted by BOW+SPM. We also sub-
stitute motion edge images in our method by Lucas-Kanade
optical flow fields and accumulate them to a set of optical
flow history images (OPHIs), while, the 2D Haar feature
pool and the classification module remain the same. Our
method outperforms these two methods in terms of the aver-
age ROC curves of 5-fold cross-validation shown in Fig. 7.
These comparisons show that the MEHI-based representa-
tions using 2D Haar features are more effective to extract
relevant information to motion patterns of actions than lo-
cal features. Moreover, the MEHIs are far less sensitive to
clutters than optical flow responses.

4.3. The Weizmann dataset

The Weizmann dataset was first used in [2] and consists
of 9 subjects performing 10 actions: bending down, jumping
jack, jumping, jumping in space, running, galloping side-
ways, walking, waving one hand and waving both hands.
In total, there are 93 sequences with resolution 180 × 144.
Sample frames including the tracked trajectories are shown
in the first row of Fig. 8 with the corresponding MEHI rep-
resentations in the second row.

Figure 9. The average confusion matrices of action recognition
results on the Weizmann dataset: per-frame results (on the left)
and per-video results (on the right).

Following [4, 23, 22], we perform leave-one-out cross-
validation using 8 persons for training and the other one
for testing. Multiple one-against-all Adaboost classifiers
are trained for each action category, where the number of
Haar features selected in the classifier is up to 150 (this
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Figure 8. Sample frames of the Weizmann dataset (1st row) and the corresponding MEHIs (α = 0.8) (2nd row).

number reveals the difficulty of the task in some sense).
The video-based classification is obtained by voting of the
frame-based results. The average confusion matrices are
present in Fig. 9. The average accuracies compared with
other approaches are listed in Table 4 illustratively.

4.4. The KTH dataset

The KTH dataset was first recorded for [12, 26] and in-
cludes 6 types of actions: boxing, handclapping, handwav-
ing, jogging, running, and walking. There are 25 subjects
performing these actions under 4 different scenes: outdoors
(s1), outdoor with scale variations (s2), outdoors with dif-
ferent clothes (s3), and indoors (s4). In total, there are 598
sequences with image resolution 160×120. Sample frames
are illustrated in the first row of Fig. 10.

Figure 10. Sample frames of the KTH dataset (1st row) and the
corresponding MEHIs (α = 0.8) (2nd row).

We perform 5-fold cross-validation on the KTH dataset,
where the sequences of 20 persons are used in training and
those of the other 5 persons are for testing. The number of
Haar features in the Adaboost classifiers is up to 600. The
accuracies of different scenes and the all-in-one test are av-
eraged over 5 folds and listed in Table. 3 with the average
confusion matrices present in Fig. 11. We compare with
recent approaches in terms of the average recognition accu-
racies in Table 4. This comparison is quite indicative since
the ways to split data and perform cross-validation vary in
different methods. Our results are quite competitive in that
we employ weak assumptions, i.e. not assuming that the hu-
man figures are well aligned and stabilized or one video clip
contains a single instance of an action. Some video clips in

Accuracy s1 s2 s3 s4 all-in-one

frame-based 73.9% 71.0% 73.6% 78.9% 74.4%
video-based 83.7% 84.4% 82.6% 92.4% 87.3%

Table 3. The action recognition accuracy on the KTH dataset.

Avg. accuracy KTH Weizmann
methods per-frame per-video per-frame per-video

Our method 74.4% 87.3% 89.2% 99.4%
Schindler et al. [25] 88.0% 92.7% 99.6% 100%

Fathi et al. [6] N/A 90.5% 99.9% 100%
Jhuang et al. [9] N/A 91.7% N/A 98.8%

Niebles et al. [23, 22] N/A 81.5% 55.5% 72.8%
Dollár et al. [4] N/A 81.2% N/A N/A

Schüldt et al. [26] N/A 71.7% N/A N/A

Table 4. Illustrative comparison of the action recognition perfor-
mance.

the KTH dataset have very low image contrast which de-
grades our tracking performance sometimes.

Figure 11. The average confusion matrices of action recognition
results on the KTH dataset: per-frame results (on the left) and per-
video results (on the right).

4.5. Discussion

Our approach shows promising results in detecting the 3
actions in the TRECVID dataset, however the false positive
rates are still high. From our observations, there are two
primary reasons: the semantic gap between motion patterns
and actions, and the cluttered motion background. Some
false detections are reasonable in the sense that the sub-
tleties of the motion patterns are too hard to discern. For
example, fixing hair may be confused with CelltoEar, the
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motion of getting an object is identical to that of putting an
object, and many actions involve movements of arms simi-
lar as Pointing. Some typical false detections are shown in
Fig. 12. The other complication is that though our method is
not sensitive to cluttered background, the cluttered motion
background, e.g. motions of a crowd on the background,
threatens correct detections severely.

Figure 12. Sample false detections. From left to right: 2 false
positives for CelltoEar, ObjectPut, and Pointing, respectively.

5. Conclusion

In this paper, we demonstrate the effectiveness of an ef-
ficient action representation based on a set of motion edge
history images and present a complete human action de-
tection system for real surveillance videos. We show en-
couraging detection performance of 3 basic actions on the
challenging 2008 TRECVID event detection dataset. We
believe this challenging dataset will greatly propel the re-
search on action detection in realistic settings. In addition,
the method generalizes well in recognizing 16 actions on
the KTH and Weizmann datasets and achieves competitive
performance in comparison with the state-of-the-art algo-
rithms. Our future work will include improving the motion
features to alleviate the restriction of slow camera motion.
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