
Face detection for automatic exposure control in handheld camera

Ming Yang2 James Crenshaw1

Bruce Augustine1 Russell Mareachen1 Ying Wu2

1Motorola Labs, Schaumburg, IL 60196
{J.Crenshaw,Bruce.Augustine,Russell.Mareachen}@motorola.com

2EECS Department, Northwestern University, Evanston, IL 60201
{mya671,yingwu}@ece.northwestern.edu

Abstract

Face detection is a widely studied topic in computer vi-
sion, and advances in algorithms, low cost processing, and
CMOS imagers make it practical for embedded consumer
applications. As with graphics, the best cost-performance
ratio is achieved with dedicated hardware. The challenges
of face detection in embedded environments include band-
width constraints set by low cost memory and a need to find
parallelism. Consumer applications need reliability, calling
for a hard real-time approach to guarantee that deadlines
are met. We present a face detection system for automatic
exposure control in a handheld digital camera or camera
phone. Contributions include a complexity control scheme
to meet hard real-time deadlines, a hardware pipeline de-
sign for Haar-like feature calculation, and a system design
exploiting several levels of parallelism. The proposed archi-
tecture is verified by synthesis to Altera’s low cost Cyclone
II FPGA. Simulation results show the algorithm can achieve
about 80% detection rate for group portrait pictures.

1 Introduction

Recent years have witnessed the steady progress of both
theoretical study and practical applications in computer vi-
sion. Many workable software and hardware systems have
been proposed for surveillance, robotic, human-computer
interaction (HCI) [14], and intelligent traffic measurement
[4]. Besides conventional vision applications, popularity of
handheld devices with cameras creates potential for fantas-
tic new applications in PDA’s, cell phones, or any small bat-
tery driven device. Meanwhile, the design methodologies
[9] and computational capacities of embedded systems are
soaring. So, it is exciting from both a technical and com-
mercial perspective to tailor algorithm development to the

needs of low cost embedded vision systems.
For handheld cameras, human faces are a very common

target of interest [6]. In addition, frontal face detection
is usually the first step to initialize many computer vision
tasks like tracking, recognition and image analysis. In this
paper we investigate the parallelism in the state-of-the-art
Adaboost based face detection algorithm and use it in an
embedded system for automatic exposure control. The chal-
lenges include efficient system design, since most published
vision algorithms don’t take hard real-time and parallel pro-
cessing into consideration. The latter involves pipeline de-
sign, data flow arrangement and parallel acceleration, while
for a hard real-time design, we propose a new complex-
ity control scheme in which unlikely windows are skipped
based on spatial correlation between successive scales. We
verify the cost of the hardware system by synthesizing for
a low cost Field Programmable Gate Array (FPGA), suit-
able for integration in moderately-priced handheld cam-
eras. Simulation results show this real-time detection sys-
tem achieves 75%-80% detection rate for group portraits.

The Adaboost based face detection algorithm and some
related hardware face detection systems will be briefly re-
viewed in Sec.2. In Sec.3 we propose the new hard real-time
complexity control scheme. The system architecture design
and complexity analysis are presented in Sec.4. The exper-
imental results are given in Sec.5. Concluding remarks are
presented in Sec.6.

2 Related works

2.1 Adaboost based face detection

The purpose of face detection is to locate any faces
present in still images. This has long been a focus of com-
puter vision research and has seen great success [1, 8, 12]
recently. There is too much literature on this topic to men-

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

tion here. Please refer to [13] and [15] for detailed surveys.
Among face detection algorithms, the Adaboost [2]

based method proposed by Viola and Jones [11] gains great
popularity due to a high detection rate, low complexity and
solid theoretical basis. The fast speed of Adaboost method
is due to the use of simple Haar-like features and a cascaded
classifier structure, which excludes most of the image win-
dow hypotheses quickly.

In a pre-processing stage, an auxiliary image, Ii, called
the integral image or summed-area table [5] is calculated
from the original image, Io, where the value Ii(i, j) is the
sum of Io pixels above or to the left of position (i, j) in Io.
Using Ii, the sum of Io pixel intensities in any rectangle can
be calculated in constant time. Afterwards, each image win-
dow w, at all positions and all scales, is fed into a cascaded
classifier. At each stage, the classifier response h(w) is the
sum of a series of features responses hj(w).

h(w) =
ni∑

j=1

hj(w), hj(w) = { αj1 fj(w) < tj
αj2 otherwize

(1)

where fj(w) is the feature response of the jth Haar feature
and αj1αj2 are the feature weight coefficients. If h(w) is
less than a threshold t, the window w will be regarded as
non-face and thrown away, otherwise proceed to the next
classifier. Multiple detections for one face will be pruned at
the last step. Fig. 1 shows the block diagram. Please refer
to [12] and [5] for the details.

Beyond performance, Adaboost face detector popularity
comes from low average execution time. As will be shown,
it can be modified to allow for steady data flow and a neat
hardware implementation. However, there are challenges
for an embedded system. The algorithm assumes random
access of the large integral image and considerable process-
ing power for multiplication and floating-point.

2.2 Hardware systems for face detection

In the literature, there are hardware implementations of
face detection based on tone color detection [3, 7] and Neu-
ral Networks [10]. For skin-color methods, in the training
stage a statistical skin-color model in a certain color space
is learned with labeled skin pixels. During detection, skin
pixels are extracted with this model, and then heuristics
based on face edge template [3] or connected component
analysis [7] are applied to determine face regions. Gen-
erally, skin-color methods are efficient and robust to geo-
metric transformation. But, no matter the color space used,
skin-color models are not reliable in unconstrained environ-
ments since illumination and variation among individuals
cause face color changes. Synthesis results were shown
for the Neural Network method [10]. However, the Neu-
ral Network is not computationally efficient, since it took

several hundred cycles to process one window, and there-
fore only 965 windows were evaluated in each 300 × 300
image, which can reduce the detection rate.

3 Challenges and algorithm design

Essentially, the face detection problem is a pattern classi-
fication problem. In addition to the discrimination power of
classifiers, the number of image windows evaluated plays
a significant role in performance, so computational effi-
ciency is critical to the success of detection. The number of
features examined at run-time is an input image-dependent
variable. So, a complexity control scheme is indispensable
to meet hard real-time deadlines. Here we propose a com-
plexity control method that exploits the spatiotemporal cor-
relation between the image windows, to skip some unlikely
image windows and increase detection rate when computa-
tional resources are overloaded.

In addition, to reduce hardware complexity and abide by
real-time restrictions, we make some approximations to the
Adaboost based algorithm.

3.1 Hard real-time

There may be hundreds or even thousands of features in
a detector. Although, according to [12], 80%−90% of win-
dows will be skipped after the first 2 stages, the provable
upper bound on number of features evaluated for one frame
is very very high. For hard real-time success, a complex-
ity control mechanism guarantees that every frame can be
processed in the exact designated time interval. A classic
example of the need for this is the comparison of watching
a DVD on a dedicated player versus watching it on a PC.
Unlike the PC, which has no hard real-time guarantee from
its OS, a dedicated player will not skip frames unless there
is an external problem like a scratch on the disk.

The straightforward solution is to truncate processing at
given deadlines no matter how many image windows are
processed. However, this is not elegant and faces occurring
in latter windows may be missed (if the image is searched
from the finest scale to coarsest, then larger faces will be
skipped). Here we propose a scheme to control the run-time
complexity to meet hard real-time deadlines and achieve
graceful degradation when the time budget is critical, while
at the cost that the detection rate may drop a little bit.

Given a clock frequency, a desired frame rate, through-
put of classifier pipeline, and overhead of integral image
calculation, we can estimate how many features can be eval-
uated in one frame, denoted as Fframe. For a specific im-
age resolution and scale factor, we know the maximal num-
ber Wframe of image windows. The goal of complexity
control is to make the best use of Fframe in case not all
Wframe windows can be examined. Basically, we exploit

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Figure 1. Block diagram of Adaboost based face detection.

the spatiotemporal correlation of images windows to make
predictions to guide the classifiers and skip unlikely win-
dows. This is based on the fact that if one image window
passes all the tests of classifiers on a certain scale, there is
a high probability that the same region at the smaller scale
will pass more stages than average. The number of classi-
fiers the windows pass for 3 successive scales are drawn in
Fig. 2, which exhibits fairly strong similarity. Another fact
is that for most sequences, and for portraiture in particular,
there is strong temporal correlation between frames.

Assume one window w{si} at scale si is rejected at the
kth classifier, we denote it as n(w{si}) = k (if w{si} passes
all N stages, n(w{si}) = N + 1). Our idea is to use the av-
erage of n(w) on the smaller scales to guide the search on
the larger scale. If we run out of all time budget and have
to omit some scales, we intentionally make up these scales
in the next frame. Specifically, for scale si an integral ta-
ble, summed stage table (SST) of n(w{si}) is built during
the evaluation process. From the position of larger window
w{si+1}, we can determine the set of windows O(w{si+1})
who have overlapped regions with w{si+1} at the scale si

and calculate the average n(w{si}) in constant time with

the SST. If n(w{si}) is below a certain threshold Tn, this
window will be skipped, and n(w{si+1}) is set to Tn, which
means it will play no role in the next scale. The entire pro-
cedure is summarized in Fig 3.

The detection rate may drop a little if some face windows
are skipped erroneously. However, all face candidates still
pass all classifiers in the cascade, which implies that false
positives won’t increase. This is a desirable result, since our
application of automatic exposure control prefers sacrifice
of detection rate over more false positives to avoid setting
exposure based on regions which were incorrectly classified
as facial. The experimental results of the complexity control
scheme will be presented in Sec.5.

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

0

2

4

6

8

10

10 20 30 40 50 60 70 80

10

20

30

40

50

60

0

2

4

6

8

10

10 20 30 40 50 60

5

10

15

20

25

30

35

40

0

2

4

6

8

10

Figure 2. The number of classifiers the windows pass for
3 successive scales.

3.2 Detection algorithm approximations

Some modifications and simplifications were applied
to the algorithm to accelerate hardware implementation.
Specifically, we re-scale the integral image on the fly; fixed-
point is used instead of floating-point; the Haar feature pool
is reduced; and we approximate the normalization factor.

Although [12] suggested that re-scaling a frame is more
expensive than re-scaling the features, this is not always so.
For an embedded system without a large cache, the loss
of data locality incurred by the larger re-scaled features is
worse than the cost of including a small re-scaling block,
because loss of locality implies the main memory will be
accessed for each use of integral image data - beyond the
bandwidth affordable in a low-cost device. But a re-scaler
runs in parallel, takes little logic, and not much bandwidth.
We re-sample a 25 × 25 block to 20 × 20 and write back to
the integral image store, as shown in Fig. 4. Thus, only Haar
features for 20 × 20 window need to be stored and applied,

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Figure 3. Pseudocode for complexity control procedure.

which greatly reduces the bandwidth since data brought in
is re-used for adjacent windows. Another benefit of scale
factor 1.25 is that only shift and add operations are required.

Figure 4. Re-scaling procedure for integral image.

Although simple Haar features enable fast lighting cor-
rection by maintaining another integral image of sum of
squared pixels, this is expensive in terms of storage and bus
traffic. Here we approximate the normalization factor σ of
image window w by the average sum σ = f(w)

A(w) , where
f(w) is the sum of pixels in w and A(w) is the area of
w. With this approximation, every feature response only
involves one multiplication, fi(w) < ti · f(w).

Other modifications include the conversion from float to
fixed-point for thresholds, ti, and coefficients, αj . Specif-
ically, we use 30 bits for ti and 15 for αj . For simplicity,
only the 6 features shown in Fig. 1 are implemented instead
of the enhanced 45o tilted Haar feature set described in [5],
which have no fundamental difference from the rectangular

features. These approximation work well for the majority
of images.

4 System design

Four instances of parallelism are considered. At task-
level, a pipeline can be formed between acquiring frames,
computing integral frames, and detecting faces within
frames (Fig. 7). Detecting faces at two different positions
is parallelizable. Feature calculations can be overlapped.
Lastly, feature calculation and image re-scaling can run in
parallel.

4.1 System Architecture

One goal for this design is to ensure the hard real-time
deadline of providing a list of face locations once per im-
age capture time. Another goal is suitability for use as a
block in a chip. Fig. 5 shows the system block diagram, and
illustrates how our design can be situated with a CPU, ex-
ternal memory, image sensor, and image sensor interface. It
is assumed that the internal bus and memory interface pro-
vide bandwidth and latency guarantees to the Integral Image
Computer and the Face Detection Engine.

Top level tasks for face detection and a resolution of their
data dependence is shown in Fig. 7. Two frames can be
overlapped since there is no data dependence between them.
Exposure time will be overlapped, so that the total time per
frame, Tf, will be Tr + Td milliseconds, where Tr is the
readout time for the frame, and Td is the time during which
detection is done. The exposure time, Te can exceed Tf, but
this case only makes detection deadlines easier.

Rather than moving image data out to main memory and
then back in for integral image computation, a small hard-
ware block is connected directly to the Imager Interface.
This is shown in Fig. 5 as the Integral Image Computer.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Exposure Time Frame Readout

Integral Image Calc

Store Integral Data Read Integral Data

Compute Classifiers
Resize Image

Read Feature Parameters
Write Rescaled Integral Data
Write Face Detection Results

TaskResource

Image Sensor

Integral Frame Calculator

System Bus

Face Detection Engine

Tf ms
Te ms Tr ms Td ms

Figure 7. Resource usage for each task and data dependence among tasks in a given frame. Note that exposure time will be
overlapped with the previous frame’s computation.

Integral
Image

Computer

General
Purpose

CPU

Memory
Interface

Imager
Interface

External
Memory

Image
Sensor
Chip

Integral
Image

Computer

General
Purpose

CPU

Memory
Interface

External
Memory

Face Detection Chip

Block
RAM

Classifier
Pipeline

Image
Rescaler

Face Detection Engine

Internal Bus

Imager
Interface

Image
Sensor
Chip

Figure 5. System Architecture.

With two more line store RAMs, the block could also com-
pute rotated integral images such as those in [5].

At the Feature Detection Engine top level, the tasks of
fetching integral data from main memory, computing the
classifiers on the current windows, re-scaling the integral
image, and writing results to main memory run in parallel.
Fig. 6 shows the top level.

Use of a block RAM is illustrated in Fig. 8. Each external
memory location is loaded twice - first as the bottom part of
the block of windows, and then again in the top when the
next block RAM row is brought in. As shown, the internal
RAM has 4 read ports, which limits throughput to 1 feature
per 2 cycles.

The Classifier Pipeline design uses the Integral Frame
data to find weighted image areas for comparison. Overlap-
ping execution of the pipeline for three successive feature
calculations, A, B, and C, is shown in Fig. 9. Latency of
the pipe is 5 cycles, but throughput is 1 feature per 2 cycles.

Face Detection Engine

Classifier
Pipeline

Image
Rescaler

Current
Window

Next
Window

Block RAM

Classifier Feature
Paramater RAM

Control
FSM

Write
Queue

Internal Bus

Figure 6. Face Detection Engine.

32 rows high,
4 window positions

20 columns wide,
execute classifiers from
this portion of the RAM

While classifiers
run on data to
left, load next here.

Block RAM is loaded
in steps across a row.
Overlap from row to row
is 16 rows. So each data
element is brought in from
main memory exactly twice.

Full integral image in external RAM

Previous row of
blocks.

Current row of
blocks.

Figure 8. Use of the Block RAM.

The example shows the hardest feature type, requiring eight
values from the integral image data. It is easy to modify the
pipeline to find the rotated features in [5].

4.2 Performance analysis

Image sensor frame rate and pixel rate set the overall sys-
tem deadlines and integral image processing times respec-
tively. However, these are not limiting. External memory
bandwidth, B in MBytes per second and feature calculation

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

A1
A2
A3
A4

A6
A7
A8
A9
A5 A10

A11

A11
A11

B1
B2
B3
B4

B6
B7
B8
B9
B5 B10

B15

B13
B14

C1
C2
C3
C4

C5

C6
C7
C8
C9

C10

C15

C13
C14

Block RAM Port 4
Block RAM Port 3
Block RAM Port 2
Block RAM Port 1

Multiply Stage 2
Multiply Stage 1
Rectangle Sum

Multiply Stage 3

cy1 cy2 cy3 cy4 cy5 cy6 cy7 cy8 cy9

Multiply Stage 4
Threshold compare A12

A11
B17

B16
C17

C16

Figure 9. Feature calculation pipeline. Three successive
feature calculations.

throughput, C in cycles per feature are the critical values.
Several second order effects are ignored, including latencies
of feature response calculation and integral frame computa-
tion, which are hidden by overlapped execution.

From B and C, two related values can be derived, which
make the overall discussion clearer. The first is the rate
at which blocks of integral image data are delivered to
the detection engine. This is determined by the height of
the block RAM. Fig. 8 is 32 high, so each integral frame
data value is loaded twice, for total external bandwidth of
2×310Kpixels/frame×4bytes/pixel×frame rate fps, which
for a frame rate of 10, would be 24M bytes per second (note
that the 4 bytes/pixel comes from the size used for the inte-
gral data).

The second derived value is cycles per integral block.
For the example with block height 32, there are four 20
pixel-high windows per block, so cycles per block are 4 ×
window rate cycles/window. Window rate is not con-
stant (a point addressed by the complexity control scheme),
so here we use an average of 20 features per window. For
the described feature pipeline, we have 40 cycles per win-
dow. The average is thus 160 cycles per block. Since the
next block to the right overlaps by 16 out of 20 pixels, dur-
ing the 80 cycles of computation we must bring in 4 × 32
integral frame values.

The minimum time spent on a block is thus governed
by the rate at which blocks are brought in, so even if the
classifier exits in only one feature per window, the system
will take at least 128 cycles for the block. It would be nice
to gain back extra cycles, but it’s not crucial since the rate
per block is still better than average. The complexity control
scheme covers this.

More generally, the maximum throughput of the system
can be limited by the speed at which data can be delivered
by main memory, or by the rate of computation in the fea-
ture detector (or both in actual operation due to data vari-
ation). Since feature detector throughput is a function of
internal clock rate, and memory bandwidth depends on the
number and speed of external RAM chips, a set of curves

can be constructed showing system throughput as a func-
tion of internal clock rate for different external bandwidth
values. See Fig. 10. In the graph, all values assume an av-
erage of 12 features per detection window. Adjusting the
block RAM size alters these values.

Th
ru

pu
t

(w
in/

s)

Internal ck freq (MHz)

B = 400 MB/s312.5K

62.5

B = 200 MB/s

B = 300 MB/s

B = 100 MB/s

46.931.315.6

234.4K
156.3K

78.1K

Figure 10. Performance curves for different external
bandwidth values.

Analysis of the design size shows that it fits on a low cost
FPGA and would be a very small block on an ASIC. Size
is dominated by the block RAM, but also includes multi-
plexing between block RAM and arithmetic units as well as
line stores for computing the integral frame. The Empirical
results section confirms that the design is small.

5 Empirical results

The training employs 858 frontal faces and 3000 nega-
tive images. The minimum hit rate is 0.999 and the maxi-
mal false positive rate is 0.4 for each stage classifier. The
Adaboost detector trained for 20× 20 windows includes 11
stages and 140 features total. The test set includes 133 up-
right frontal faces obtained from short portrait video clips
and images on internet.

In our proof-of-concept implementation, we use an
FPGA chip with 50MHz system clock. The overhead of in-
tegral image calculation and image capture is approximately
1M cycles per frame. At 10fps, 4M cycles per frame are
available which yields Fframe = 2M . The total number
of windows, Wframe = 320K, so the average budget is
F = 6.25 which is only slightly larger than the number of
features in the first classifier. Without any control scheme,
the actual number of features evaluated in run-time ranges
from 3.5M to 4M , which amounts to 10 to 12 features eval-
uated per window.

We compared our complexity control approach with the
truncation scheme (where the detector moves on to the next
frame if the hard real time deadline is reached) in terms of
the number of detected faces (# of DF), the number of false
positive (# of FP), the detection rate (DR), and the average
ratio (skipped ratio) of windows skipped to Wframe in our

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Table 1. Comparison of our approach and the truncation scheme.
Method Total # of faces # of DF # of FP DR skipped ratio
OpenCV 133 124 3 93.2% 0
No deadline 133 107 15 80.5% 0
Truncation 133 68 10 51.1% 0
Our method 133 101 13 75.9% 22%

method. The detection result when no deadline is enforced
is listed to demonstrate the detector’s performance. The
result of OpenCV’s [5] implementation is listed for com-
parison. Note that since there are 25 stages and 2913 Haar
features in total, on average about 50 Haar features are eval-
uated for each frame, which means far more resources are
required than our 11-stage detector. This result shows the
difficulty of our test set. The detection results are shown in
Table 1. Some representative detection results are shown in
Fig. 11.

Since in our test case the feature budget is only slightly
larger than one half of what is needed, truncation skips the
majority of windows on large scales. Thus the detection
performance deteriorates dramatically in that scheme. In
our scheme, the threshold Tn is 3, which is fairly conser-
vative. On average 22% of the total windows are skipped
based on the spatial correlations. If some large windows
are omitted due to the deadline, they can be made up in
the next frame. Our complexity control scheme slightly de-
creases the detection rate and false positive rate simultane-
ously by allocating more computational resources to more
likely windows. The detection performance without time
deadline is lower than the results of OpenCV’s implemen-
tation, which is partly due to insufficient training efforts and
the approximation of lighting correction factor.

To estimate the cost of the design, it was coded in Ver-
ilog and synthesized for the Altera Cyclone II FPGA family.
Cyclone is low-priced with less capability than the Stratix
line or Xilinx’s Virtex line. Cyclones are good because it
is feasible to use them directly in moderate volume appli-
cations, and designs which fit this family are very small in
ASICs.

The particular design choices include a 120 × 24 Fea-
ture Engine Block RAM. This gives system bus headroom
for transfers ignored in the earlier discussion. The Integral
Computer also includes a largish output FIFO, which was
expedient but could be eliminated with further work. The
Feature Engine throughput is 2 cycles per feature, based on
4 data ports as described earlier.

Table 2 shows low total use of logic. Logic Element
count is based on complex programmable logic blocks
found in FPGA chips, and using a rough rule of thumb, the
design has 32 to 45 KGates logic (nand2 equivalent) and
size is dominated by RAM.

The Memory Blocks column refers to Altera’s 4 Kbit

RAM blocks, so the design uses parts of 95 such blocks
for a total of 22 KBytes of storage. Total size of the design
is quite small, despite the lack of several area optimizations
omitted due to design time.

6 Conclusions and future work

In this paper, we proposed an efficient embedded sys-
tem design for Adaboost based face detection algorithm
which exploits available parallelism. We identified some
practical issues arising from the hardware design and pre-
sented a detailed investigation of reasonable solutions. The
proposed complexity control scheme is beneficial to any
hard real-time implementation, whether hardware or soft-
ware based. The proof-of-concept design can be synthe-
sized for an FPGA costing as little as $20, which supports
wide applicability for many consumer applications. To fur-
ther improve the detection performance, our future work in-
cludes optimizing the Adaboost training given the number
of features, and increasing the throughput of detection en-
gine pipeline to evaluate more image windows.

References

[1] H. A.Rowley, S. Baluja, and T. Kanande. Neural network-
based face detection. IEEE Trans. Pattern Anal. Machine
Intell., 20(1):23–38, Jan. 1998.

[2] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory
(EuroCOLT), pages 23–27, 1995.

[3] Y. Hori, K. Shimizu, Y. Nakamura, and T. Kuroda. A real-
time multi face detection technique using positive-negative
lines-of-face template. In Proceedings of 2004 International
Conference on Pattern Recognition (ICPR), volume 1, pages
765–768, Aug. 23-26 2004.

[4] T.-S. Lee, E.-M. Lee, H.-T. Park, Y.-K. Kwag, S.-S. Lim, J.-
H. Baek, and B.-W. Hwang. Implementation of traffic flow
measuring algorithm using real-time dynamic image pro-
cessing. In Proceedings of 2003 IEEE International Con-
ference on Computer Vision Systems (ICVS), pages 78–87,
Graz, Austria, Apr.1-3 2003.

[5] R. Lienhart and J. Maydt. An extended set of haar-like fea-
tures for rapid object detection. In Proceedings of 2002
IEEE International Conference on Image Processing (ICIP),
volume 1, pages 900 – 903, New York, 2002.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Table 2. Synthesis results for primary modules.
Logic Elements Memory bits Memory Blocks

Feature Engine Datapath and Control 1582 0 0
Feature Engine Data RAMs 45 31284 10
Feature Engine Block RAM 4173 103680 64
Integral Computer Datapath and Control 524 0 0
Integral Computer RAMs 70 34633 21
Total 6394 197226 95

Figure 11. Representative detection results.

[6] H. Nozaki, Y. Motoki, H. Hibino, T. Maeda, and T. Ohta.
Digital camera. In US Patent Application Publication
0,088,538, 2005.

[7] S. Paschalakis and M. Bober. A low cost FPGA sys-
tem for high speed face detection and tracking. In Pro-
ceedings of 2003 IEEE International Conference on Field-
Programmable Technology (ICFPT), pages 214–221, Dec.
14-17 2003.

[8] H. Schneiderman and T. Kanade. Object detection using the
statistic of parts. Int. J. Computer Vision, 56(3):151–177,
Feb. 2004.

[9] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman,
S. S.Bhattacharyya, and W. Wolf. Computer vision on FP-
GAs: design methodology and its application to gesture
recognition. In Workshop, 2005 IEEE International Con-
ference on Computer Vision (CVPR), San Diego, CA, Jun.
21-26 2005.

[10] T.Theocharides, G.Link, N.Vijaykrishnan, M. Irwin, and
W.Wolf. Embedded hardware face detection. In Proceed-
ings of 2004 IEEE International Conference on VLSI Design
(ICVLSI), pages 133–138, 2004.

[11] P. Viola and M. J. Jones. Rapid object detection using
a boosted cascade of simple features. In Proceedings of
2001 IEEE International Conference on Computer Vision
(CVPR), volume 1, pages 511–518, Hawaii, Dec.8-14, 2001.

[12] P. Viola and M. J. Jones. Robust real-time object detection.
Int. J. Computer Vision, 57(2):137–154, 2004.

[13] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces
in images: A survey. IEEE Trans. Pattern Anal. Machine
Intell., 24(1):34–58, Jan. 2002.

[14] G. Ye, J. Corso, D. Burschka, and G. D. Hager. VICs:
A modular vision-based HCI framework. In Proceedings
of 2003 IEEE International Conference on Computer Vi-
sion Systems (ICVS), pages 257–267, Graz, Austria, Apr.1-3
2003.

[15] W. Zhao, R. Chellappa, and P. Phillips. Face recognition: A
literature survey. ACM computing Surveys, 35(4):399–458,
Dec. 2003.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

