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Abstract

This paper describes a novel approach to optimal kernel
placement in kernel-based tracking. If kernels are placed
at arbitrary places, kernel-based methods are likely to be
trapped in ill-conditioned locations, which prevents the reli-
able recovery of the motion parameters and jeopardizes the
tracking performance. The theoretical analysis presented
in this paper indicates that the optimal kernel placement
can be evaluated based on a closed-form criterion, and
achieved efficiently by a novel gradient-based algorithm.
Based on that, new methods for temporal-stable multiple
kernel placement and scale-invariant kernel placement are
proposed. These new theoretical results and new algorithms
greatly advance the study of kernel-based tracking in both
theory and practice. Extensive real-time experimental re-
sults demonstrate the improved tracking reliability.

1. Introduction
Representing the target by the convolution of its fea-

tures with a spatially weighted kernel, kernel-based tracking

methods, such as mean shift [4, 5] or Newton-style meth-

ods [10], are in general computationally efficient due to the

gradient-based optimization. This is very attractive for real-

time applications, compared with other tracking schemes,

such as particle filters [13] or exhaustive template match-

ing.

As a differential approach, the performance of kernel-

based methods are greatly influenced by the quality of the

searching directions calculated based on the local measure-

ments. A core issue among many improvements on kernel-

based methods is to enhance the kernel’s ability of acquir-

ing a broad spectrum of measurements, which should be

informative enough to determine the best search direction

towards the desired mode in the feature space, e.g., the

matched target in tracking problems. There are two gen-

eral attempts towards this goal. One is to tailor the kernel

design based on the properties of local measurements, such

as the design of kernels with a variable bandwidth [6] or

with anisotropic shapes [19]. Another approach is to use

multiple kernels [8, 10], because there exists ill-conditioned

cases for single kernels, such that the computed searching

direction of single kernel is indifferent to certain motion and

thus preventing the unique recovery of these motion param-

eters. As revealed in [10], the culprit of this phenomenon

is the rank deficiency in a least square estimation. An in-

depth analysis of these “ill-conditioned” cases is given in

[8] based on the observability of kernels, leading to the ap-

proach of multiple collaborative kernels that guarantees the

enhancement of kernel observability and produces more re-

liable motion estimation.

All these methods assume that unique and stable motion

estimation can be obtained as in the well-conditioned cases.

In other words, a small perturbation of the placement of the

kernel does not change much the motion estimation. Un-

fortunately, evidence from the practice challenges this as-

sumption. For example, in mean shift tracking, it is often

observed that different initializations of the tracker (i.e., de-

lineate the region to track and place the kernel accordingly)

may largely influence the performance. If we put the same

kernel at one place, the tracker may work well; but when

choosing a slightly different place, the tracker may fail un-

expectedly. Thus, this raises an interesting and critical ques-

tion: is there an optimal placement for the kernels to
achieve reliable tracking? Specifically:

• How can we evaluate the sensitivity of a placement?

• Does there exist a computationally efficient way to find

the optimal kernel placement?

• How can we place multiple kernels if a training se-

quence is available?

• Does there exist a scale-invariant kernel placement?

This paper presents our study in search of the answers to

the above intriguing questions in order to achieve more reli-

able tracking results. Our study starts with a conjecture that

subregions of the target may play different roles in tracking,

since some subregions of the target may be more reliable for

tracking while others may not. We provide a detailed anal-

ysis in order to identify those regions, and derive a closed-

form criterion for evaluating the sensitivity of kernel place-

ment. To make the optimal kernel placement feasible, we
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derive a gradient-based algorithm to efficiently search for

an optimal placement, which greatly reduces the computa-

tional cost compared with a brute force way of examining

all the possible placement on the image exhaustively. We

also propose a method to discover temporal-stable kernels

for multiple kernel placement, and study the issue of scale-

invariant kernel placement.

2. Kernel-based Tracking
In kernel-based tracking [5, 10], object is represented by

a color histogram, q= [q1, q2, . . . , qm]T ∈ R
m,

qu =
1
C

n∑
i=1

K(xi − c)δ(b(xi), u), (1)

where {xi}i=1...n are the pixel locations in the image, b(xi)
is a binning function that maps the color of xi onto a his-

togram bin u, with u ∈ {1 . . . m}. K is a spatially weighted

kernel centered at c and δ is the Kronecker delta function.

A more concise matrix form is written as [10]:

q(c) = UT K(c), (2)

where

U =

⎡
⎢⎣

δ(b(x1), u1) . . . δ(b(x1), um)
...

...
...

δ(b(xn), u1) . . . δ(b(xn), um)

⎤
⎥⎦ ∈ R

n×m,

K = 1
C

⎡
⎢⎣

K(x1 − c)
...

K(xn − c)

⎤
⎥⎦ ∈ R

n.

The tracking process is to find the best displacement

Δc such that the histogram p(c + Δc) at the new lo-

cation best matches the target histogram q, i.e., Δc∗ =
arg minΔc O(q,p(c + Δc)), where O(·, ·) is the objec-

tive function for matching, such as the Bhattacharyya co-

efficient [5] or the equivalent Matusita metric [10],

O(Δc)
�
= ‖√q −

√
p(c + Δc)‖2. (3)

The ill-conditioned case is discovered when linearizing

Eq.(3) w.r.t. Δc, we have

MΔc =
√

q −
√

p(c), (4)

where
√

q,
√

p(c) ∈ R
m, Δc ∈ R

r, M ∈ R
m×r,

M = 1
2diag(p(c))−

1
2 UT JK(c),

JK(c) =

⎡
⎢⎢⎢⎣
∇cK(x1 − c)
∇cK(x2 − c)

...

∇cK(xn − c)

⎤
⎥⎥⎥⎦ ,

(5)

and diag(p) represents the matrix with p on its diagonal.

In order to get a stable solution for Δc, it is required that

M to be of full rank. Otherwise, Δc cannot be uniquely

determined, indicating an ill-conditioned situation.

3. Optimal Single Kernel Placement
The ill-conditioned case greatly deteriorates the tracking

performance. In this section, we give more detailed analysis

into such a case and propose a criterion to select optimal

locations to place kernels, which avoids the ill-conditioning

to the largest extent.

3.1. Applying the condition theory
To solve x from a linear equation

Ax = b.

Besides requiring A to be invertible, it is also expected

that the solution is numerically stable. The analysis of how

sensitive the x is, given changes in b, can be achieved by

examining the condition number defined as,

κ(A) = ‖A‖‖A−1‖.
For example, when 2−norm is used, κ2(A) =
‖A‖2‖A−1‖2 = σ1(A)/σn(A), which is the ratio between

the largest and the smallest singular value.

For a single kernel, we need to calculate the motion pa-

rameter Δc from MΔc =
√

q − √
p(c). The solution is

Δc = (MT M)−1MT (
√

q −
√

p(c)).

So, (MT M)−1MT should be considered as a whole entity,

which tells how sensitive the Δc is, given small changes in√
q − √

p(c).
Since (MT M)−1MT is not a square matrix, its “condi-

tion number” is not well defined. However, considering the

essence of this problem, if we take SVD of the 2×m matrix

(MT M)−1MT as (MT M)−1MT = UΣVT .

We would expect that the 2 singular values in Σ be

comparable to each other, such that the (MT M)−1MT is

equally sensible in both directions of its two orthonormal

singular vectors. Otherwise, if the two singular values are

unbalanced, a fluctuation in
√

q − √
p(c) caused by noise

will change the solution Δc significantly along the singular

vector corresponding to the larger singular value, and negli-

gibly along the singular vector corresponding to the smaller

singular value, bringing in undesirable numerical instabil-

ity, and such a region is generally considered to be a bad

placement of the kernel.

Notice that

(MT M)−1 = (MT M)−1MT ((MT M)−1MT )T = UΣ2UT ,

and assume σ1 and σ2 are two singular values of

(MT M)−1MT , it is easy to verify that

κ2((MT M)−1) = (σ1/σ2)2.

We also have κ2(MT M) = κ2((MT M)−1). In view

of this, the sensitivity evaluation of (MT M)−1MT is just

equivalent to inspecting the condition number of (MT M),
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since κ2(MT M) monotonically increases/decreases when

σ1/σ2 increases/decreases.

So, the criterion for a reliable kernel tracking is: we need

to put the kernel to such a place that the condition number

of MT M is minimized.

min
c

κ2(MT M). (6)

3.2. Interpretation of the condition number crite-
rion using the 2-norm

Here, we give an intuitive interpretation of the condition

number criterion using the 2-norm, which requires to eval-

uate the singular values of MT M. Actually, evaluating the

singular values of M doesn’t affect the analytical result.

In the following, xi represents a data point with index i,
while xj

i denotes point i of color j. For the problem of n
points within the kernel range and m color bins. By recall-

ing Eq.(5),

M =
1
2
diag(p(c))−

1
2 UT JK(c).

The ith row of the n×2 matrix JK is (xi−c)g
(‖xi−c

h ‖2
)
,

with g(·) = −k′(·) and k′(·) being the profile of the kernel

K. Then, by left multiplying the m × n sifting matrix UT ,

the resulting m × 2 matrix, denoted as D = UT JK(c),
has the meaning that the jth row of D is the sum of xj

i − c

weighted by g
(
‖xj

i−c

h ‖2
)

for all pixels xi of color j, i =
1, . . . , n, j = 1, . . . ,m.

As for M = 1
2diag(p(c))−

1
2 D, we can see that each

row of M is just the normalization of the corresponding row

in D by a factor of 2p(c)
1
2 , thus giving a particular con-

straint on Δc,

[
1

2
√

p
j

∑
i

(xj
i − c)g

(∥∥∥xj
i−c

h

∥∥∥2
)]

Δc = √qj −√pj . (7)

The intuition of the LHS of this equation, i.e., the jth

row of M, is that we sum all the displacement vector xj
i − c

of color j, which are weighted by g
(
‖xj

i−c

h ‖2
)

, and then

the summation is scaled by 1
2
√

p
j
. Denote this result as

[dj
x dj

y], which can be effectively considered as the cen-
ter of mass of all pixels of color j.

Since a good kernel placement is featured by a M with

comparable singular values, this requires that all the rows

of M, [dj
x dj

y], j = 1 . . . ,m well span the 2D space. The

corresponding situation is that all the center of masses of

the color components should be distributed evenly around

the center c.

3.3. An equivalent condition number
In practice, 2-norm condition number is not straightfor-

ward to compute. In this section, we introduce another form

of condition number, being equivalent to the 2-norm con-

dition number when the matrix is 2×2 symmetric positive

definite. The new condition number offers a great ease of

computation and facilitates an efficient searching algorithm

for optimal kernel placement, as will be derived as follows.

The Schatten 1-norm [2][11][17] is defined as,

‖A‖S =
∑

σi,

where σ1, . . . , σn are the singular values of A. When A is a

symmetric positive definite matrix, we can have,

‖A‖S =
∑

σi = trace(A),∏
σi = det(A). (8)

Given a 2 × 2 symmetric positive definite matrix

A={aij}, we can then have a closed form expression of S-

norm condition number as,

κS(A) = ‖A‖S‖A−1‖S = trace(A)trace(A−1)
= trace(A) trace(A)

det(A)
= (a11+a22)

2

a11a22−a12a21
.

(9)

And equivalently,

κS(A) = (
∑

σi)2/
∏

σi. (10)

According to [9], any two condition numbers κα(A) and

κβ(A) are equivalent in that constants c1 and c2 can be

found for which

c1κα(A) ≤ κβ(A) ≤ c2κα(A).

For example, 1
nκ2(A) ≤ κ1(A) ≤ nκ2(A), for A∈ Rn×n.

Here, we can show 2 Propositions, the proof of which [1]

are omitted due to page limit.

Proposition 1 κ2(A) ≤ κS(A) ≤ n2κ2(A), if matrix A
is n × n symmetric positive definite.

Proposition 2 κS is monotonically increasing/decreaing

when κ2 increases/decreases, if the matrix is 2 × 2 sym-
metric positive definite.

Therefore, since MT M is 2 × 2 symmetric positive def-

inite, if we find the local/global minimum of its κS , we in

fact find the local/global minimum of its κ2. This nice prop-

erty ensures that the good kernel measured by κS is just the

good kernel measured by κ2. Because computing κS only

involves element-wise calculation, it is much more conve-

nient and efficient than κ2, which is non-analytical.

So the claim is that, κS is an equivalent substitute for κ2

in all the cases [3][15][16][18] when the 2-norm condition

number of a 2×2 covariance matrix needed to be evaluated.

To summarize, given
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κ2 = 1.0, κ2 = 8.3, κ2 = 11.1, κ2 = 10301, κ2 = ∞
κS = 4.0, κS = 10.4, κS = 13.2, κS = 10303, κS = ∞

Figure 1. Synthesized image patterns and their κ2, κS .

(a) (b) (c) (d)

Figure 2. column (a): yellow: image region, red: kernel. column

(b), (c), and (d) are κ2, κS and κS − κ2 evaluated in the region of

column (a), respectively.

M =

⎡
⎢⎣

d1
x d1

y
...

...

dm
x dm

y

⎤
⎥⎦ ,

where

[dj
x dj

y] =

[
1

2
√

p
j

∑
i,b(xi)=j

(xj
i − c)g

(∥∥∥xj
i−c

h

∥∥∥2
)]

, (11)

is the weighted sum of the displacement vectors of all pixels

of color j, or called the center of mass of color component

j.

We can compute in closed-form

κS(MT M) = ‖(MT M)‖S‖(MT M)−1‖S

= (
∑

(dj
x)2+

∑
(dj

y)2)2
∑

(dj
x)2

∑
(dj

y)2−(
∑

(dj
xdj

y))2
.

(12)

The region with a small κS(MT M) is the good choice

for kernel placement, on which the stability of tracking will

be better than those regions with larger condition numbers.

Fig. 1 shows some synthesized image patterns and their

κ2, κS . The first one has the lowest condition number, coin-

ciding the interpretation given in Sec 3.2. Fig. 2 shows the

κ2, κS and their differences evaluated in two image regions.

It is observed that they exhibit the same pattern of ridges and

valleys, and their differences are small compared with their

own magnitudes.

3.4. Find optimal kernel placement efficiently
In practice, only obtaining the criterion for optimal ker-

nel placement is insufficient, since it is not attractive to ex-

haustively evaluate this criterion all over the image. In this

section, we derive a gradient descent algorithm, which can

efficiently find good placement for kernels.

Notice that in Eq.(11) and Eq.(12), the condition number

κS only involves dj
x and dj

y , which are explicitly presented

as a function of the kernel position c. So, we can com-

pute the derivative of κS(MT M) w.r.t the kernel position,

c. Denote

κS(MT M) =
A2

B
=

A2

DE − F 2
,

where

A =
∑

j ‖[dj
x dj

y]‖2 =
∑

j(d
j
x)2 +

∑
j(d

j
y)2,

D =
∑

j(d
j
x)2, E =

∑
j(d

j
y)2, F =

∑
j(d

j
xdj

y),

B =
∑

j(d
j
x)2

∑
j(d

j
y)2 −

(∑
j(d

j
xdj

y)
)2

= DE − F 2.

Here, the goal is to compute

∂ A2
B

∂c = 2AB ∂A
∂c −A2 ∂B

∂c

B2 = 2AB ∂A
∂c −A2(D ∂E

∂c +E ∂D
∂c −2F ∂F

∂c )

B2 .

So, we need ∂A
∂c , ∂D

∂c , ∂E
∂c , and ∂F

∂c . In practice, we will

express ∂D
∂c = [ ∂D

∂cx

∂D
∂cy

], ∂E
∂c = [ ∂E

∂cx

∂E
∂cy

], and ∂F
∂c =

[ ∂F
∂cx

∂F
∂cy

]. Details are derived as follows,

∂A
∂c =

∑
j

2[dj
x dj

y]∂[dj
x dj

y ]

∂c ,

∂D
∂cx

=
∑
j

2dj
x

∂dj
x

∂cx
, ∂D

∂cy
=

∑
j

2dj
x

∂dj
x

∂cy
,

∂E
∂cx

=
∑
j

2dj
y

∂dj
y

∂cx
, ∂E

∂cy
=

∑
j

2dj
y

∂dj
y

∂cy
,

∂F
∂cx

=
∑
j

[
∂dj

x

∂cx
dj

y + dj
x

∂dj
y

∂cx

]
, ∂F

∂cy
=

∑
j

[
∂dj

x

∂cy
dj

y + dj
x

∂dj
y

∂cy

]
.

where

∂[dj
x dj

y]

∂c = 1
2
√

p
j

[∑
i

(−1)g
(∥∥∥xj

i−c

h

∥∥∥2
)

+
∑
i

(xj
i − c)T ∂g

∂c

]
,

∂dj
x

∂cx
= 1

2
√

p
j

[∑
i

(−1)g
(∥∥∥xj

i−c

h

∥∥∥2
)

+
∑
i

(xj
ix − cx) ∂g

∂cx

]
,

∂dj
x

∂cy
= 1

2
√

p
j

∑
i

(xj
ix − cx) ∂g

∂cy
,

∂dj
y

∂cx
= 1

2
√

p
j

∑
i

(xj
iy − cy) ∂g

∂cx
,

∂dj
y

∂cy
= 1

2
√

p
j

[∑
i

(−1)g
(∥∥∥xj

i−c

h

∥∥∥2
)

+
∑
i

(xj
iy − cy) ∂g

∂cy

]
.

∂g
∂c for Gaussian kernel is omitted here, but is given in [1]

When Epanechnikov kernel is used, i.e., g(c) = 1 and
∂g
∂c = 0, the above equations will be reduced to much sim-

pler forms. Notice that all the above values can be obtained

by scanning the pixels in the kernel region only once, so the

calculation is easy and efficient.

Fig. 3 shows some illustrative examples. In all 3 images

in (a), we start from the kernel with red rectangle and end up

with the kernel with the green one, led by the gradient-based

search. Fig. 3(b) shows the descending κS . Fig. 3(c) shows

the regions covered by the kernel, which is moving along

the direction of the gradient towards the good placement.
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(a) (b) (c)

Figure 3. column (a): the red rectangle indicates the start kernel

position, the green one is the optimized kernel placement found

by the gradient-based searching algorithm. column (b): the cor-

responding descending value of the κS . column (c): the regions

covered by the kernel, which is moving along the direction of the

gradient towards the good placement. The red line with a spot

indicates the center of mass of each color component.

4. Multiple Kernel Placement
The kernel based tracking is no longer confined to sin-

gle kernels. Multiple kernels have several advantages over

single kernel. For, example, multiple kernels can allevi-

ate the singularity and improve the kernel’s observability to

the motions [8][10]. Multiple kernels are better at handling

tracking an object with complex structure, while a holistic

representation based on a single kernel is cumbersome. In

such a case, distributing the tracking task into several cor-

related sub-tasks would be viable. Another benefit is the

save of the computation since each sub-task only needs a

relatively small kernel.

We think good strategies to place multiple kernels are I)

each kernel has a reliable tracking performance, i.e., at a

good location, and based on which, II) the structure of the

multiple kernels should remain stable through the sequence

and be simple.

The first strategy can be addressed by the proposed

method, that is, the gradient-based searching algorithm can

find the good placements near the initialized ones. The sec-

ond strategy states that those multiple kernels are expected

to maintain an invariant structure, thus serving as an con-

sistent description of the object with good fidelity but great

simplicity.

If a kernel is good for tracking at the beginning, but is

not suitable for tracking due to view or illumination changes

afterwards, this kernel is considered unstable and should be

pruned away. It is also required that the stable structure

be simple, although the object could be complex. By this

means, we can adopt the scheme of multiple collaborative

kernel tracking [8], which has superior kernel observability

than single kernel, to coordinate those representative ker-

nels for an overall reliable tracking performance

However, there is no general answer to the question that

what kind of structure of multiple kernels should be chosen,

and this is in fact an ongoing research topic in computer

vision [7]. For simplicity, we chose triangle, which is easy

to manipulate and works well in many sequences.

For each triangle, we build a 2D histogram, recording

the 2 internal angles of that triangle. We obtain the statis-

tics of this 2D histogram over a training sequence. The most

stable triangle, with all the internal angles exhibiting little

variation, is expected to yield a peak in this 2D histogram.

So, for each triangle formed by 3 kernels, we measure the

entropy of its associated 2D histogram, and choose the one,

which has the minimum entropy, to be the most stable tri-

angle kernel structure.

Then, we use this triangle modelling for collaborative

kernel tracking [8]. This optimal multiple kernel placement

and the mining for stable structure are fully automatic after

the initialization of a set of kernels at the very beginning.

The initialization can be done either manually or evenly on

the image grid.

5. Scale-invariant Kernel Placement
A placement is good for kernel if the condition number

evaluated on that region is small. This placement is even

better if its associated condition number achieves a local

minimum, i.e., it is the only one that should be selected from

its neighborhood. However, it is obvious that the condi-

tion number changes when the scale of the kernel changes,

therefore, the local minima property could also vary w.r.t

the scale.

An interesting question is that if there exists a placement
of a kernel, whose condition number is the local minima for
all, or for a large number of different, scales? and how to

find them?

Placing a kernel at such a place is invariant to the scale

changes, meaning that, it can yield reliable tracking perfor-

mance when changes occur in the kernel scale, or in the

image scale, or in the scales of both image and kernel, since

scale changes in the image and the kernel is just a relative

term. This is in fact a very nice property.

In order to find such placements, rather than brute force

evaluating the condition number through all the scales and

neighborhood, the searching algorithm in Sec 3.4 offers

considerable efficiency.

We can evenly initialize a set of kernel samples with dif-

ferent scales on the grid. Then, let these kernels converge

to their corresponding local minima. When all the kernel

samples are converged, a distribution of the places of con-

verged kernels are obtained. The set of local maxima of

such a distribution indicate the set of scale-invariant kernel

placements.

In experiment, we generalize kernels with 7 different

scales, each scale with 400 evenly initialized kernel sam-

ples. The places, to which a large amount of kernel sam-
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(a) (b) (c) (d) (e) (f).

Figure 4. Scale-invariant kernel placement. Larger circle means higher density of convergent kernel samples.

ples are converged, are shown in Fig. 4. It can be seen that

most of these places are featured by a region with diversi-

fied color pixels’ intensity and spatial distributions.

The property of such placement for featured region se-

lection, pattern recognition will be our main future work.

6. Discussions
6.1. Region selection vs. feature point selection

It may be noted that the form of Eq. (4) is similar to

that of feature point matching [17][18], in that they are all

in the general form of linear equation, i.e., Ax=b. Actu-

ally, the property of the matrix A has been actively studied

in the past decades for point matching, such as computing

the optical flow [3][15][16][18]. Some work also extends

the point matching framework to address other geometrical

features such as lines [12][20].

However, our work is different from those work in the

following aspects.

1) The content of matrix A, denoted as Aregion in our

work, and Apoint in [17][18].

Aregion = M =

⎡
⎢⎣

d1
x d1

y
...

...

dm
x dm

y

⎤
⎥⎦ , Apoint =

⎡
⎢⎣

g1
x g1

y
...

...

gn
x gn

y

⎤
⎥⎦ .

where [dj
x dj

y] is the center of mass of all pixels of color j,

for m color bins, j = 1, ...,m, and [gi
x gi

y] being the im-

age gradient of pixel i w.r.t x and y axes, for n pixels within

a small window around the feature point, i = 1, ..., n.

The different content determines that their analytical re-

sults are different. That is, there is no certain correspon-

dences between optimal feature points and optimal regions

for tracking. We think these works have different practical

impacts in real applications.

2) The criterion and the analytical method In our

work, the criterion is κS(MT M), which has the equivalent

effect as analyzing κ2(MT M). In [18], the criterion is that

the smallest eigenvalue of AT A is larger than a threshold.

In [17], ‖(AT A)−1‖S is checked, which has been shown

to have the same effect as requiring the smallest eigenvalue

of AT A to be larger than a threshold. In contrast, our crite-

rion takes into account of both singular values of M, which

is more general.

As for the analytical method, we have shown that κS

is equivalent to κ2 when considering the 2×2 covariance

matrix case, which leads to some nice analytical properties.

3) Gradient descent search We provide a gradient based

searching scheme to find the optimal regions within an im-

age efficiently, which avoids exhaustive search. But the se-

lection of feature point has to be exhaustive.

6.2. Interpretation of condition number criterion
using the S-norm

We already know the structure of M = [vx vy], where

vx = [d1
x, . . . , dm

x ]T , vy = [d1
y, . . . , dm

y ]T are the X-

coordinates and Y-coordinates of the the centers of color

masses, respectively. Then we have∑
j(d

j
x)2 = ‖vx‖2,

∑
j(d

j
y)2 = ‖vy‖2,

(
∑

j(d
j
xdj

y))2 = ‖vT
xvy‖2 = ‖vx‖2‖vy‖2 cos2(θ).

where θ is the angle between vectors vx and vy.

Recall Eq.(12),

κS(MT M) = (‖vx‖2+‖vy‖2)2

‖vx‖2‖vy‖2−‖vx‖2‖vy‖2 cos2(θ)

=
‖vx‖4+‖vy‖4

‖vx‖2‖vy‖2 +2

1−cos2(θ) ≥ 4
1−cos2(θ) ≥ 4.

It is easy to verify that the desirable minimum of the

above condition number is achieved when

‖vx‖ = ‖vy‖, and cos(θ) = 0, i.e.,vx ⊥ vy,

which implies that the roles of X and Y coordinates of those

centers of color masses are equivalent and interchangeable.

The optimal case would be that these mass centers are lo-

cated symmetrically around the center of kernel c. This is

actually the same as the interpretation we have given in Sec

3.2, but from another point of view. A perfect example is

already shown in the left most column of Fig. 1.

7. Experiment
In this section, experiments using real video sequences

demonstrate the effectiveness and usefulness of the pro-

posed algorithm for efficient optimal kernel placement.

7.1. Single kernel
For an object of interest, arbitrarily labelling a region,

which meets some special standards, such as owning a high
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(a) (b)tracking result of a kernel placed arbitrarily.

(c) (d) tracking result of a kernel with initial location optimized.

Figure 5. Tracking with (bottom row) and without (top row) kernel

placement optimization.

(a) (b)tracking result of a kernel placed arbitrarily.

(c) (d) tracking result of a kernel with initial location optimized.

Figure 6. Tracking with (bottom row) and without(top row) kernel

placement optimization.

variance, strong edges, or a high entropy, and assigning a

kernel on it, may not be optimal. In many cases, unexpected

tracking failures make people change the kernel placement

through trial and error.

On the contrary, placing kernels by the criterion pre-

sented in section 3 and the efficient searching algorithm de-

rived in section 4 can easily bring more reliable tracking

performance.

Fig. 5(b) shows the tracking result with a kernel initial-

ized as in Fig. 5(a). The tracking is not stable, since the uni-

directional color distribution in the initialized place yields

a large condition number. Using the same initialization as

5(a), we apply the gradient-based algorithm and find a good

kernel placement, with much lower condition number, as

shown in 5(c), the corresponding tracking result is shown in

5(d). More reliable performance is obtained.

Fig. 6(a) shows an arbitrarily initialized kernel place-

ment, the corresponding tracking result is in Fig. 6(b), in

which drifting is observed. In contrast, the searching algo-

rithm moves the place from 6(a) to a good placement as in

6(c). The tracking performance is instantly improved a lot,

as shown in 6(d). Notice that the location in Fig. 6(a) and

Fig. 6(c) is very close, and this is indeed difficult for man-

ual initialization, as heedlessly marking a region, to achieve

a robust performance. This shows that the searching algo-

rithm effectively help us to discriminate good and bad re-

gions for tracking.

7.2. Multiple collaborative kernels
Good strategies to place multiple kernels are that I) each

kernel is at a good placement, II) the structure of the multi-

(a) (b)multiple kernels, evenly initialized, tracking with

collaboration.

(c) (d) multiple kernels, location optimized, tracking with

collaboration.

Figure 7. Multiple kernel tracking, with (bottom row) and without

(top row) placement optimization.

ple kernels should be stable.

To track a region of interest, we initialize a set of kernels

on the grid, and run the searching algorithm to find good

placements. By this means, we can have a large coverage of

the possible multiple kernel combinations and safely avoid

the risk of having bad manually labelled regions.

Then we track these kernels over a training sequence,

which can be the first several frames of the video. We

choose the most stable triangle formed by 3 kernels.

In Fig. 7(a), multiple kernels are evenly initialized on

the grid within the region of interest. Without the gradient

searching algorithm, that is, we just accept and start from

the initial kernel locations, mine for the most stable trian-

gle and apply collaborative tracking scheme. The result is

shown in Fig. 7(b). Fig. 7(c) shows the good kernel place-

ment found by applying the gradient searching algorithm on

the kernel locations in 7(a), the corresponding tracking re-

sult is shown in 7(d). In all the figures, the bounding box

of the object of interest is reconstructed by conferring the

initial localization of the kernels w.r.t. the object. How

well can we know the position and orientation of the orig-

inal object measures the quality of collaborative tracking.

It is seen that the performance of kernels, whose locations

are optimized, is much better. This is because the kernels,

without placement optimization, are more likely to have a

large condition number and thus having more exposure to

the unstableness in the tracking.

The next two sequences involve object scale changes,

in which the optimal multiple collaborative kernel tracking

works well.

Fig. 8(a) and Fig. 8(b) show the tracking result from

the same initial kernel locations (left most column), af-

ter searching from the evenly grid initialization. Without
collaborative scheme applied, the unsatisfactory result in

Fig. 8(a) shows that, although all the kernels are good at

the beginning, they still can lost due to various disturbances

in tracking, such as, unexpected abrupt motions, distur-

bance from the object with similar appearance or illumi-

nation changes. Since the kernels track independently, they
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(a) multiple kernels, location optimized, tracking without collaboration.

(b) multiple kernels, location optimized, tracking with collaboration.

Figure 8. Multiple kernel tracking, with (bottom row) and without

(top row) collaboration.

(a) multiple kernels, location optimized, tracking without collaboration.

(b) multiple kernels, location optimized, tracking with collaboration.

Figure 9. Multiple kernel tracking, with (bottom row) and without

(top row) collaboration.

cannot recover themselves, such that the face is lost track.

By collaborating the initially good kernels, the result of lo-

calizing the face by the 3 kernels is more reliable, as shown

in Fig. 8(b).

Fig. 9 has the similar settings as in Fig. 8. The result

with collaboration, row (b), again yields much more reli-

able reconstruction performance of estimating the position,

orientation and the scale of the magazine cover.

8. Conclusion
To summarize, in this paper, we present a detailed anal-

ysis to the criterion of optimal kernel placement. An equiv-

alent criterion is also derived, which has a closed-form rep-

resentation and enables a nice gradient-based algorithm to

find optimal kernel placement efficiently. Placement of

temporal-stable multiple kernels and scale-invariant kernels

are also studied. These new theoretical results and new al-

gorithms help us to better understand and implement the

kernel-based tracking method.
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