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ABSTRACT 
Event detection plays an essential role in video content analysis 
and remains a challenging open problem. In particular, the study 
on detecting human-related video events in complex scenes with 
both a crowd of people and dynamic motion is still limited. In this 
paper, we investigate detecting video events that involve elemen-
tary human actions, e.g. making cellphone call, putting an object 
down, and pointing to something, in complex scenes using a novel 
spatio-temporal descriptor based approach. A new spatio-
temporal descriptor, which temporally integrates the statistics of a 
set of response maps of low-level features, e.g. image gradients 
and optical flows, in a space-time cube, is proposed to capture the 
characteristics of actions in terms of their appearance and motion 
patterns. Based on this kind of descriptors, the bag-of-words 
method is utilized to describe a human figure as a concise feature 
vector. Then, these features are employed to train SVM classifiers 
at multiple spatial pyramid levels to distinguish different actions. 
Finally, a Gaussian kernel based temporal filtering is conducted to 
segment the sequences of events from a video stream taking ac-
count of the temporal consistency of actions. The proposed ap-
proach is capable of tolerating spatial layout variations and local 
deformations of human actions due to diverse view angles and 
rough human figure alignment in complex scenes. Extensive ex-
periments on the 50-hour video dataset of TRECVid 2008 event 
detection task demonstrate that our approach outperforms the 
well-known SIFT descriptor based methods and effectively de-
tects video events in challenging real-world conditions. 

Categories and Subject Descriptors 
I.4.8 [Scene Analysis]: Motion, Object Recognition, Tracking. 
I.2.10 [Vision and Scene Understanding]: Video Analysis. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Motion Representation, Action Recognition, Event Detection, 
Semantic Analysis. 

1. INTRODUCTION 
With the explosive growth in the amount of digital videos and 

rapid advance in the computing power of computers, the man-
agement and retrieval of video data has been actively studied in 
the past few years. Event detection is particularly crucial for un-
derstanding semantic concepts of interest in videos for intelligent 
management and advanced retrieval purposes. Therefore, exten-
sive research efforts have been devoted to event-based video 
analysis [1]-[7][13]-[20]. 

Considering elementary semantic concepts involved in video 
events, a distinction can be generally made between object-
oriented (or static-concept) events and action-oriented (or dy-
namic-concept) events. The events comprising the concepts like 
Cityscape and Boatship are object-oriented in the sense that they 
are primarily concerned with the presence of particular objects in 
a video stream. In the high-level feature extraction task of annual 
TREC video retrieval evaluation (TRECVid) [9], the benchmark 
of annotated video corpus is provided to researchers for detecting 
a large set of object-oriented events. In contrast, the action-
oriented events, such as People-calling-cellphone (CellToEar), 
People-dropping-something (ObjectPut) and People-pointing-
something (Pointing), involve the semantic concepts that are ex-
clusively related with specific actions performed in a video stream. 

Action-oriented event detection is an important component for 
many intelligent video management applications especially in 
surveillance video analysis for security [4], sports video analysis 
for labeling and searching [5], and online video repository search-
ing and mining [10]. Consequently, there exists a compelling 
demand for investigating effective and efficient approaches for 
action-oriented event detection in videos. Moreover, a large 
amount of human-related action-oriented events occur in complex 
scenes where the same type of actions may exhibit enormous 
variations due to clutter background, different viewpoints and 
many other factors (e.g. human-body occlusions and low-
resolution videos) in unconstrained real-world environment. To 
the best of our knowledge, the related work on detection of ac-
tion-oriented video events in real-world conditions is still limited 
[3][5]-[7].  

This line of research suffers from a lack of standard benchmark 
video dataset which supplies sufficient clearly defined video 
events together with ground truth annotations in unconstrained 
real-world environment. Most of the existing datasets for action 
recognition or event detection, e.g., the KTH dataset [8], were 
recorded in a controlled setting with slight camera motion and 
clean background. Fortunately, TREC video retrieval evaluation 
2008 [9] launched a new task of action-oriented event detection, 
which made the largest effort to bridge the research efforts and 
the challenges in real-world conditions by providing an extensive 
99-hour airport surveillance video dataset. This task is intended to 
help promote the technology development for event detection, 
especially leveraging machine learning techniques to detect a pre-

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. 
MM’09, October 19–24, 2009, Beijing, China. 
Copyright 2009 ACM 978-1-60558-608-3/09/10…$10.00. 

165



defined set of events. Figure 1 illustrates some samples of the 
required events in this dataset. The highly crowded scenes, the 
extremely cluttered background, and the versatility of execution 
styles of the same actions make action-oriented event detection a 
formidably challenging task. Such a standard benchmark dataset 
is indispensable for the development of research. Since the task of 
event detection in TRECVid evaluation was launched, it has at-
tracted significant attention from academia as well as industry.  

 
In this paper, we investigate action-oriented event detection in 
challenging complex scenes where the actions of interest are 
masked by the activities in a dynamic and crowded real-world 
environment. Generally, the action-oriented events of interest are 
application dependent. We consider the elementary actions that 
are some articulated motion of a single human body which cannot 
be easily decomposed to simpler actions. In particular, we focus 
on three events CellToEar, ObjectPut and Pointing which are 
defined in the TRECVid 2008 event detection task. The detailed 
descriptions of these three events are listed in Table 1. In our 
work, as the major component of event detection, an action rec-
ognition method is developed utilizing bag-of-words models of 
novel spatio-temporal descriptors to train support vector machine 
(SVM) classifiers at multiple spatial pyramid levels. Further, re-
sorting to a temporal filtering strategy, the event sequences are 
segmented from the video stream.  

 
The novelty and contributions of this paper are summarized as 
follows. 1) We propose a novel spatio-temporal descriptor, the 
temporally integrated spatial response descriptor (henceforth ab-
breviated as TISR), which integrates the temporal statistics of a 
set of response maps of low-level image features, e.g. image gra-
dient and optical flow fields, in a space-time cube. Compared 

with the existing local descriptors like SIFT [31], this kind of 
descriptors can delineate the local patterns of image patches in 
terms of their appearance and motion characteristics and are ro-
bust to variations and deformations of objects in real-world condi-
tions. 2) The bag-of-words (BoW) method combined with the 
spatial pyramid technique is employed to generate the compact 
feature representations of human figures in action-oriented events. 
These representations are insensitive to rough human figure 
alignment as well as some influence factors such as partial occlu-
sions, background clutter and pose changes. 3) A Gaussian kernel 
based temporal filtering method is utilized to segment the event 
sequences from a video stream by considering their temporal 
consistency. 4) As demonstrated by extensive experiments on the 
TRECVid 2008 event detection dataset, our approach using the 
TISR descriptors no matter extracted from image gradient or opti-
cal flow fields or both of them consistently outperforms the 
method using the well-known SIFT descriptors in most of the 
cases for the task of action-oriented video event detection. 

The rest of the paper is organized as follows. Section 2 reviews 
the related work of video event detection and human action rec-
ognition. In Section 3, the overview of the proposed event detec-
tion approach is presented. In Section 4, we introduce the novel 
action recognition approach based on the new TISR descriptor. 
Section 5 describes the temporal filtering strategy for event seg-
ment detection from a video stream. Experimental results are 
reported and analyzed in Section 6. Finally, we conclude the pa-
per with future work in Section 7. 

2. RELATED WORK 
As a sub-area of event-based video analysis, human-related ac-
tion-oriented event detection shares the common procedures of 
video event detection including extracting relevant features and 
making detection decision, yet it mainly leverages action recogni-
tion techniques as the cornerstone for event detection. In this sec-
tion, we present a brief review of the state-of-the-art regarding the 
research of video event detection and human action recognition in 
real-world conditions. 

2.1 Video Event Detection 
Event detection for various applications has been studied in [11]-
[20]. Detailed surveys on this topic can be found in [11] and [12]. 
The conventional procedure in the existing event detection meth-
ods can be generally divided into two steps [13]: 1) generating 
video content representation exploiting various properties ex-
tracted from raw video stream and 2) making detection decision 
using certain classification techniques.  

For video content representation, the existing studies employ the 
properties extracted from video stream including visual features 
[3], audio features [14], text features [15][16] and the combina-
tion of the multimodal features [2][13] to facilitate accurate detec-
tion. On the other side, detection decision making plays a very 
important role in determining the final performance. Various clas-
sification techniques have been applied to discover the event pat-
terns from large scale video sets. One of the examples is the work 
proposed by Xie et al. [17] in which the hidden Markov model 
framework was developed to discover the patterns in soccer video. 
Xu et al. [3] developed a discriminative kernel-based visual event 
detection method via special multilevel alignment. In [18], Shyu 
et al. recently proposed a subspace based data mining framework 

Table 1. Description of three events of interest 

Event Description 

CellToEar Someone puts a cell phone to his/her ear 

ObjectPut Someone drops or puts down an object 

Pointing Someone points something 

(a) CellToEar (b) CellToEar

(d) Pointing(c) ObjectPut

Figure 1. Samples of some pre-defined events in different 
cameras of the TRECVid 2008 event detection dataset. 
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for event detection which includes three components: video pre-
processing, distance based data mining and rule based data mining. 
In addition, C4.5 decision tree [19] and SVM [20] have been 
widely used as the classifiers for the decision of event detection. 

2.2 Human Action Recognition in Real-World 
Conditions 
Action recognition is one of the most challenging problems in the 
area of video analysis. In [21], Turaga et al. presented a recent 
survey of the major approaches pursued over the last two decades. 
To make this problem more tractable, most of existing approaches 
made simplified assumptions, e.g. clean background or little 
viewpoint changes, and were designed for constrained conditions 
in laboratories or studios. For real-world deployment, action rec-
ognition systems however need to be robust against numerous 
factors, e.g. noise, occlusions or shadows, in unconstrained real-
world conditions.  

A few work [3][5]-[7] attempted to perform human action recog-
nition in real-world conditions for applications of video event 
detection. In [3], Xu et al. systematically studied the problem of 
visual event recognition in unconstrained news videos. The earth 
mover’s distance within the bag-of-words method is utilized to 
evaluate the similarity among video clips. By fusing the informa-
tion from a multi-level similarity pyramid, the recognition is con-
ducted in the framework of temporally aligned pyramid matching. 
In [5], Zhu et al. proposed a new action descriptor based on the 
insight of treating optical flow field as spatial patterns of noisy 
measurements instead of precise pixel displacements at points. 
Using those action descriptors, the actions of players in the far-
view shots within broadcast tennis videos are recognized. Ke et al. 
[6] employed a combination of shape and flow features to recog-
nize the actions in the events of interest in cluttered scenes. Lap-
tev et al. proposed a multimodality based action classification 
approach [7]. The movie scripts are first employed to address the 
problem of automatic human action annotation. By extending the 
idea of local space-time features, space-time pyramids and mul-
tichannel non-linear SVM, Laptev’s method for action classifica-
tion achieved good performance on a movie dataset.  

 

3. OUR APPROACH 
Human action-oriented events essentially involve sequences of 
specific human postures evolving in video streams, which typi-
cally demonstrate considerable variations in both spatial and tem-
poral domains. For instance, the action of dropping a bag may 
appear quite different in monocular videos from various view 
angles and the durations may also vary case by case. Thus, robust 
action representations that are invariant or at least tolerant to both 
spatial and temporal variations are indispensable for detecting 
action-oriented video events. Our approach strives to capture the 
characteristics of individual actions by extracting dense spatio-
temporal descriptors and representing actions by bag-of-words 
features of these salient descriptors. The proposed TISR descrip-
tor fuses the temporal statistics of a few response maps of differ-
ent low-level image features in a space-time cube. With a visual 
vocabulary of the TISR descriptors, the BoW histogram features 
are able to tolerate spatial and temporal variations. Then, we seg-
ment event sequences spatially by taking advantage of human 
detection and tracking and temporally by Gaussian kernel filtering. 

In general, the procedure of an action-oriented video event detec-
tion approach can be divided into three layers: 1) a pre-process 
layer in which the candidate regions of interest are located; 2) an 
action recognition layer in which the action category is recog-
nized by classifying a compact representation extracted from the 
candidate region; 3) an event segmentation layer in which the 
action recognition results are linked by temporal filtering and 
cleaned if prior knowledge about the scene is available. Following 
this paradigm, Figure 2 illustrates the flowchart of our approach. 
Given the input video sequence, we first locate the candidate re-
gions to analyze by human head detection and tracking algorithms. 
To obtain the human figure, an enlarged region around the tracked 
head is cropped as the input to the action recognition module. 
Then, for each human figure, the dense TISR descriptors are ex-
tracted from the response maps of image gradients and optical 
flows in a volumetric cube. We construct bag-of-words (BoW) 
features by measuring the frequencies of quantized descriptors 
with a visual vocabulary at multiple spatial pyramid resolution 
levels. Afterwards, the action category is classified by fusing the 
classification results of SVM classifiers at all spatial pyramid 
levels. Based on the frame-based recognition results, a temporal 
filtering using Gaussian kernel is employed to segment the event 
sequences from video stream. In post-processing, scene prior 
knowledge is used to reduce some false alarms.  

4. ACTION RECOGNITION BASED ON 
SPATIO-TEMPORAL DESCRIPTOR 
An effective human action recognition method is the core of the 
action-oriented event detection. Three key issues need to be ad-
dressed: 1) what spatio-temporal features relevant to actions shall 
be extracted, 2) how to organize these features to represent human 
figures, and 3) how to classify the human figures to different ac-
tion categories. In this paper, we extract the dense TISR descrip-
tors to build BoW features and utilize SVM classifiers at multiple 
spatial pyramid resolution levels to address these problems. 

4.1 Spatio-Temporal Descriptor Extraction 
The proposed spatio-temporal descriptor which is named as tem-
porally integrated spatial response (TISR) is extracted from pixel-
level vector fields of low-level image features, e.g. image gradient 
and optical flow, within a space-time cube. First, a set of response 

Figure 2. Flowchart of the proposed action-oriented event 
detection method based on human action recognition. 
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maps of different preferred directions and magnitudes are calcu-
lated based on the vector fields. Then, the TISR descriptor is con-
structed by integrating the temporal statistics on the spatial maxi-
mum pooling results of individual response maps in more elabo-
rately partitioned spatial-temporal sub-cubes. The entire proce-
dure of TISR descriptor extraction is illustrated in Figure 3. In the 
process of extraction, the spatial partition and maximum pooling 
extract the salient appearance information while the integration of 
some statistics of maximum pooling results along the time axis 
reveals the properties of motion patterns. Therefore, the TISR 
descriptor can well delineate the local appearance and motion 
characteristics in a space-time cube. 

4.1.1 Response Map Calculation from Low-level Ap-
pearance and Motion Features 
The TISR descriptor can be extracted from arbitrary vector fields 
of low-level image features. In our implementation, we use image 
gradient and optical flow for efficient processing. Given the input 
frame It at time t, the 2D vector fields of image gradient Gt and 
optical flow Ft are computed using Sobel operator [34] and Horn-
Schunck algorithm [35] which shown empirical good performance. 

Motivated by the work in [32][5], half-wave rectification and 
Gaussian smoothing are applied to mitigate the noise in the vector 
fields of image gradient and optical flow. Half-wave rectification 
can make the data sparse and avoid the cancellation of vectors 
with opposite directions during smoothing, so that significant 
Gaussian smoothing can be applied to reduce the amount of noise. 
The process is shown in Figure 4. Let VF  represents a vector 
field of either image gradient or optical flow, the magnitudes of 
VF  are first thresholded to reduce the influence of too small and 
too large edges or motion probably due to noise. Then, the VF  is 
split into 2 scalar fields corresponding to the horizontal and verti-

cal components XVF  and YVF , which are then half-wave rectified 

into 4 non-negative channels XVF  , XVF  , YVF  , and YVF  , where 

they satisfy X X XVF VF VF    and Y Y YVF VF VF   . Each of 

these 4 fields is smoothed by a Gaussian filter. Thus the noise in 
the original field is largely reduced and the refined vector fields 
are obtained. 

 
Thereafter, for the vector fields Gt and Ft, a set of response maps 
of different directions and magnitudes for each pixel in the fields 
are computed by applying the following equation 

      , | , , ,p p p V pR V V R R V V     , (1) 

where   and V  denote the direction and the magnitude of the 
vector at each pixel position in the field, p  and pV  indicate the 

preferred direction and magnitude of each response map. We 
employ 8 directions {0 ,45 ,90 ,135 ,180 ,225 ,270 ,315 }p           

and 2 magnitudes in the response map calculation. The two pre-
ferred magnitudes are empirically set to be {75,150}pV   and 

pV   {2.5,5}  for image gradient and optical flow, respectively. 

For image gradient, the function ( )R   and ( )VR   for response 

calculation are defined in Eq. (2) using triangular functions [25]. 
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Figure 3. Algorithm of the TISR descriptor extraction. The descriptor is extracted from the space-time cube corresponding to the 
image patch drawn as the red rectangle based on low-level image gradient and optical flow fields. 
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for noise reduction of image gradient and optical flow fields.
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       1 ,      if 1
,

0,                      otherwise

p p

IG IG
V p

x x x x

R R Tr x x  
  
      




, (2) 

where x  and px  represent the inputs   (or V ) and p  (or pV ), 

  is a scale parameter of the function which is set to be 45° for 
direction and 75 for magnitude. On the other hand, the response 
functions of optical flow are defined as  

 
    
   

, 0.5 1 cos

, exp

q
OF

p p

OF
V p p

R

R V V V V

         

  
, (3) 

which are inspired from biological study in [26] and the parame-
ter 2q  controls the width of the tuning curve [26]. The empiri-
cal parameters are selected according to the overall statistics of 
image gradients and optical flows. Taking all the possible combi-
nation of p  and pV , we obtain a set of  16 types of response 

maps for Gt and Ft, respectively. 

The extraction of the response maps over the discrete directions 
and magnitudes can further reduce the influence of noise in the 
low-level features. More important, different from quantizing the 
response of a pixel to a single preferred direction and magnitude, 
the pixel response in our method contributes to multiple response 
maps, thus the calculation of the set of response maps is kind of 
soft quantization and preserves the relative differences among 
different directions and magnitudes. 

4.1.2 Descriptor Extraction from Space-Time Cubes 
After calculating the set of response maps of each frame, we crop 
a space-time cube based on the candidate region to analyze (e.g. a 
human figure for action-oriented event detection) and extract 
dense TISR descriptors. As shown in Figure 5, given an image 
region of interest (the red rectangle region), its space-time cube is 
constructed by concatenating the image regions (the blue rectan-
gle regions) at the same coordinates in the successive video 
frames along the time axis. In the implementation, we extract 
such space-time cubes for each type of response map obtained in 
Section 4.1.1. 

 
As shown in Figure 3(a), given a human figure HI  to analyze in 
frame t , the image patches with the spatial dimension Nx × Ny  
are densely sampled within HI . The corresponding space-time 
cubes are constructed by concatenating image patches from Nt 
frames in the video stream. In our work, we set Nx = Ny = 8 or 16 
and Nt = 8. To preserve the spatial layout information, each cube 

is divided into several non-overlapping sub-cubes. Here, 2 2  
grid style is employed, in which the sub-cubes are annotated as 
LT (left-top), RT (right-top), LB (left-bottom) and RB (right-
bottom) as shown in Figure 3(b). The sub-cube is used to calcu-
late the temporal statistics of each response map and then these 
statistics in the 4 sub-cubes are concatenated to form the TISR 
descriptor of an Nx × Ny × Nt space-time cube. Since the same 
procedure is applied to sub-cube, we ignore the index of sub-cube 
to make the description more concise in the following description. 

The sub-cubes of different response maps are denoted by ,
IG
i jRI  

and ,
OF
i jRI  regarding to low-level image gradient and optical flow 

calculated using Eq. (2) and Eq. (3) respectively, where 
1, , ti N   represents the temporal index and 1, ,j J   repre-

sents the index of the combination set for all the preferred orienta-
tions p  and magnitudes pV . For example, 1j   indicates 

0p    with 75pV   and 16j   indicates 315p    with 

150pV   for image gradient. For each response map *
,i jRI  where 

the symbol star represents image gradient (IG) or optical flow 
(OF), the maximum pooling operation is conducted to obtain the 
spatial local maximum *

,i jh . Figure 3(c) shows the max-pooling 

results of J  response maps at each time instance, which are de-

noted by *
iH , 1, , ti N  , 

  * * * *
, , ,| max{ }, 1, ,i i j i j i jH h h RI j J    . (4) 

The existing work [27] has demonstrated that max-pooling is a 
good means to increase the tolerance to the variance of local 
transformations and object deformations and enhance the robust-
ness to background clutter.  

Based on the max-pooling results, the mean *
jm  and the average 

of absolute difference *
ja  over tN  frames are calculated for J  

types of response maps as shown in Figure 3(d).  

 
*
,* 1

tN

i ji
j

t

h
m

N
  , (5) 

 
* *
, 1,* 2

1

tN

i j i ji
j

t

h h
a

N








. (6) 

Such two statistics integrates the spatial max-pooling results in 
the temporal domain, which is capable of summarizing the tempo-
ral characteristics or motion patterns of local image appearances. 
The descriptor is obtained by concatenating all the statistics *

jm  

and *
ja  of J  types of response maps of both image gradient and 

optical flow as following.  

 * * * * * *
1 1 2 2, , , , , ,J Jm a m a m a   . (7) 

Finally, the TISR descriptor of the entire cube is the concatena-
tion of the descriptors extracted from all the sub-cubes. For the 
configuration in our work, the descriptor is a 256-dimension vec-
tor, i.e. 16 2 4 2   , where 16 indicates the number of different 
types of response maps, 2 statistics, 4 sub-cubes and 2 types of 
low-level features, i.e. image gradient and optical flow. 

Consequently, given a human figure HI , we can compute a set of 
spatio-temporal descriptors 1{ , , }MD d d  , where M  is the 

t t

Figure 5. Construction of the space-time cube structure of a 
human figure from a video stream. 
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number of descriptors extracted to represent the characteristics of 
the figure in terms of appearance and motion patterns. This set of 
descriptors will be used to generate a compact feature representa-
tion using the bag-of-words method. 

4.2 Bag-of-Words Feature Representation 
Based on the TISR descriptors, the bag-of-words histogram fea-
ture is generated to describe a human figure as a compact repre-
sentation. The bag-of-words method has recently attracted in-
creasing research attention since its success in object categoriza-
tion. The procedure of BoW feature generation has two steps: 
visual vocabulary construction and feature vector representation. 

A visual vocabulary is constructed by clustering the TISR de-
scriptors and treating each cluster as a single visual word. An 
issue of vocabulary construction is how to determine the adequate 
number of visual words in the vocabulary. A small vocabulary 
may lack sufficient discriminative power while a large vocabulary, 
on the other hand, may be less generalized. There is no theoretical 
guide for the determination of vocabulary size. According to our 
experiments on the TRECVid 2008 dataset, we employ a vocabu-
lary with 512 visual words for the TISR descriptors. 

In the process of building the BoW feature for a human figure, a 
histogram is obtained by quantizing each TISR descriptor to a 
visual word and counting the frequency of each visual word in 
visual vocabulary. The basic idea of bag-of-words method is to 
depict the image as an orderless collection of local descriptors 
with the result that it completely disregards the spatial locations 
and layout of the descriptors in the image. Recently, the spatial 
pyramid matching (SPM) technique [28] follows the strategy of 
“subdivide and disorder” to compensate this loss. In our work, 
given a spatial pyramid resolution level with a subdivision style, a 
histogram feature is calculated in each local partition region using 
the bag-of-words routine. The final feature representation of a 
candidate region or a human figure is given by the concatenated 
vector of multiple BoW histograms extracted from all the local 
partitions. Figure 6 illustrates the subdivision styles of spatial 
pyramid levels used in our work. From resolution 1 to L , the grid 
at level l  has 12l  partitions along each dimension. 

 
Given the set of TISR descriptors of a human figure 

1{ , , }MD d d  , the BoW feature is calculated on each level and 

represented as  1, , LF f f  , where 3L   is the resolution 

levels in this paper. Using the vocabulary with 512 visual words, 
the feature dimensions for each level are 512, 2048 and 8192 for 

 1, , LF f f  , respectively. 

4.3 Action Classification Using SVM 
We formulate action recognition as a multiclass classification task. 
Various supervised learning algorithms can be employed to train 

the action classifiers. We employ the widely used SVM classifiers 
[29] in our approach due to its superb generalization capability to 
unseen test data as well as less parameters to tune. In addition, the 
existing work [30] has demonstrated that bag-of-words features 
achieved good classification performance using SVM classifiers. 

The input of the action classification module is the BoW feature 

 1, , LF f f   extracted from L  spatial pyramid levels for a 

human figure. For each action category, L  SVM classifiers SC   

1{ , , }LC C  are trained in which the classifier lC  employs the 

BoW feature lf  at resolution level l  as the input. One-against-all 

classification scheme is employed. The linear kernel is utilized to 
map the training vectors into a high dimensional feature space for 
classification. Compared with other types of kernel functions, the 
linear kernel has the advantage of lower computational complex-
ity which is more suitable for the huge dataset of TRECVid event 
detection task.  

The output of the linear SVM is the distance that the input feature 
is away from the classification boundary defined by support vec-
tors. To convert the distance to a likelihood value, the sigmoid 
function [33] is employed to transform the classification output to 
the likelihood that the human figure is performing a certain action. 
The transformation is defined as 

 
1

( )
1 exp( )l

l

T e
e 


  

, (8) 

where ( )l l le C f  is the distance outputted by the lC  classifier 

with the input feature lf , ( )lT e  is the corresponding probabilistic 

likelihood, the parameters   and   are empirically set as 1.0 
and 0.0 in our experiments, respectively. 

Motivated by the weighting strategy of spatial pyramid matching, 
for the human figure with the feature  1, , LF f f  , the final 

classification likelihood rE  corresponding to the category r  is 

given by the weighted sum of all the likelihoods obtained at dif-
ferent spatial pyramid resolution levels. 

 
1

1 1
( )

2

L

r lL l
l

E T e
Z 



  , (9) 

where 
1
1 2

L L l

l
Z 


   is the normalization constant. 

5. TEMPORAL FILTERING FOR EVENT 
SEQUENCE SEGMENTATION 
Our classification results of human figures are primarily frame-
based. To further segment the event sequences from the video 
stream, we employ a temporal Gaussian filtering to link and 
smooth the frame-based classification results. Afterwards, scene 
prior knowledge can be used to further remove some false alarms 
to enhance the final detection accuracy. 

Gaussian filtering is essentially a low-pass filter using a Gaussian 
kernel. The purpose of the temporal Gaussian filtering is to sup-
press the noise in the frame-based classification results and link 
them to video event segments by taking account of the temporal 
consistency of the actions. Denote the Gaussian kernel function 
as ( ) (0, )g G    where the deviation   indicates the expected 
span of an action. Figure 7 illustrates the process of Gaussian 

Level 1 Level 3Level 2

 

Figure 6. The spatial pyramid partition styles for different 
levels, which are 1x1, 2x2 and 4x4 respectively. 
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filtering. Given the event category r  and the sequence of frame-
based action recognition results 1( ) { ( ), , ( )}r r nQ t E t E t   which 

are on one trajectory, the Gaussian filtering is conducted by con-
voluting ( )Q t  with the Gaussian kernel function 

 
1

( ) ( ) ( )
n

Q t Q u g t u du   . (10) 

As shown in Figure 7, after Gaussian filtering, the successive 
frames with the likelihoods higher than a pre-defined threshold 
(0.9 in the experiments) are extracted as the video event segments. 

 
After obtaining the event segments, scene prior knowledge, such 
as the ground plane homography or 3-D layout of the scene can 
be further leveraged to remove some false detections. In our im-
plementation, we average all the human detections in the entire 
dataset and estimate a mask for active foreground regions for 
individual scenes. Some false detections occur outside the active 
foreground regions can be removed at the post-processing stage. 

6. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of the proposed approaches, we 
performed thorough experiments on the TRECVid 2008 event 
detection dataset to detect 3 action-oriented events: CellToEar, 
ObjectPut and Pointing. The TRECVid event detection dataset 
was obtained from the Gatwick Airport which consists of 50-hour 
(5 days × 2 hours/day × 5 cameras) videos in the development set 
and 49-hour videos in the evaluation set. Our experiments were 
conducted on the development set since the ground truth annota-
tions are available. For each video in the development set, there 
are about 190K frames with image resolution 720 × 576. The 
preliminary annotations of the occurrences of actions in the de-
velopment set were provided by NIST. We further labeled the 
precise locations of persons performing the actions every 3 frames 
for training. Some positive training samples of the 3 events of 
interest are shown in Figure 8, where we observe large intra-class 
variations due to different viewpoints and the diverse ways people 
performing the same actions. 

 

To quantitatively evaluate the performance, we calculate the de-
tection rate (DR) and false alarm (FA) for each event category, 
which are defined as follows. 

  DR TP TP FN  , (11) 

  FA FP FP TN  , (12) 

where for each type of event, TP  is the number of true positive 
instances, FN  is the number of false negative instances, FP  is 
the number of false positive instances, and TN  is the number of 
true negative instances. 

In the following sub-sections, we first present the results of hu-
man detection and tracking. Then, the frame-based performance 
of our method using the TISR descriptors extracted from different 
low-level features are compared with that of a frame based and a 
spatio-temporal method [36] using the SIFT descriptor [31]. Fi-
nally, the sequence-based performance is evaluated using the 
criteria of TRECVid 2008 event detection task. 

6.1 Human Detection and Tracking 
In the pre-processing layer, our action-oriented event detection 
method starts by human detection and tracking to locate candidate 
regions of interest. In our system, we employ a dedicated human 
detector based on convolutional neural networks (CNN) [22] and 
a tracker integrating multiple cues [23][24] to locate human heads. 
We bias to high detection rate rather than high precision. The 
overall detection rate of human including both detection and 
tracking results is tuned to about 80% with the precision 50%-
60% approximately. Sample frames of detection and tracking 
results are shown in Figure 9. To obtain the human figure, the 
bounding box around the head region is enlarged to roughly con-
tain the human body as shown in Figure 8. 

 

6.2 Evaluation of Frame-based Performance 
We first evaluate the TISR descriptor extracted from different 
low-level features in terms of the frame-based performance. The 
low-level features are image gradient, optical flow and the com-
bination of both. The performance is compared with the well-
known SIFT descriptor [31] which is acknowledged as one of the 
most powerful local feature descriptors and has achieved over-
whelming successes in object categorization and recognition.. 
These evaluations demonstrate that 1) the TISR descriptor outper-
forms SIFT descriptor for the task of action-oriented event detec-
tion no matter using image gradients or optical flow, 2) our 
method can effectively combine multiple low-level features to 
improve the recognition performance and 3) our method outper-
forms the SIFT based spatio-temporal approach [36] on the 
TRECVid event detection dataset regarding the capacity for inte-
gration of spatial and temporal information.  

(a) Samples of CellToEar (b) Samples of ObjectPut (c) Samples of Pointing

Figure 8. Positive training samples in the TRECVid dataset.
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Figure 7. Event sequence segmentation using temporal Gaus-
sian filtering. 

   

Figure 9. Samples of human detection and head tracking re-
sults where head locations are drawn as color rectangles. 
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In the experiments, the positive training samples of an action are 
the frame-based labeled instances and the negative samples are 
the human detection and tracking outputs including both true and 
false detections. Table 2 shows the detail of the train samples, 
from which we can observe severe unbalance between the 
amounts of positive and negative samples. To mitigate the data 
unbalance, we perturb the positive samples to generate more in-
stances for training. One positive sample is perturbed to 7 samples 
including 2 by zoom-in and zoom-out and 4 by shifting the figure 
center plus the original one. This also helps improve the generali-
zation ability of the classifier. 

 
Since the videos were recorded on 5 different days, we therefore 
perform 5-fold cross-validation accordingly, which guarantees no 
identical samples appear in both training and testing sets. We 
adopt the one-against-all strategy to train separate classifiers for 
each action category. Then, we evaluate the frame-based classifi-
cation results quantitatively and draw the average ROC curve 
with the average area under curve (AUC) score over 5 folds for 
each action. Greater the AUC score is, better the performance of 
the approach is.  

 
To make the descriptors robust to the scale changes of the human 
action, we employ two spatial scales for extracting the dense 
TISR descriptors. As shown in Figure 10, the scale of a fine reso-
lution is Nx = Ny = 8 and a coarse resolution is Nx = Ny = 16. The 
two adjacent image patches are non-overlapping at the fine reso-
lution, while there is 50% percentage overlapping area at the 
coarse resolution. The descriptors of 75000 random sampled im-

age patches including both scales from the whole dataset are used 
to construct a 512-word visual vocabulary by the K-means clus-
tering algorithm. Then, this visual vocabulary is employed to 
generate the bag-of-words features at multiple spatial pyramid 
levels for each training sample as explained in Section 4.2. 

For the comparison with the SIFT descriptor, the same training 
and testing datasets with the same evaluation settings are used for 
the SIFT based method. Basically, we substitute our descriptors 
by the SIFT descriptors in the proposed action recognition frame-
work. Dense SIFT descriptors are extracted within the same cubes 
using 2 spatial scales and then the BoW features for 3L   spatial 
pyramid resolution levels are built using a 512-word vocabulary 
to train the SVM classifiers. This approach is denoted as SIFT_IG. 
SIFT descriptors are extracted only from image gradients. For a 
fair comparison, we implement a simplified version of TISR de-
scriptor that also uses the response maps of image gradient only. 
Thus, the dimensionality of this TISR descriptor is 128 the same 
as the SIFT. The approach using the simplified TISR descriptor is 
denoted by TISR_IG. Moreover, the methods using the TISR 
descriptors which exploit optical flow only and both of image 
gradient and optical flow are referred as TISR_OF and 
TISR_IG_OF, respectively. Furthermore, we compare with the 
SIFT based spatio-temporal approach [36] applied to the TREC-
Vid 2008 event detection task. In this approach, the SPM features 
are constructed based on dense SIFT descriptors. Then, the statis-
tics along the time axis are calculated using Eq. (5) and Eq. (6) 
from space-time cubes as shown in Figure 5 and fed to the SVM 
classifier. Because of the space limitation, please refer to [36] for 
the technical detail. This approach is denoted by SIFT_SP in our 
experiments. The ROC curves and the corresponding average 
AUC scores of different methods are illustrated in Figure 11. 

The comparison of TISR_IG and SIFT_IG aims to evaluate the 
effectiveness of different descriptors to delineate spatio-temporal 
patterns within the BoW framework for action recognition. As 
shown in Figure 11, we can see that the TISR_IG achieves AUC 
scores 0.7457, 0.7718, and 0.7074 for the 3 action-oriented events 
CellToEar, ObjectPut and Pointing, respectively, which outper-
forms the SIFT_IG method by 0.031 in terms of the average AUC 
score. This verifies that our way to integrate the temporal statis-
tics of spatial response maps of image gradients is more effective 
than the SIFT descriptor for the task of action-oriented event de-
tection. In addition, the ROC curve and AUC score of the 
TISR_OF are also better than those of the SIFT descriptor based 
method. In the TISR_IG_OF method, the descriptor concatenates 
the temporal statistics of both image gradient and optical flow 

          

Figure 11. Frame-based ROC curves and AUC scores for the detection of CellToEar, ObjectPut and Pointing. 

P Q816

Fine resolution
Nx = Ny = 8

Coarse resolution
Nx = Ny = 16  

Figure 10. Multiscale resolution in the descriptor extraction 
for two image patches centered at P and Q. 

Table 2. Detail of the training samples for action recognition

Event # Positive sample # Negative sample

CellToEar 2469 

ObjectPut 2974 

Pointing 10170 

148640 

Total 15613 148640 
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thus has 256 dimensions. As shown in Figure 11, the AUC scores 
increase by 0.060 on average for 3 events compared with the 
SIFT descriptor based method. Also, the performance is better 
than either TISR_IG or TISR_OF. This result demonstrates that 
integrating more local features within the proposed TISR descrip-
tor can effectively improve the event detection performance. The 
combination of image gradient and optical flow delineates the 
action patterns more comprehensively from both appearance and 
motion perspectives. The TISR_IG_OF method outperforms the 
SIFT_SP method for CellToEar and ObjectPut by 0.0362 and 
0.0328 in AUC scores, respectively. The performance of Pointing 
is comparable to that of SIFT_SP. Such results demonstrate that 
the TISR descriptor is more effective in extracting spatio-
temporal characteristics for action representation in real-world 
conditions. 

 
We still observe quite a few false alarms in the detection results. 
Some typical false detections are shown in Figure 12. The reasons 
for the incorrect detection are on two-fold. 1) The semantic gap 
between motion patterns and actions: some false detections are 
reasonable in the sense that the subtleties of the motion patterns 
are too hard to discern, for example, fixing hair may be confused 
with CellToEar, the motion of getting an object is identical to that 
of putting an object, and many actions involve the movement of 
arms similar to Pointing. 2) Sometimes there are significant clut-
tered background and cluttered motion background (e.g. a crowd 
of people are moving on the background), which severely degrade 
the detection performance. 

6.3 Evaluation of Sequence-based Perform-
ance 
After performing the temporal filtering described in Section 5, we 
obtain the segments of video events. Then, we calculate the detec-
tion rate and false alarm defined in Eq. (11) and Eq. (12) to evalu-
ate the sequence-based performance of event detection. 

The definition for correct detection is specified by the criterion of 
event alignment given in the TRECVid 2008 event detection task. 
The alignment is performed by using the Hungarian algorithm to 
find the optimal bipartition graph matching in which the system 
observations (detected and segmented by our approach) are re-
garded as one set of nodes and the reference observations (labeled 
from ground truth) are regarded as the second set of nodes in a 
bipartition graph. Given one system observation sO  and its 

aligned reference observation rO , they are matched if and only if 

 ( ) ( ) ( )r s r
T TBeg O Mid O End O      , (13) 

where ( )Beg  , ( )End   and ( )Mid   represent the beginning, end 
and midpoint of the event observation’s time span, respectively. 

0.5T   second is a constant differentiating the mappable and 

un-mappable observations.  

Based on the frame-based detection results of the TISR_IG_OF 
method, we obtain the sequence-based event detection results. 
Using the TRECVid criterion, the performance is evaluated on all 
the videos in the development set. The results are listed in Table 3. 
On average our approach achieves about 8.45% detection rate 
versus 0.19% false alarm rate for these 3 events. We can see that 
the performance of our event detection approach is promising on 
this extremely challenging dataset. 

 
As shown in Table 3, the total number of three events is 3265 in 
the 50-hour videos. The average duration of an event is 34 frames 
[9]. On the other side, the total number of the video frames in the 
development set is about 4.75 millions. Apparently, positive event 
instances are extremely rare compared to the number of negative 
event instances. Such huge amount of the negative instances de-
mands for very strict SVM classifiers and temporal filtering 
threshold, otherwise there may be considerable false detections. 
This is the major reason why the detection rate is low. Moreover, 
even for the positive event instances labeled by NIST, some of the 
human figures are too small to provide effective information for 
the classifier training, which is the second reason for low detec-
tion rate. Nevertheless, our approach achieves fairly low false 
alarm rate. This indicates that our approach can effectively differ-
entiate the actions of interest from such huge amount of negative 
instances in the video stream. 

With the detected event sequences, the TRECVid 2008 event 
detection task evaluated the submitted systems by the normalized 
detection cost rate (NDCR) measure [9] which is a weighted lin-
ear combination of the missed detection probability and false 
alarm rate (NDCR = 0 indicates perfect detection performance). 
According to NIST’s notebook papers [9], the top performance 
system [36], which combines a SIFT based spatio-temporal ap-
proach with CNN based and boosting methods, achieved the mini-
mal NDCR = 0.9971, 0.9993, 1.0007 for CellToEar, ObjectPut, 
Pointing, respectively, on the evaluation set. Adopting the same 
measure, our method demonstrates competitive performance with 
the minimal NDCR = 0.9914, 0.9911, and 0.9940 for the three 
events on our cross-validation set (note the ground truth on the 
evaluation set is not publically available). 

7. CONCLUSIONS AND FUTURE WORK 
Human action in videos is an important clue for analysis and un-
derstanding of video events. In this paper, we have proposed an 
effective approach to detect the action-oriented video events in 
complex scenes based on human action recognition. We introduce 
a new TISR descriptor for action recognition to capture the pat-
terns in terms of both appearance and motion. Based on the pro-
posed descriptor, the action category is classified by fusing SVM 
classifiers at multiple spatial pyramid levels. The video events are 

(a) an FD for CellToEar (b) an FD for ObjectPut (c) an FD for Pointing 

Figure 12. Samples of false detections (FD). 

Table 3. Results of sequence-based event detection 

Event 
# Reference 
observation 

DR 
(%) 

FA 
(%) 

CellToEar 440 9.60 0.14 

ObjectPut 1154 7.34 0.19 

Pointing 1671 8.41 0.23 

Total/Average 3265 8.45 0.19 
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segmented using a Gaussian kernel based temporal filtering on the 
results of frame-based detections. 

Our proposed spatio-temporal descriptor is able to effectively 
encode the characteristics of actions in terms of appearance and 
motion patterns and is robust to various local variations in com-
plex scenes. By resorting to the bag-of-words technique, the ac-
tion recognition approach can tolerate spatial and temporal varia-
tions of human actions. Compared with the SIFT descriptor which 
has been extensively applied to object classification and recogni-
tion tasks, our TISR descriptor is more powerful for the action-
oriented event detection evaluated on the challenging TRECVid 
2008 event detection dataset.  

The future work includes two directions. First, more kinds of low-
level appearance and motion features, e.g. Gabor-like filters, will 
be integrated in the current approach to improve the performance. 
Second, more sophisticated temporal filtering strategy will be 
developed to segment the integrated event sequences. The 
TRECVid event detection task provides a standard benchmark 
dataset for action-oriented event detection to facilitate fair per-
formance comparison among different algorithms and will surely 
promote the research of video event detection. 
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