
where A and B are  square  matrices  of  order M, s and I are  vec- 
tors of dimension M, and p is a  scalar. The   mat r ix , J  is the  
M-dimensional  contraidentity  matrix.  The  matrices A a n d  B 
are  general  matrices,  and  need  not  possess  any  special  structure. 
The  above  partijioning  leads  to  slightly  more  general  factoriza- 
tion  results  than  can  be  found  in  the  literature [ 1 ] , [ 21 . This 
is  particularly  true  in  the  case  of  an  odd  order  matrix,  where 
most  previous  results  impose  the  conditions s = t ,  submatrix A 
be  symmetric  (Le., A = A T ) ,  and  submatrix B be  persymmetric 
(i.e., BT = JBJ) .  , This is done,  of  course, to  restrict  the  class 
under  consideration  to  doubly-symmetric  matrices.  This  con- 
dition is necessary,  for  example,  in  order  to  represent  covari- 
ance  matrices.  Our  more  general  class of matrices  may  contain 
covariance  matrices,  but  it  also  contains  matrices  which  are 
negative  definite  and  indefinite.  The  matrices  in  Examples  1, 
2,  and 3 given  previously  are  negative  definite,  positive  definite, 
and  indefinite,  respectively.  This  broader  class of matrices 
exhibits  some  interesting  properties  and  has  a  variety  of  appli- 
cations.  These  issues  are  discussed  in [ 3 ] . 
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Comparison of Least-Squares and  Stochastic  Gradient 
Lattice Predictor Algorithms  Using Two Performance 

Criteria 

MICHAEL L. H O N E  .KKD DAVID G. MESSERSCHMITT 

Abstract-The least-squares (LS) and  stochastic  gradient (SG)  lattice 
prediction  algorithms  are  compared using two different  performance 
criteria. These are a) output mean squared  error  and  b) the accuracy 
of the autoregressive, spectral  estimate  obtained  from the mean values 
of the lattice  coefficients, assuming a stationayinput.  It is  found  that 
the second  performance  criterion is more sensitive than  the first. 
This “spectral” performance  criterion is a measure  of the accuracy of 
the  estimatcd autoregressive model coefficients. Bias  in the LS and SG 
coefficient  estimates can cause significant deviation of the asymptotic 
spectral estimates  from the actual input spectrum: The similarly be- 
tween the LS and SG lattice algorithms enables comparative  simulations 

with analogous initial conditions  and exponential weighting constants. 
For  both  types of comparisons, the LS algorithm offers a modest per- 
formance  improvement over the SG algorithms  simulated. This im- 
provement is more  noticeable when the  input is  highly correlated. It 
is also found  that slight changes in the SG lattice  algorithm may sig- 
nificantly affect its performance. 

I. INTRODUCTION 

The  leastsquares  (LS)  lattice  algorithm  has  recently  received 
considerable  attention  in  applications.  of  adaptive  filtering [ 11 . 
The  advantages  of  the  lattice  structure,  combined  with  a  com- 
putationally  efficient  method  for  recursively  computing  the 
filter  coefficients  which give an  exact  least  squares  solution  to 
the  prediction  problem,  has  made  the  LS  lattice  an  attractive 
alternative  to  other  linear  predictive  techniques. In recent 
years,  alternative  stochastic  gradient (SG) techniques  have  also 
been  suggested  as  methads  for  adapting  lattice  coefficients 
[ 2 ] ,   [ 3 ] .  These SG algorithms  require  somewhat  less  com- 
putation  than  the  LS  algorithms;  however,  claims  in  the  litera- 
ture  tend  to suggest .that  a  significant  improvement  in  per- 
formance  (is.,   convergence  speed)  can  be  achieved  by  using 
LS rather  than SG adaptation  techniques [ 1 1 ,  [ 41.  This  paper 
presents  a  comparison of LS  and SG lattice  prediction  algo- 
rithms  using  two  different  performance  criteria,  output  mean 
square  error  (MSE),and  the  accuracy of the  autoregressive 
spectral  estimate  computed  from  mean  coefficient  values.  The 
latter  criterion is more  sensiive  than  the  first,   since  it   depends 
upon the  accuracy  of  the  estimated  filter  coefficients. 

Because  of  the  similarity  between SG and  LS  lattice  algo- 
rithms,  the  comparative  simulations  presented  in  Section 111 
use  equivalent  initial  conditions  and  coefficient  adaptation 
constants  for  each  algorithm  simulated.  Section 111-A presents 
results  from  simulations  of  LS  and SG lattice  predictors  with 
correlated  Gaussian  noise  inputs.  Averaged  output  squared 
error  versus  time  are  shown  for  three  different  input  spectra. 
In  Section 111-B the  LS  and SG algorithms  are  compared in 
the  context  of  spectral  estimation.  Spectral  estimates  with 
time as a  parameter  are  computed  from  the  mean  values  of 
the  lattice  coefficients  estimated via the  LS and SG algorithms. 
Deviation  of  the  (asymptotic)  estimated  spectrum  from  the 
actual  input  spectrum  (for  both  algorithms)  is  caused  by 
biased  coefficient  estimates. 

11. LATTICE  ALGORITHMS 
In this  section,  the  LS  and SG lattice  prediction  algorithms 

which  were  used to  generate  the  simulation  results  in  the 
next  sections  are  specified.  The  input  sequence is denoted  as 
yi, the  nth  order  forward  prediction  residual is 

where  the f i r n ,  1 < j  < n  are  the  forward  prediction  coeffi- 
cients,  and  the  backward  prediction  residual is 
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and 

for  1 < n < N ,  where N is the  order  of  the  filter,  and w is some 
exponential  weighting  constant  close  (or  equal)  to  unity.  The 
(prewindowed)  algorithm is  given  as  follows: 

For  i = 0 (initialization) 

Rf (O(n)=Rb(o ln )=&>o,  O<n<<N- 1 (2.5a) 

eb(oln)  = 0 ,  O < n < N -  1 .  (2.5b) 

F o r i = l , 2 ; . . ,  

e f ( i l0 )  = eb(ilO) = y i ,  y(il0) = 0 (2.6a) 

Rf(ilO) = w R f ( i  - 110)  + y? (2.6b) 

(2.6i) 

The  order  recursions  (2.6e)  and  (2.6f)  define  the  lattice 
structure  shown  in  Fig. 1. The  variable y( i ln)  has  been  in- 
terpreted  as  an  optimal  weighting  factor [ 1 ] and is  given by 

where I is the  identity  matrix. 
Stochastic  gradient  lattice  algorithms  start  with  the  least 

mean  square  recursions  (2.6e)  and  (2.6f) [ I ] ,  [3 ]   and   a t -  
tempt  to  estimate  the  values  of K , , l  C t )  and K,,, ( b)  which  mini- 
mize E [ e j ( i { n  + I ) ]   and B[ei ( i ln  + I ) ]  , respectively.  These 
values  are 

and 

(2.10a) 

(2.10b) 

The  optimal  coefficient  values  specified by (2.10)  and 
(2.12)  can  be  estimated via time  averages.  The  SG  algorithm 
considered  here  estimates  the  coefficients  specified by (2.12) 
as  follows: 

k,, I (i) = wk,, (i - 1 )  + 2ef ( i ln )  eb( i  - Iln) (2.13a) 

Rf ( i ln )  = w R f ( i  - l ln )  + e,;(iln) + e i ( i  - 1 In) (2 .13b)  

(2.13c) 

It  was  suggested to the  authors by Griffiths [ 5 1 that  if the  
cons t ra in t   (2 .13~)  is assumed,  then  (2.13)  should  be  used  to 
estimate  the  lattice  coefficients,  as  opposed  to  alternative  “one- 
coefficient”  techniques [ 31. An  alternative  “twocoefficient” 
SG  algorithm,  which is essentially  obtained  by  setting  the LS 
gains  in  the LS lattice  algorithm y( i ln)  = 0, for  all i and n ,  was 
also  simulated;  however,  results  indicate  that  indeed  (2.13) 
performs  better  than  both  alternative  one-  and  two-coefficient 
estimation  techniques. 

111. COMPARATIVE: SIMULATIONS 
A .  Output MSE 

In  this  section,  an  empirical  comparison  of  SG  and LS lattice 
performance is made  using  output MSE  as the  performance 
criterion.  Figs.  2-4  show  results  from  three  simulations  of 
LS lattice  and  SG  transversal  and  lattice  predictors.  In  each 
case,  the  input  was  generated  by  passing  a  white  Gaussian 
noise  with  variance IO4  through  a  ten  pole  filter.  The  spectra 
of the  inputs  are  shown  in  Figs.  2(a),  3(a),  and  4(a),  and  the 
corresponding  averaged  trajectories  of  output  squared  pre- 
diction  error  versus  time  are  shown  respectively  in Figs. 2(b), 
3(b),  and  4(b).  Notice  that  the  spectral  peaks  shown  in  Figs. 
2-4  are  progressively  sharper,  implying  that  the  associated 
input  processes  are  progressively  more  correlated  (i,e.,  have  a 
larger  eigenvalue  spread [ 6 ] ) .   F o r  all three  cases  the  order 
of the  filter  was 10, the value  of w used  in  the  SG  and LS 
lattice  simulations was 0.97,  and  the  initial  value  of Rf for  
bo th   the  LS and  SG  lattice  simulations  was 50. The  SG  trans- 
versal  simulations  used  parameters M) = 0.95  and R f ( 0 )  = 106 
in  Figs,  2  and  3,  and  the  parameters w = 0.97  and R f ( 0 )  = 108 
in  Fig. 4. The  initial  coefficient  values  in  each  case’were  zero. 
Smaller  initial  values of Rf with  the  SG  transversal  algorithm 
generally  caused  instability.’  Also  shown  in  Figs.  2-4  are 
curves of MSE  versus  time  computed via the  analytical  tech- 
niques  in  [3]  and [8] .  

Figs.  2-4  indicate  that  the  more  “jagged”  the  spectrum  of 
the  input  process,  the  greater  the  difference  in  convergence  be- 
havior  for  all  three  algorithms  simulated.  Both  the LS and  SG 
lattice  algorithms  appear  to  converge  with  approximately 150 
samples  in  all  three  cases,  indicating  that  the  convergence 
speed of these  algorithms is insensitive to  second-order  input 
statistics.  The LS and SG algorithms  behave  similarly  in  Figs.  2 
and  3;   however,   the SG  lattice MSE  levels out  at   a  somewhat 
higher  value  than  the LS MSE in  Fig.  4  and  at  a  slightly  lower 
value  than  the LS MSE  in  Fig.  2.  Changing the  exponential  
weight  in  the LS lattice  algorithm  to w = 1.0 made  little  dif- 
ference  with  the  inputs  in  Figs.  2  and 3;  however,  this  caused 
noticeably  slower  convergence  when  used  with  the  input 
corresponding  to Fig. 4.  The  convergence  time  with  Gaussian 
noise  inputs is significantly  longer  than  the  convergence  time 
which  occurs  in  different  contexts  such  as  channel  equaliza- 
t i on   [4 ] .  In particular,  it  has  been  pointed  out  by  Mueller 
[ 91 that  an LS equalizer  requires  only N linearly  independent 
N element  input  data  vcctors  to  converge,  assuming  the  addi- 
tive  channel  noise  is  relatively  small. 

Sce also [ 11 and [ 71 for additional comparisons of LS and SG lat- 
tice prcdictor  performance using Gaussian noise inputs. 
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1;ig. 2. (a) Spectrum of input noise  used to generate Fig. 2(b). (b) Simu- 

lated MSE of the SG transversal predictor, the SG lattice  predictor, 
and the LS lattice  predictor. Also shown is MSE computed by the SG 
transversal and latticc convergence models. 

B. Spectral Estimates 
In many  applications  of  adaptive  linear  prediction,  output 

MSE is an  inappropriate  performance  criterion.  In  linear  pre- 
dictive  coding of speech,  for  example,  the  accuracy  of  the 
estimated  short-term  speech  spectrum is of  paramount  impor- 
tance.  For  this  case,  the  estimated  filter  coefficients  rather 
than  output MSE are  of  interest.  In  order  to  compare  the  per- 
formance  of LS and SG lattice  algorithms  using  a  spectral cri- 
terion, we show  in Figs.  5-7 spectra  obtained  respectively 
from  the LS and SG lattice  algorithms  using  the  same  corre- 
lated  Gaussian  noise input  which  was  used  to  generate  Fig. 3.  
The  spectral  estimates  were  obtained  by  averaging 200 simula- 
tions of each  algorithm  and  sampling  the  mean  coefficient 
values a t  i = 20,  i = 50,  i = 100,  i = 200, and i = 1000. In  the 
case  of the SG lattice  algorithm,  the PARCOR coefficients 
K, ,  1 < n < 10, can  be  computed  from  (2.13c),  averaged,  and 
converted  to  prediction  coefficients [ 11 in  order  to  compute 
the  estimated  spectrum.  The LS coefficients  used  to  generate 
Figs. 6 and 7 are  similarly given by 
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(b) 
I:ig. 3. (a) Spectrum of input noise used togenerate Fig. 3(b).  (b) Simu- 

lated MSE of the SG transversal predictor,  the SG lattice  predictor, 
and the LS lattice  predictor. Also shown is MSE computed by the SG 
transversal and lattice convergence models. 

Spectra  was  also  generated  using  averages  of  the  coefficients 

which  enter  the  normalized LS lattice  algorithm [ 1 ] ; however, 
the  estimates  obtained  from  using  (3.1)  were  found  to  be 
somewhat  more  accurate.  Also  shown  in  Figs. 5-7  is the  actual 
input  spectrum.  The SG and LS parameters  used  in Figs. 5 
and 6 ,  respectively,  were w = 0.97  and Rf (0 ln )  = 50. Fig.  7 
shows  spectral  estimates  obtained  from  the LS algorithm  with 
w = 1.0. 

Deviation  of  the  estimated  spectrum  after  convergence ( i  = 
1000) in  Figs. 5 and 6 is d u e   t o  biased  coefficient  estimates. 
This  effect  becomes  more  pronounced  as  the  exponential 
weight w decreases.  Biased  coefficient  estimates  are  caused 
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Fig. 4. (a) Spectrum of input noise used to generate Fig. 4(b). (b) Simu- 
lated MSE of the SG transversal predictor, SG lattice  predictor,  and 
LS lattice  predictor. Also shown is MSE computed by the SG trans- 
versal and lattice convergence models. 
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Fig. 5. Autoregressive spectral  estimates versus time obtained from the 
SG lattice algorithm (w = 0.97). 

by  correlations  between  the  filter  coefficients  and  the  inputs 
to  each  corresponding  stage  and  by  statistical  fluctuations  in 
filter  coefficients  which  alter  the  statistics  of  input  signals  to 
successive  stages [ 31, [ 81. The  difference  in  performance 
between  the  SG  and LS lattice  algorithms is more  noticeable 
in  Figs. 5 and 6 than  in  Fig. 3. In  particular,  the  asymptotic 
spectral  estimate  obtained  from  the LS algorithm is  slightly 
closer to  the  actual  spectrum  than  the  asymptotic  spectral   esti-  
mate  obtained  from  the SG lattice  algorithm.  In  both  cases, 
the  spectral  estimate  obtained  at i = 300 was  the  same  as  that 
shown  for i = 1000.  Because  exponential  weighting  was  not 
used  in  the LS simulation  shown  in  Fig. 7 ,  the  estimated  co- 
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Fig. 6 .  Autoregressive spectral  estimates versus time obtained from LS 
lattice algorithm (w = 0.97). 
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Fig. 7. Autoregressive spectral  estimates versus time  obtained from the 
LS lattice algorithm (w = 1.0). 

efficients  converge  in  probability to the  actual  reflection  co- 
efficients  associated  with  the  input [ I O ] ,  and  the  asymptotic 
estimated  spectrum is therefore  the  same  as  the  input  spectrum. 
Notice,  however,  that  even  at i = 1000,  which is long  after 
the   ou tput  MSE is close to  its  asymptotic  value,  the  estimated 
spectrum  deviates  considerably  from  the  actual  input  spec- 
t rum. Figs. 5 and 7 therefore  indicate  that  in  applications  of 
adaptive  filtering  where  accurate  estimates  of  the  input  spec- 
trum  are  desired given a  moderate  number  of  samples,  an  ex- 
ponential  forgetting  factor w < 1 is  desirable. 

IV. CONCLUSIONS 
Comparative  simulations  of LS and SG lattice  algorithms 

have  been  presented  using  stationary  Gaussian  input  sequences 
Two  performance  criteria,  output MSE and  the  accuracy  of 
the  spectral  estimate  obtained  from  averaged  coefficients,  have 
been  used  as  a  basis  for  comparison.  It  has  been  emphasized 
that  the  essential  difference  between  the LS lattice  and  SG 
lattice  algorithms is the  presence of LS gains y(i1n). In  order 
to  measure  the  affect  of  these  weighting  factors  most  of  the 
comparative  simulations  in  this  paper  have  used  equivalent 
parameters  and  initial  conditions  for  both  algorithms.  Results 
indicate  that  the LS lattice  algorithm  offers  modest  improve- 
ment  over  the  SG  algorithms  simulated,  This  difference  in 
performance is more  pronounced  when  the  spectral  criterion 
is  used. In contrast  to  applications  such  as  channel  equaliza- 
tion,  where  the  input  to  the  adaptive  filter is  derived from  a 
binary  sequence,  both LS and SG predictors  require  consider- 
ably  more  than 2 N  iterations  to  converge  with  correlated 
Gaussian  noise  inputs. 

For  many  applications  of  adaptive  linear  prediction,  es- 



lI<b:E TRANSACTIONS  ON  ACOUSTICS, SPEECH, AND SIGNAL PROCESSING,  VOL.  ASSP-32,  NO. 2,  APRIL 1984 445 

pecially  those  which  involve  highly  nonstationary  environ- 
ments,  the  difference  in  pcrformancc  exhibited  by  the LS 
and  SG  lattice  algorithms  may be more  pronounced.  A  com- 
parative  study of algorithm  performance  in  these  remaining 
applications  should  yield  interesting  and  useful  results. 
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Use  of  the  Most  Significant  Autocorrelation  Lags  in  Iterative 
ME Spectral  Estimation 

MIGUEL  A.  LAGUNAS-HERNANDEZ 

Abstruct-Many methods of spectral analysis are based either  directly 
or indirectly on a set of autocorrelation values estimated from the avail- 
able data. A good selection of autocorrelation Lags can improve the 
quality of the spectral estimate at a given computational cost. 

To demonstrate  the above possibility, this paper shows how to select 
Lags corresponding to  the most significant values of theautocorrelation. 
In this way, one obtains  better  cstimates  than  those  found using thc 
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standard  method, namely, the technique proposed by  Lim and Malik 
[ 1 1  for (iterative) M E  spectral analysis. 

Sevcral examples arc considered to illustrate this possibility. 

I .   INTRODUCTION 
In  autocorrelation  based  methods  for  spectral  estimation,  we 

form  an  estimate {FX(O), . * * , rx (M)}of the  autocorrelation 
function  of  the  signal x from  the  available  data,  and  then  we 
compute  the  power  spectrum  of x by direct  or  parametric 
methods  using  such  an  estimate. 

It  seems  clear  that  the  quality  of  the  final  power  spectrum 
estimate will depend  essentially  on  the  amount  of  signal  infor- 
mation  which is retained  in { ? * ( O ) ,  . . . , F x ( M ) } .  This  paper 
attempts  to  demonstrate  how  an  appropriate  selection of lags 
(different  from  the  standard  one, { 0, . * * , M ) ) ,  can  consider- 
ably  improve  the  quality  of  power  spectrum  (in  a  sense  which 
depends  on  the  criterion  employed  for lag selection). 

This  possibility  is  of  paramount  importance  in  cases  where  a 
high  computational  effort is necessary;  for  example,  when  the 
criterion is to  minimize (or maximize)  an  objective  function 
under  autocorrelation  restrictions.  (Iterative  algorithms  or  lin- 
ear  programming  are  then  usually  required.)  Also,  the  conver- 
gence  time  and  properties  are  better  because  a  good  startup  of 
the  algorithms is provided. 

Although  the  idea is of  general  interest,  we will focus  our 
attention  on ME iterative  techniques;  first, we show  the  poten- 
tial  advantage  of  the  proposed  procedure  in 1-D cases  in  a  clear 
context;   second, we apply  this  procedure  to  the  more  critical 
2-D problems,  in  which  memory  and  computational  restrictions 
force us to  use  only  a  very  reduced  number of autocorrelation 
values. 

We will choose lags which  have  the  largest  absolute  values  of 
the  autocorrelation.  This  approach  shows  that,  at  a  fixed  com- 
putational  cost,  there  are  improvements  in  the  resolution  and 
more  noise  immunity  when  compared  with  currently  reported 
works. 

11. LAG SELECTION IN SPECTRAL ESTIMATION 
The classical  selection of the  first M + 1 autocorrelation  lags, 

{ 0, * * * , M } ,  is supported  by  the  fact  of  that  this  set  offers  the 
largest  statistical  stability  among  all  the  possible  choices. We 
claim  that  using  other  selections will yield  more  desirable  prop- 
erties  (using  entropy  as  the  objective  function,  the  zero lag has 
to be  included  to  ensure  that  a  maximum  exists). 

It  is  clear  that  for  stationary  processes  and  even  for  nonsta- 
tionary  ones  (like  sinusoids  in  noise),  the  number  of  samples 
between  highly  correlated  samples  [i.e.,  number  of  lags  between 
maxima of r x ( r n ) ]  provides a good  deal  of  information  about 
periodicities.  Then,  selecting  the  M  lags  (and  zero)  with  largest 
absolute  values will result  in  an  estimate  which is better  than 
the classical one  in  the  following  sense:  the  peaks will be  rein- 
forced,  the  noise  effects  reduced.  This  approach will be  referred 
to as  the  modified  approach  in  the  rest  of  this  work. 

Note  that  the  modified  method  has  a  drawback;  namely,  it  
reduces  the  statistical  stability  since  it  uses  autocorrelation 
values  with lags greater  than  M;  but  like  in  prediction [ 21 and 
interpolation  problems,  the  location of the  most  significant 
autocorrelation  samples  can  be  more  important  than  their  con- 
crete  values  as  concerns  with  some  properties,  such  as  resolution 
in  the  final  spectral  estimate,  and  convergence  rate  in  adaptive 
or iterative  methods  for  spectral  estimation. 

Of course,  the  use of all  the lags available  (or  significant) will 
result  in  a  better  final  estimate;  but  in  most 2-D real  problems, 
the  use  of  a  large  correlation  support is not  allowed  because  it 
will increase  the  computational  load  beyond  reasonable  limits. 
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