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Abstract

Active learning is an effective way of engaging users to
interactively train models for visual recognition. The vast
majority of previous works, if not all of them, focused on
active learning with a single human oracle. The problem
of active learning with multiple oracles in a collaborative
setting has not been well explored. Moreover, most of the
previous works assume that the labels provided by the hu-
man oracles are noise free, which may often be violated in
reality. We present a collaborative computational model for
active learning with multiple human oracles. It leads to
not only an ensemble kernel machine that is robust to label
noises, but also a principled label quality measure to online
detect irresponsible labelers. Instead of running indepen-
dent active learning processes for each individual human
oracle, our model captures the inherent correlations among
the labelers through shared data among them. Our simula-
tion experiments and experiments with real crowd-sourced
noisy labels demonstrated the efficacy of our model.

1. Introduction
Supervised discriminative learning has been one of

the main methodologies for advancing research on visual
recognition [20, 13]. One of the major difficulties taking
such an approach is to collect sufficient trustworthy labeled
data for training. To mitigate the heavy workload of label-
ing, some previous works attempted to train the recognition
model with fewer labeled data using semi-supervised learn-
ing [10]. Nevertheless, state-of-the-art recognition systems
are all based on supervised learning with large quantity of
labeled training data [20, 13].

To facilitate more efficient data labeling, some previous
works have explored the use of active learning [11, 22, 12,
21, 16, 8], where the learning machine guides the labeler
to label the most informative visual examples. However,
most previous works on active visual labeling, if not all of
them, only investigated the case where a single human ora-
cle is engaged [11, 22, 12, 21, 16, 8]. The problem of active
learning with multiple collaborative labelers has largely re-
mained unexplored. Moreover, most previous active learn-
ing algorithms assume that labels provided by the human

oracle are noise free. Hence, the problem of active learn-
ing under the condition that the human oracle may provide
somewhat noisy labels is largely neglected.

On the other hand, most of the recent efforts on collect-
ing large scale labeled image datasets, such as ImageNet [5]
and LabelMe [19], have exploited crowdsourcing. There
are several issues raised when using crowdsourcing systems
such as Amazon Mechanical Turk. First of all, there is no
active guidance from the system to enable the labelers to
more efficiently label the data. Secondly, there is no mecha-
nism to online detect if a labeler is doing the job assignment
in the desired way. Last but not least, several studies have
shown that the label information collected from Mechan-
ical Turk could be very noisy, either due to irresponsible
behaviors from some of the labelers, or due to the inherent
ambiguities of the target semantics.

We propose a computational model for collaborative ac-
tive learning with multiple labelers to address all the above
issues, which learns an ensemble kernel machine for classi-
fication problems. In our framework, each labeler is running
an individual active learning process, where the system nat-
urally guides the labelers to label different images more ef-
ficiently towards learning the classifier. These active learn-
ing processes are not independent of one another. Our uni-
fied discriminative formulation explicitly models the con-
sistencies among all the different active learning processes
through the shared data among them. By doing so, not only
can we make our active learning model to be more robust
to label noises, but also we can derive principled measures
to detect irresponsible labelers who are careless about their
label quality earlier in the visual labeling process.

There have been some previous works which attempted
to use active learning to facilitate crowd-sourced human la-
beling [23, 1, 22] in various tasks including machine trans-
lation [1], named entity extraction and sentiment detec-
tion [14], and visual object detection [22]. To handle la-
bel noise and irresponsible users, they either perform post-
mortem majority voting to reduce label noise [22], or use
a pre-labeled gold standard dataset to measure label qual-
ity [1], or synchronize labels from different workers on
the same examples to conduct online majority vote filter-
ing [14]. None of these seemed to be satisfactory.

Donmez et al. [7] proposed a majority voting based con-
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fidence interval method to determine the labeling quality of
each annotator, which is assumed to be stationary, and used
it to select a subset of annotators to query in the active learn-
ing process. In their later work [6], a sequential Bayesian
estimation method is proposed to deal with non-stationary
labeling qualities. Nevertheless, although reliable annota-
tors can be selected, the labels of one data sample from
the selected annotators still need to be synchronized, which
may not be desirable. Zhao et al. [26] proposed an incre-
mental relabeling mechanism which exploits active learn-
ing to not only select the unlabeled data to be labeled by the
crowds, but also select already labeled data samples to be
relabeled until sufficient confidence is built.

Several other previous works have also explored the case
of learning models from multiple annotations collected in
the absence of gold standard labels. For example, Raykar et
al. [18, 17] proposed a probabilistic model, which assumes
independence of the annotator judgement given the true la-
bel. An EM algorithm is developed to alternatively estimate
the classification model and measure the performance of
the multiple annotators. Dekel and Shamir [3] adapted the
formulation of support vector machines (SVMs) to identify
low quality or malicious annotators.

However, they assume that each annotator is binary as
either good or bad, instead of in a continuous state space.
Later, Dekel and Shamir [4] described a method along with
its theoretic support for pruning out the low-quality workers
by using the model trained from the entire labeled dataset
from all workers as ground truth. Chen et al. [2] proposed a
method to identify good annotators based on spectral clus-
tering in the worker space. The assumption is that good
annotators will behave similarly. Yan [24, 25] presented a
probabilistic multi-labeler model to learn from the crowds,
where the quality of each labeler is modeled by a logistic
regression function.

These works provide various insights on how to deal
with label noises and malicious labelers. Nevertheless, none
of them explored to actively learn an ensemble classifier
from multiple noisy labelers. Previous study has demon-
strated that an ensemble classifier or multiple classifier sys-
tem, such as those using bagging, tend to be more resilient
to label noises, which partly motivated us to design such a
collaborative active learning algorithm to learn an ensemble
kernel machine.

We apply the proposed collaborative active learning
framework for training classifiers for visual recognition.
We validate its efficacy with both simulation experiments
and experiments with real crowd-sourced noisy labels from
Amazon Mechanical Turk. Our extensive empirical eval-
uations clearly show that our collaborative active learning
algorithm is more robust to label noises when compared
with multiple independent active learners, and the learned
ensemble kernel classifier can often generalize better to new
data. We also show that conducting collaborative active
learning naturally leads to more efficient labeling than ran-
dom learning (i.e., randomly select the next image for a la-
beler to label). When there are irresponsible labelers, our
experiments also manifested that the measure we derived
from our model show a very strong signal to detect these

irresponsible labelers earlier in the active learning process,
which is desired as we want to ban them as early as possible.

Our main contributions are hence four-fold: (1) we pro-
pose a unified and distributed discriminative learning model
for collaborative active learning among a set of labelers to
induce an ensemble kernel machine classifier. (2) From
our proposed computational model, we are able to derive
principled criterion which presents strong signal to iden-
tify irresponsible labelers online. (3) We demonstrate that
through explicit modeling of the label consistency in the ac-
tive learning model, our collaborative active learning pro-
cess is robust to label noises and label errors from irre-
sponsible labelers. (4) We apply the proposed collabora-
tive active learning framework to learn classifiers for visual
recognition, which produced models that can often general-
ize better to new data than other competing methods.

The remainder of the paper is organized as follows:
Sec. 2 presents the mathematical formulation of our collab-
orative discriminative learning framework. Then in Sec. 3,
we develop the active learning criteria for each labeler. In
Sec. 4, we derive a principled measure from our computa-
tional model to detect irresponsible labelers for label quality
control. Various experimental results are reported and dis-
cussed in Sec. 5. Finally, we conclude in Sec. 6.

2. Collaborative discriminative learning

2.1. Formulation

Suppose we have K labelers (a.k.a, K Turks in Amazon
Mechanical Turk) subscribed to our visual labeling task on
data-set D = {x1,x2, . . . ,xN}. We partition D into K
subsets that have overlaps with each other, i.e., D = D1 ∪
D2 ∪ . . . ∪ DK . Usually we may want to ensure that m
versions of the label for each data xi ∈ D for the target
visual concept be collected from different labelers. Hence
xi will be present in m subsets of D. In other words, define
S(xi) = {Dk|xi ∈ Dk} to be the set of all subsetDi that xi
belongs to, we have, ∀xi, |S(xi)| = m, where | · | denotes
the cardinality of a set.

Since our goal is to design a collaborative active learn-
ing strategy across all the K labelers, we further assume
that each subset Di is composed of two subsets: the labeled
set Li, and the unlabeled set Ui such that Di = Li ∪ Ui and
Li ∩ Ui = ∅. We denote yi(k) ∈ {−1, 1} to be the label of
xi by labeler k if it is a labeled data sample. Note here, we
focus our discussion on binary classification problems but
it is straightforward to extend it to multiple category classi-
fication by taking a one versus all approach. For each data-
set Di, we try to learn an individual classification function
fi(x), i = 1, 2, . . . ,K from Li. Notice that the training of
the set of all classifiers is not independent, as we would like
to ensure that two classifiers fi(x) and fj(x) be consistent
on the data samples they share.

Therefore, we propose the following objective function



to jointly optimize all K classifiers, i.e.,

L(D) =

K∑
i=1

∑
xj∈Li

Li(yj(i), fi(xj))

+
∑

1≤i 6=j≤K

∑
xk∈Di∩Lj

Llij(yk(j), fi(xk))

+ λ

K∑
i=1

Ω(‖fi‖H), (1)

where Ω(·) is a monotonically increasing regularization
function to control the complexity of the hypothesis space,
and H is the reproducing kernel Hilbert space induced by
certain kernel function. Furthermore, here Li(·) is a loss
function to characterize the performance of each individ-
ual classifier fi(xi) on each Li; Llij reinforces that the two
classifiers fi(x) and fj(x) be consistent in predicting the
label of a shared data sample xk, when it has already been
labeled by at least labeler j. For Li(·), we took a stan-
dard Logistic regression loss to maximize the margin, i.e.,
Li(yj(i), fi(xj)) = log{1 + e−yj(i)fi(xj)}.

To define Llij(·), we need to consider three conditions.
First, if xk ∈ Li ∩ Lj , i.e., xk is labeled by both la-
beler i and labeler j, and the labels are consistent with
each other. Then we would need to bias the learning of
both fi(x) and fj(x) to make more efforts to ensure the
correctness of their prediction on this data sample xk. If
the two labels are inconsistent, then it could either be the
case that this example caused confusion among the differ-
ent labelers, or some labelers are not doing a good job. In
this case, we may discount these conflicting labels by en-
couraging both classifiers fi(x) and fj(x) to put the data
sample to be near the decision boundary since we are not
sure about the true label anyway. In the third case, xk is
only labeled by labeler j, then this label information will
need to be leveraged to benefit the learning of fi(x). As
can be easily verified, we can achieve the desired behavior
for all three situations through a single loss function, i.e.,
Llij(yk(j), fi(xk)) = log{1 + e−yk(j)fi(xk)}.

2.2. Learning a kernel machine
We exploit the “kernel tricks” to learn classifiers with

complex decision boundaries, which implicitly performs a
non-linear mapping to transform the data in the original
space to a very high dimensional space (or even infinite
dimensional space). According to the representation the-
orem [9], each classifier fi(x), i = 1, 2, . . . ,K is defined
as

fi(x) =
∑

xj∈Di

αijk(xj ,x). (2)

Let Ni = |Di|, N l
i = |Li|, and Nu

i = |Ui| be the
number of samples in Di, Li and Ui respectively. We
immediately have Ni = N l

i + Nu
i . We denote ~αi =

[αi1, αi2, . . . , αiNi ]
T . Let Ki = [k(xj ,xk)]jk be the

Ni × Ni Gram matrix defined over Di. Let Kl
i =

[k(xj ,xk)]xj∈Li be the first N l
i rows of Ki, and Ku

i =
[k(xj ,xk)]xj∈Ui be the last Nu

i rows of Ki, i.e., Ki =

[Kl
i
T
,Ku

i
T ]T . We further denote that Kl

ij be the matrix
composed by rows of Ki corresponding to those samples
xk ∈ Di ∩ Lj . Similarly we denote Ku

ij and Ku
ji be the

matrices composed by rows of Ki and Kj corresponding to
those data samples in Ui ∩ Uj , respectively.

We also denote that ∀i, yi be the label vectors of the set
of labeled data samples in Li from labeler i, and ylij be the
label vector of those samples in Di ∩ Lj from labeler j.
Embedding Eq. 2 into Eq. 1, and representing the formula
in vector format, we have

L(D) =

K∑
i=1

1T log{1 + e−K
l
i(yi)~αi}

+
∑
i 6=j 1

T log{1 + e−K
l
ij(y

l
ij)~αi}+ λ

∑
i ~α

T
i Ki~αi,(3)

where Kl
i(yi) = diag[yi]K

l
i and Kl

ij(y
l
ij) =

diag[ylij ]K
l
ij . Here diag[v] transforms a vector into a di-

agonal matrix by placing each corresponding element of the
vector v sequentially in the diagonal position to form a di-
agonal matrix.

It can be shown that L(D) is a convex function with re-
spect to each ~αi. Hence we can conveniently obtain the
optimal solution of ~αi by gradient based optimization algo-
rithms. We have
∂L(D)

∂~αi
= −Kl

i(yi)
TPli −

∑
i6=j

Kl
ij(y

l
ij)P

l
ij + 2λKi~αi,

(4)

where Pli = e−Kli(yi)~αi

1+e−Kl
i
(yi)~αi

and Plij = e
−Klij(y

l
ij)~αi

1+e
−Kl

ij
(yl
ij

)~αi
. Al-

though we can take the second order derivative to run a
full Newton’s method, we resort to a more efficient quasi-
Newton’s method, i.e., the L-BFGS-B algorithm [27] to ob-
tain the optimal ~αi more efficiently.
Discussions. It can be clearly observed that the learning of
classifier fi will take into consideration of labels from other
labelers with shared data. This is by design from our col-
laboration formulation, as labels are naturally shared across
different labelers on the shared data. As we will show in the
experiments, this gives an additional advantage to enable
the learning to progress faster than independently learning
multiple classifiers.

2.3. Kernel machine ensemble
Once all the kernel classifiers fi(x) are learnt, to clas-

sify a new data point xnew, we took an ensemble classifica-
tion approach. Specifically, we identify the nearest neigh-
borN (xnew) of xnew in D. The final prediction of xnew is
determined by the following ensemble classifier

f(xnew) =
∑

N (xnew)∈Di

fi(xnew), (5)

where Di indicates the subset of the training data assigned
to labeler i to learn fi(x). Since each data sample is as-
signed to m labelers, so there will be exactly m learned



kernel classifiers to be used to form the ensemble classi-
fier to predict any new data sample xnew. Alternatively, we
can also sum the prediction scores from all K classifiers
together. Empirically we found the ensemble classifier in
Eq. 5 always obtained better results.

3. Collaborative active learning
We design a collaborative active learning strategy based

on the collaborative discriminative kernel machine pro-
posed in Sec. 2.2. Recall that for each single labeler i, the
task of active learning is to select the most informative ex-
ample xk ∈ Ui to be labeled by the labeler, such that the
performance of the learning machine can be improved the
most. One natural criterion is to evaluate how far the un-
labeled example xk ∈ Ui is from the decision boundary
with the currently learnt classifier

fi(xk) =
∑

xj∈Di

αijk(xj ,xk). (6)

If the absolute value of fi(xk) is small, then it indicates that
our current classifier is not very confident with it. Hence, it
is natural for us to define our active learning criterion for
labeler i to be

Ai(xk) = |fi(xk)|. (7)
At each round of the active learning step, we choose

x∗i = arg min
xk∈Ui

Ai(xk) (8)

for labeler i to label. This type of uncertainty based active
sampling, though simple, has been demonstrated to be very
effective in previous work. Certainly, more complicated ac-
tive learning criterion can be adopted at the expense of more
computational cost. It is beyond the scope of this paper to
explore all of them. In our experiments, it is revealed that
this simple uncertainty based active learning criterion per-
formed very well.

We also would like to emphasize that although our ac-
tive learning criterion Ai(x) for labeler i is derived from
the classification function fi(x) only, it does not mean that
the active example selection is independent of each labeler.
That is because the learning of each fi(x) is coupled with
each other in our joint formulation (Eq. 1 and Eq. 3). There-
fore the dependent information from other labelers have
been carried over into the active selection criterion. More-
over, as clearly presented in our formulation, once x∗i is se-
lected, it will also affect the learning of the classifiers of the
other labelers. Hence the active sample selection processes
of all the K labelers are indeed coupled with one another in
our formulation.

Each time a new image or several new images are labeled
by the labelers, the fi(x) for each specific labeler i needs to
be updated. We shall note that in our collaborative learn-
ing framework, the update or retraining of fi(x), or equiv-
alently the re-estimation of the parameter vector ~αi can run
asynchronously – we simply just need to hold the classifier
parameters ~αj of the other labelers to be fixed when calcu-
lating the gradient using Eq. 4, and then optimizing for ~αi
only.

4. Labeling quality control
Most previous collaborative tagging systems such as

Amazon Mechanical Turk can only rely on post check of la-
bel consistency to filter out noisy labels. By that time, even
if a sloppy labeler was identified, valuable time and mone-
tary resources have been wasted. We argue that the consis-
tency among the learned kernel machines fi(xi) can natu-
rally serve as an online label quality indicator. As we have
discussed in Sec. 2.1, when the labels from two labelers i
and j on an example xk are conflicting with each other, our
joint formulation will encourage the classifier fi(xk) and
fj(xk) to have low confidence predictions on xk. Hence
we define the following evaluation function to indicate if
labeler i is consistently conflicting with other labelers, i.e.,

Qi =
1

|Li|
∑

xj∈Li

yj(i)fi(xj). (9)

Intuitively, if labeler i is doing a lousy job in labeling, then
it will induce more conflicts with its peers and its Qi score
will be low. Although the Q score of the other labelers will
also be degraded by labeler i’s irresponsible behavior, they
will be degraded less than the Q score of labeler i. Never-
theless, we are still assuming that the majority of the label-
ers will behave honestly–as is the case in real-world.

5. Experiments
5.1. Datasets and visual features

We start our evaluation with a set of experiments with
controlled synthetic label noises on 10 different classes of
images from the ImageNet dataset to better understand its
behavior. Then we evaluate it on two datasets with real-
world crowdsourced labels from Amazon Mechanical Turk
and compare with some previous work.

For the experiments with synthetic label noise, we lever-
age images in 10 different classes from the ImageNet
dataset [5]. These are top 10 classes with the largest num-
ber of labeled examples from ImageNet Challenge. The
category names of the 10 classes of images are “seashore,
coast, seacoast, sea-coast”, “monarch, monarch butterfly,
milkweed butterfly, Danaus plexippus”, “Vizsla, Hungar-
ian pointer”, “English setter”, “Yorkshire terrier”, “Rhode-
sian ridgeback”, “African elephant, Loxodonta africana”,
“meerkat, mierkat”, “computer keyboard, keypad”, “din-
ing table, board” , respectively. The number of images per
category for these 10 categories used for collaborative ac-
tive learning ranges from 2125 to 3047. There are 24084
images in total. Note these accounted for 80% of the la-
beled images for these 10 categories in ImageNet dataset.
We hold the other 20% for testing the resulting ensemble
classifiers. In terms of visual features, we used the local
coordinate coding (LCC) [15] on dense HoG features with
4096 codewords, and spatially pooled the LCC features in
10 spatial cells. This is similar to [15]. The dimensionality
of the features is 40960.

For the experiments with real crowdsourced labels, we
re-pushed the images of the 5 categories “Yorkshire terrier”,



“Rodesian ridgeback”, “English setter”, “Vizsla Hungarian
pointer”, and “Meerkat, meerkat” back to Amazon Mechan-
ical Turk to collect multiple copies of labels. The first 4
categories are all different breed of dogs, and the last cate-
gory “Meerkat, meerkat” is similar in visual appearance to
dogs. Therefore these 5 categories tend to confuse with one
another. We obtain 7 copies of labels per image for each
image in these 5 categories, which are subsequently used in
our experiments. The noise level of the labels we obtained
for each category varies. The percentage of the labels being
correct for these five visual categories are 94.96%, 68.91%,
87.01%, 68.43%, and 98.01%, respectively.

Another datasets with real crowdsourced labels we ex-
perimented is a face dataset for a gender recognition prob-
lem. Through Amazon Mechanical Turk, we have collected
5 copies of labels (male/female) for 9441 face images. We
hold out 2000 of face images which had all 5 copies of la-
bels in consensus for testing purpose and the rest of the face
images with different percentage of label inconsistency are
used for collaborative active learning. The face images are
all 64 × 64, from each of which we extract a 5408 dimen-
sional discriminative features. This feature is the output
from the last layer of a convolutional neural network trained
for gender recognition with a separate small set of labeled
gender face images. We will make both the features and
labels of these two datasets publicly available upon publi-
cation of this paper.
Performance evaluation. We conduct experiments on
these datasets to measure how our proposed method and
other competing methods are performing with the progress
of the active learning process. Note that at each learning
step, the different competing methods may add different
number of labels, instead of plotting the progression of the
recognition accuracy w.r.t. the active learning steps, we plot
the progression of the recognition accuracy w.r.t. the num-
ber of labels to ensure a fair comparison in all figures.

5.2. Experiments with synthetic label noise
Efficacy of collaborative active learning. For evaluation,
for each of the 10 image category from ImageNet Chal-
lenge, we randomly sample an equal number of images
from the other 9 categories to serve as its negative images.
We ensure that each image will be assigned to m = 5 label-
ers. We distributed the training data evenly to 20 labelers
to ensure that roughly 1000 images are allocated to each
labeler.

We run simulation experiments with the proposed collab-
orative active learning algorithm and compare it with five
baseline algorithms. The first baseline algorithm uses the
same discriminative formulation in Eq. 1 and Eq. 3 but only
randomly selects the next image to be labeled for each la-
beler. The second baseline algorithm is to run multiple in-
dependent active learning process with the proposed kernel
machine in Sec. 2.2. It is equivalent to discarding the cross
labeler loss function Llij(·) in Eq. 1, which corresponds to
the middle term in Eq. 3. The active learning criterion for
it is in the same form as Eq. 8. The third baseline algorithm
is training multiple independent discriminative classifiers in
the same way as the second baseline algorithm, but select-

ing the images to be labeled next in a random fashion.
In addition, we also run multiple independent active

learning SVM and multiple independent random learning
SVM, respectively, which is similar to the previous two
baseline algorithms using hedge loss instead of logistic re-
gression loss. For notation simplification, we denote our
proposed collaborative active learning algorithm to be CAL.
We further denote the first to five baseline algorithms to
be CRL, MIAL, MIRL, SVM-MIAL, and SVM-MIRL, re-
spectively.

We present the experimental results on Fig. 1. The re-
sults on the active learning pool and the hold-out test dataset
are presented in Fig. 1a, and 1b, respectively. In both fig-
ures, the horizontal axis shows the number of labels added
in the labeling process. In Fig. 1a, the vertical axis repre-
sents the mean average precision (mAP) (the mean is taken
over all the runs of 10 categories from all labelers) of the
learned classifiers over the examples in the active learning
pool. In Fig. 1b, the vertical axis represents the mAP of the
learned ensemble classifiers on the hold-out testing datasets,
which are also averaged over all the 10 categories. There-
fore, at each step, each labeler is providing label for one
data sample.

We adopt average precision (AP) as the criterion to give
a more comprehensive evaluation of the classifiers. So
the different curves reflect how the mAP evolves with our
method and the other five baseline algorithms, respectively.
All figures clearly show that exploiting active learning to
select samples is often better than selecting the samples ran-
domly. This is exemplified by the fact that the recognition
curve of CAL is always higher than CRL, and the recog-
nition curve of MIAL is always higher than MIRL. With
the active sample selection, we can achieve higher mAP
in recognition sooner with fewer labeled images than using
random sample selection. We only show the average results
across all labelers over all image categories due to the space
limit. The figures on each individual category consistently
presented the same trend. We omit them due to space limit.

In particular, the mAP curve of CAL is always higher
than MIAL, which validated the efficacy of our collabora-
tive formulation. By ensuring the consistencies among the
classification models through the shared data, our collabo-
rative discriminative learning paradigm allows the label in-
formation to be shared among labelers and hence better uti-
lize them to train better classifiers. Since the only difference
between CAL and MIAL is the cross labeler cost terms de-
fined in Eq. 1 and Eq. 2, it is clear that it is the collaborative
formulation really leads to the improvement.

Specifically, in our collaborative formulation, if labeler
A labeled a data sample shared by labeler B. That label is
immediately factored into the learning of the classifier of
labeler B even if B has not labeled it yet. For MIAL, there
is no cross labeler cost so the label is not shared. We also
want to point out that the ensemble classifier produced by
CAL always achieved better accuracy in the held-out test-
ing dataset, which implies that our collaborative formula-
tion can help learn classifiers that can generalize well. Note
in all our experiments, we start evaluating the recognition
accuracy from 50 labeled images.
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Figure 1: Recognition performance with
clean labels without noise. The vertical bar
indicates the standard deviation of mAP val-
ues on the curve.
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Figure 2: Recognition performance on the ac-
tive learning pool with different levels of la-
bel noises, and the hold-out testing dataset,
respectively.
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Figure 3: Recognition performance with real
crowd-sourced labels on five ImageNet cat-
egories in active learning pool and hold-out
testing dataset.

Different noise levels. To demonstrate that our proposed
CAL algorithm is indeed more robust to label noise. We
simulate the case that the labelers have a chance to generate
noisy labels, ranging from 5%, 15%, to 25%, meaning that
the labeler has such a probability to label the image incor-
rectly. We run the experiments with different level of label
noises for all 20 labelers on all the 10 image classes. Three
methods are compared, i.e., our proposed CAL, the CRL,
and the SVM-MIAL (MIAL is always inferior to SVM-
MIAL). As we can observe from Fig. 2, the general trend
is that the performances of the classifiers all drop with the
increase of label noise levels. However, at all noise levels,
our proposed CAL algorithm always achieves better mAP
scores on both the active learning pool (Fig. 2a) and the
hold-out testing dataset (Fig. 2b) across the learning pro-
cess. Hence it provides solid evidence that our proposed
collaborative learning framework can largely suppress the
negative effects of the noisy labels. The curve is averaged
over the 10 categories over all labelers. The curves under
35% label noises showed similar phenomenon, we omitted
it for a more clean view.

Detection of irresponsible labelers. In this section, we in-
tend to demonstrate that our label quality measure (Eq. 9)
can readily capture irresponsible labelers. We show the ex-
perimental results in Fig. 4. The experiments are performed
on the “Meerkat, meerkat” class of the ImageNet dataset
with 22 labelers. In Fig. 4a, we simulate the case that there
are 5 irresponsible labelers and the rest are responsible la-

belers (with 5% label noise). It is clearly observed that the
label quality of the irresponsible labelers are consistently
and significantly lower than those of the responsible label-
ers across the collaborative active learning process. It falls
below the lower variance bar of the label quality of the re-
sponsible labelers. This is a very strong and consistent sig-
nal that enables us to capture irresponsible labelers from the
very beginning of the collaborative active labeling process.
This validated our hypothesis that the average of signed
classification scores on the labeled images for each labeler
(as defined in Eq. 9) naturally serves as a label quality mea-
sure to detect irresponsible labelers. In Fig. 4b and 4c, we
compare the AP scores of our CAL algorithm with those
of SVM-MIAL, SVM-MIRL, MIAL, and MIRL under the
presence of five irresponsible labelers on the active learning
pool and hold-out testing dataset, respectively. It is clear
that our proposed CAL algorithm is more robust to the pres-
ence of irresponsible labelers. The AP of MIAL and MIRL
on the active learning pool actually dropped when more la-
bels are added due to the bad performance of the classifiers
from those 5 irresponsible labelers. However, the SVM-
MIAL and SVM-MIRL do not suffer from this in the ac-
tive learning pool, suggesting that the hedge loss is more
robust. We will consider the adoption of hedge loss in a
collaborative formulation in our future work. We have also
run extensive experiments on all 10 image categories with
different number irresponsible labelers (upto half), and the
observations are consistent with what we show in Fig. 4.
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Figure 4: The label quality and recognition accuracy of responsible labelers are averaged with variance bar overlayed. The irresponsible
labelers are plotted alone.

5.3. Experiments with real crowd-sourced labels

In this section, we conduct experiments on two datasets
with real crowdsourced labels from Amazon Mechanical
Turk. In addition to comparing with the original 5 base-
line algorithms, we add two new baseline algorithms and
also compare with two version of the active learning algo-
rithms presented in Yan et al. [24, 25]. The two new base-
line algorithms adopt an online majority voting strategy in
the active learning process to induce a single kernel classi-
fier using either the logistic regression loss (as in our for-
mulation) or hedge loss (as in SVM). Specifically, at each
round of the active learning step, each data sample is la-
beled by 7 or 5 labelers, and we utilize the majority voted
label as the label for this data sample and re-train the classi-
fier. We name these two baseline algorithms as MVAL and
SVM-MVAL, respectively. The two algorithms presented
in Yan et al. [24, 25] are named as ML-Bernoulli-AL and
ML-Gaussian-AL, respectively, according to two differen
probability distribution they exploited in their model.

We want to clarify that for MVAL and SVM-MVAL, the
active learning pool contains all images, so it is a larger
pool than the pool of examples handled by each individual
labeler in our CAL formulation. However, our comparison
is still fair because the horizontal axis in the figure indicates
the total number of labels added in the learning process.
Five categories of ImageNet. We followed the same data
split for active learning and hold-out testing as in the exper-
iments with synthetic noisy label. Each image is assigned
to m = 7 labelers as we have seven copies of crowdsourced
labels per image. Hence 14 to 21 classifiers per category
trained with the real crowdsourced label depending on the
number of images each category has, to compose the final
ensemble classifier. Fig. 3 presents the mAP curves on the
active learning pool and the hold-out testing dataset. Our
proposed CAL outperformed all the other 9 competing al-
gorithms in both the active learning pool and the hold-out
testing datasets.

In particular, we want to highlight the comparison with
the four new competing methods, as they all induce a sin-
gle strong classifier for recognizing each category. The fact
that they show inferior recognition accuracy compared with
CAL is a strong indication that ensemble classifier learning
is more robust to label noises. The two methods proposed
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Figure 5: Recognition performance on real crowd-sourced labels
on a face gender image dataset. The vertical bar indicates the stan-
dard deviation of AP values on the curve.

by Yan et al. [24, 25] compete even less favorably than the
MVAL and SVM-MVAL baselines. A potential reason is
that their methods tend to make over-confident predictions.
Gender face dataset. Fig. 5 presents the experimental re-
sults of running our CAL algorithm and all other 9 compet-
ing methods on the gender face image dataset. Each data
sample is assigned to m = 5 labelers to label and around
thirty labelers in total are used. Again, it is clear that our
proposed CAL algorithm outperformed all other 9 compet-
ing methods in both the active learning pool and the hold-
out testing datasets. The results also demonstrated the effi-
cacy of our collaborative model formulation, as the second



best algorithm is CRL while the other algorithms are either
running multiple independent processes for model learn-
ing or just inducing a single classifier using active learning.
Again, the AP on the active learning pool is the mean across
all labelers, while the AP on the hold-out testing dataset
is computed using the resulting ensemble kernel classifier.
The observation is consistent with our experiments on Ima-
geNet dataset with real crowdsourced labels.

6. Conclusion and future work
In view of the popularity of using crowd-sourcing tools

for labeling large scale image datasets for research on vi-
sual recognition, and to mitigate issues in existing crowd-
sourcing tools, we present a collaborative active learning
framework to support multiple labelers to collaboratively
label a set of images to learn an ensemble kernel machine
classifier. As verified by our experiments, our approach
enables more efficient model learning from multiple label-
ers, is robust to label noise and irresponsible labelers, and
can readily detect irresponsible labelers online. Our future
work includes extending the proposed framework to handle
multiple target labeling tasks. We also plan to implement it
in a cloud computing environment. Once these are fulfilled,
we will deliver an end-to-end service to support any large
scale multi-labeler interactive model learning efforts.

Acknowledgement
This work is partly supported by US National Science

Foundation Grant IIS 1350763, China National Natural Sci-
ence Foundation Grant 61228303, GH’s start-up funds from
Stevens Institute of Technology, a Google Research Fac-
ulty Award, a gift grant from Microsoft Research, and a gift
grant from NEC Labs American.

References
[1] V. Ambati, S. Vogel, and J. Carbonell. Active learning and crowd-

sourcing for machine translation. In N. C. C. Chair), K. Choukri,
B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and
D. Tapias, editors, Proceedings of the Seventh conference on In-
ternational Language Resources and Evaluation (LREC’10), Val-
letta, Malta, may 2010. European Language Resources Association
(ELRA). 1

[2] S. Chen, J. Zhang, G. Chen, and C. Zhang. What if the irresponsi-
ble teachers are dominating? a method of training on samples and
clustering on teachers. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence. American Association of Artificial Intelli-
gence, July 2010. 2

[3] O. Dekel and O. Shamir. Good learners for evil teachers. In Pro-
ceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 233–240, New York, NY, USA, 2009.
ACM. 2

[4] O. Dekel and O. Shamir. Vox populi: Collecting high-quality labels
from a crowd. In In Proceedings of the 22nd Annual Conference on
Learning Theory, 2009. 2

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In IEEE Conf.
on Computer Vision and Pattern Recognition, pages 248 –255, June
2009. 1, 4

[6] P. Donmez, J. Carbonell, and J. Schneider. A probabilistic framework
to learn from multiple annotators with time-varying accuracy. In
Proceedings of the SIAM International Conference on Data Mining
(SDM 2010), pages 826–837, 2010. 2

[7] P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the
accuracy of labeling sources for selective sampling. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’09, pages 259–268, New York,
NY, USA, 2009. ACM. 1

[8] S. Ebert, M. Fritz, and B. Schiele. Ralf: A reinforced active learning
formulation for object class recognition. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3626
–3633, june 2012. 1

[9] I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very
large vc-dimension classifiers. In Advances in Neural Information
Processing Systems, 1993. 3

[10] S. C. Hoi, W. Liu, and S.-F. Chang. Semi-supervised distance metric
learning for collaborative image retrieval. In IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 1 –7, June 2008. 1

[11] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning
with gaussian processes for object categorization. In IEEE Interna-
tional Conf. on Computer Vision, pages 1–8, October 2007. 1

[12] A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively se-
lecting annotations among objects and attributes. In IEEE Interna-
tional Conference on Computer Vision, pages 1403–1410, November
2011. 1

[13] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural In-
formation Processing Systems 26 (NIPS), Lake Tahoe, CA, Decem-
ber 2012. 1

[14] F. Laws, C. Scheible, and H. Schütze. Active learning with amazon
mechanical turk. In Proc. of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’11, pages 1546–1556,
2011. 1

[15] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang.
Large-scale image classification: Fast feature extraction and svm
training. In IEEE Conf. on Computer Vision and Pattern Recogni-
tion, pages 1689 –1696, June 2011. 4

[16] C. Loy, T. Hospedales, T. Xiang, and S. Gong. Stream-based joint
exploration-exploitation active learning. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on, pages 1560 –
1567, june 2012. 1

[17] V. C. Raykar and S. Yu. Eliminating spammers and ranking annota-
tors for crowdsourced labeling tasks. J. Mach. Learn. Res., 13:491–
518, Mar. 2012. 2

[18] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez,
L. Bogoni, and L. Moy. Supervised learning from multiple experts:
whom to trust when everyone lies a bit. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09,
pages 889–896, New York, NY, USA, 2009. ACM. 2

[19] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. La-
belme: a database and web-based tool for image. International Jour-
nal of Computer Vision, 77(1-3):157–173, May 2008. 1

[20] J. Sanchez and F. Perronnin. High-dimensional signature compres-
sion for large-scale image classification. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1665
–1672, june 2011. 1

[21] A. Vezhnevets, J. Buhmann, and V. Ferrari. Active learning for se-
mantic segmentation with expected change. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3162
–3169, june 2012. 1

[22] S. Vijayanarasimhan and K. Grauman. Large-scale live active learn-
ing: Training object detectors with crawled data and crowds. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition, pages
1449–1456, june 2011. 1

[23] P. Welinder and P. Perona. Online crowdsourcing: Rating annota-
tors and obtaining cost-effective labels. In Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2010 IEEE Computer Soci-
ety Conference on, pages 25 –32, june 2010. 1

[24] Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from crowds.
In Proc. International Conference on Machine Learning, 2011. 2, 7

[25] Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from multiple
knowledge sources. In Proc. International Conference on Artificial
Intelligence and Statistics (AISTATS), 2012. 2, 7

[26] L. Zhao, G. Sukthankar, and R. Sukthankar. Incremental relabeling
for active learning with noisy crowdsourced annotations. In Privacy,
security, risk and trust (passat), 2011 ieee third international con-
ference on and 2011 ieee third international conference on social
computing (socialcom), pages 728 –733, oct. 2011. 2

[27] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software, 23:550–560, Decem-
ber 1997. 3


