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The most vital test  for  a  coder is, however, the subjective 
assessment. Although no detailed  comparison of the  different 
coders has  been  made, the DZM has been  found  to  offer an 
acceptable  quality’ of speech while the DM and  the modified 
coder  offer  toll  quality speech at 40 kbitsfs. 

CONCLUSIONS 

We have presented  an overview of some of the different 
methods of realizing a  companded  unity bit  coder where the 
companding is carried out  on  the  input signal while a linear 
coder is used to  code this  compressed signal. Two different 
methods of extracting  the  control .signal have been presented. 
One method involves the  detection of the presence of digital 
output bits of the same polarity while the  other involves the 
differentiation of the  coder  output  and filtering, so as to end 
up with a signal that i s  inversely proportional to  the  input 
envelope. Whatever the compandi:ng scheme,  the DEM per- 
forms  the  poorest.  A  tradeoff be1:ween SNR and  frequency 
response (SNR versus frequency) is possible by the use of a 
two-loop  companded  coder, which is attractive  at lower  bit 
rates, because of its  better high frequency  reproduction. 
The quality of speech  in the  companded DM is the same as 
that in the CVSD’ coder. 
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Abstract-A comparison  of  adaptive  differential  pulse  code  mod- 
ulation  (ADPCM)  speech  compression  systems  is  made  using  different 
recursive adaptive linear prediction  algorithms.  The  particular 
algorithms considered are 1) a  fixed  predictor,  2)  the adaptive.least 
mean  square  (LMS) transversal  predictor, 3) the LMS (gradient) 
lattice  predictor, 4) the least  squares (LS) lattice  predictor,  and 5 )  an 
LS lattice predictor  combined  with  a  third-order  pitch  inverse filter. 
The  last configuration uses  the pitch  detection  scheme  described in 
[21]  to recursively  estimate  the  pitch  period  in  the  context  of an 
adaptive predictive  coder  (APC).  The  results  indicate  that  for  the 
conditions  simulated,  the difference in system’  performance  using  the 
different  adaptive algorithms  is  negligible,  suggesting  that  the 
predictor  having the  simplest  implementation  is  the  hest. 
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denoted as j j i. Also shown in Fig. 1 is an.adaptive  quantizer, 
which  adjusts the  quantizer  step size relative to the  short- 
term  prediction  error power: 

Any  fixed or adaptive  linear predictor may be used in 
ADPCM. Because prediction alogrithms vary greatly  in com- 
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SPEECH R E C E I V E R  - In  Sections 11-A and 11-B the ADPCM system is described + ~ ~ f i . . . l ~ ~ . . . ~  QUANTIZER f' in more detail, and in Section 11-C the  simulation results using 
sample - 
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Fig. 1. (a) ADPCM system diagram. (b) Modified  ADPCM system dia- 
gram. 

plexity,  the  question arises as to  whether  an increase in pre- 
dictor  complexity yields  significant improvement in overall 
ADPCM system  performance. Because of the  interaction be- 
tween  the adaptive predictor  and  the  adaptive  quantizer,  this 
question is quite  difficult to  answer without  qualification.  In 
addition, if the  predictor  filter  coefficients are not  sent di- 
rectly to  the receiver, some  error  protection scheme  must be 
used in conjunction with recursive algorithms to prevent 
channel  errors  from causing the receiver to mistrack the  trans-' 
mitter (possibly  creating instability).  The  approach used here 
is to  compare  different adaptive  linear prediction schemes 
assuming no  channel  errors  and  the same  adaptive quantizer. 
In  addition,  for simplicity  mean-square prediction  error  .and 
averaged SNR criteria  are used to  compare  the  predictors.  The 
results of informal listening tests  are also reported. 

Numerous ' papers  concerned with  various  aspects of 
ADPCM systems have appeared in the  literature over the last 
20 years (i.e:, [ 221-[41]). Many of these  papers deal  solely 
with analysis and/or  improvement of the adaptive quantizer 
(1341 -[41] ). This can  be  attributed to the  fact  that  the addi- 
tion o f  an adaptive quantizer has  been found to have a  much 
greater  effect  on  system  performance  than  the  addition of an 
adaptive  predictor [ 221,  [38]. Many of the remaining papers 
suggest methods  for  optimizing overall system performance 
and  report  simulation results. Recently,  much  attention  has 
been given to  adaptive shaping of the  spectrum of the quanti: 
zation noise and to channel  error  protection schemes [ 251 - 
[ 271, [ 331. Since the  focus  here is on adaptive  linear  predic- 
tion,  these  and associated interesting issues are  ignored. 

In nearly all of the ADPCM simulations  reported in the 
literature,  either  a block processing method (i*e., the  aut& 
correlation  method [ 21 ) or  the LMS transversal filter has been 
used as the 'adaptive  linear predictor. More recently, ADPCM 
simulations using an  adaptive LMS lattice  predictor [ 3 11 and  a 
Kalman  (recursive  least  squares) predictor  [28] have been 
reported.  In  none of these cases, however, have different adap- 
tive  linear  predic'tion  schemes been  compared. 

five different linear prediction schemes  are reported. 

11. SYSTEM DESCRIPTION 
The first four ADPCM systems  simulated  are  described by 

the block diagram in Fig. l(a).  A block diagram of the  fifth 
ADPCM system  simulated is shown  in Fig. l(b) where the 
quantization noise spectral  shaping filter F(z)  = 1. Design 
parameters for these  .cases are associated with either  the 
adaptive' quantizer  or  the adaptive  predictor. The adaptive 
quantization scheme is discussed first  since it remained the 
same  in all the simulati'ons. 

A .  The  Adaptive  Quantizer 

The adaptive quantization scheme was taken  directly  from 
[23].  In particular, a  symmetric seven-level nonuniform 
quantizer was used. Denoting the time-varying quantization 
stepsize as Ai, the  input  thresholds were 0,  +0.5Ai,  +1.5Ai, 
and +3.5Ai,  corresponding,  respectively, to  outputs 0, +Ai, 
+2Ai,  and +4.5Ai. The scheme used to  adapt  the  quantiza- 
tion  step size Ai was  presented  by  Jayant in [36].  After  each 
sample is quantized  the  'quantization  step size Ai is multi- 
plied by a  constant  factor  'depending  only  on  the  quantized 
value of the  most  recent  input sample. The multipliers used for 
the following simulations were 0.7,  0.8, 0.9, and 2.3 asso- 
ciated with  thresholds 0, +0.5Ai, '+l.SAi,  and +3.5Ai, respec- 
tively. 

In [ 341 and [ 401 it is shown  that  channel  errors  can'cause 
the receiver quantization  step size to  mistrack the  transmitter 
quantization  step size indefinitely.  Solutions have been  pro- 
posed  which remedy  this  problem [ 341,  [40] ; however, the 
resulting system  performance is somewhat degraded. Although 
this  problem is of great  practical importance, it is ignored here 
so that  the relative performance of each  linear prediction 
algorithm under ideal  transmission conditions  can  be observed. 

B. Linear  Predictors 

The linear prediction schemes  simulated  are discussed in 
this  section in order of increasing complexity.  The simplest 
scheme used was a fixed  coefficient  linear predictor.'  The 
filter coefficients were computed using the  autocorrelation 
method to find  the  minimum  prediction  error  coefficients 
based upon  the long-term statistics of the same input  speech 
file used in the  simulation. Since the  input speech is nonsta- 
tionary, however, at  any given time  instant  the resulting 
fixed coefficient  filter will not  be  the  optimal  predictor 
based upon  the  short-term speech  statistics. The remaining 
predictors were adaptive, and  attempted  to  track  these  short- 
term statistics. 

The second predictor was a normalized LMS transversal 
algorithm [6] .  Denoting the  Nth-order forward prediction 
residual as 

e d i  I N )  = Y i  -z ajlN (i1Yi-j (1) 
j =  1 

where y i  is the  current speech  sample and  the u j ( ~ ( i )  are the 
prediction  coefficients  at  time i ,  the  adaptation  equation is 
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and 

~ ( i  + 11 = wD(i) + y i2  (3) 

where MI is a  constant close t o  unity which controls  the speed 
of adaptation  and  coefficient  variation  after  adaptation.2 

The LMS lattice  predictor was the  next case considered. 
Denoting the  nth-order backward  residual as 

n 
eb(i I n )  = Y i - n -  1 -2  bj1nYi-j ( 4) 

j =  1 

where the bjlh are the backward prediction coefficients, the 
lattice  order recursions  are 

e A i i o ) = y j ,  e , ( i ~ o ) = ~ ~ - ~  ( 5 4  

ef(i I n) = ef(i.1 - 1) - kn(b)(i)t!b(i I - 1) (5b) 

eb(il n ) = e b ( i -  1 I n -  1) 

- in(f)(i- l)ef(i - 1 I n - 1) ( 5 4  

for  1 < n < N ,where k n ( f )  and k,(’) are, respectively, the 
“forward” and  “backward”  PARCOR  coefficients. Numerous 
gradient  algorithms  exist to  adapt  the PARCOR  coefficients 
[ 81 -[ l o ] ,  but  the simulations usel a particular  normalized 
algorithm given by 

- 
k,(i + 1) = wk,(i) + efii I n - l) tpb(i  1 n - 1) ( 6 4  

Dn(i + I )  = W D , ( ~ )  + ef2(i  in - I >  (6b) 

k , ( f ) ( i >  = kn(b) ( i )  =-. En (0 
Dn (ij 

( 6 ~ )  

Notice that  the  lattice algorithm (5) takes  the  current 
sample as its  input  and  outputs  the  current  prediction  error. 
In  particular,  looking  at  the receiver portion of Fig. l(a),  at 
time i the  input  to  the  lattice is the  transmitted sample Fi and 
the  output of the  lattice is e f i  I N )  ==ui - 3 i .  The linear  pre- 
dictor, however,  must output $ i + l  given the  current  input Fi, 
and hence the  lattice  structure carmot be directly used in 
ADPCM. In  order  to  obtain  the  predicted value of y i + l ,  i.e., 
;i+ 1 ,  given Fi, ..., y i -N+ using a  lattice  structure,  note  that - 

exi  + 1 I N )  = ef(i + 1 IN-  1) 

- kN‘b’(i f l ) eb ( i  -b 1 IN- 1) ( 7a) 

N 

=pi+ 1 - 2 kj(’)(i f -  l)eb(i + 1 l j  - 1). 
j =  1 

(7b) 

The eb(i + 1 l j  - I), 1 G j G N ,  do  not  depend onyi+l  and, 
hence, can be  updated in terms of lattice variables at  time i. 
The second  term on  the right  side  of (7) is therefore  the 
causal prediction of yi+ 1 ,  i.e., 

N 
i i +  1 = kj(*)(i f l)e& + 1 l j  -- 1). (8) 

j =  1 

2 The parameter w weights the  past  exponentially  and  can also be 
considered as the  pole  location  of a one-pole window. For a  discussion 
of different  types  of  windowing  techniques in the  context  of linear pre- 
dictive coding see [42].  

Thk leads to t t e  filter  structure  shown in Fig. 2 which forms 
the  prediction y i  given 1 ,  *.e, Y I - N .  

The LS lattice algorithm [ 121 -[ 181 recursively adapts  the 
‘‘forwiird” and “backward”  PARCOR  coefficients in (5) to  
minimize, at  each  time  instant i, the sums 

- 

j =  0 

and 

for n = 1, -, N where MI is an exponential weighting constant 
analogous to  the H’ in  (3) and (6b). In addition  to  the  order 
recursions (S), the LS lattice algorithm also uses the following 
recursions: 

Assuming the  term 6 is a small positive constant,  the variables 
R d i  1 n) and Rb(i I n )  are approximately  equal to  the respective 
sums (9) and (1 0). The variable y(i 1 n )  has  been interpreted 
as an optimal weighting factor [ 141, [ 201 and is given by 

where yi I is the  data  vector 

The causal Nth-order  prediction of y i+l  using the LS lattice 
algorithm is again obtained via (8). 

The LS lattice algorithm uses the same criterion  and,  hence, 
should  exhibit  the same performance as the  “fast” Kalman or 
LS transversal algorithm [ 111 (ignoring finite wordlength 
effects),  and  hence  this LS transversal algorithm was not 
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Fig. 2. Lattice  predictor. 

separately simulated. Although  the “fast)’ Kalman algorithm 
involves somewhat less computation  than  the LS lattice algo- 
rithm,  the  lattice  algorithm  offers  other’advaritages  such as  its 
order-recursive structure  and a convenient  stability  criterion 
131, [41, 191: 

The  square-root normalized LS lattice  algorithm [ 161 is 
unsuitable  for use with ADPCM since  a  causal prediction of 
y i  cannot  be calculated from’  the normalized lattice residuals 
without  knowing  unnormalized LS lattice variables. 

..The  last predictor simulated  consisted of an LS lattice 
linear predictor  combined  with a  third-order all-zero pitch 
inverse filter  or  “pitch predictor.”  This configuration, which 
is shown in Fig. l(b),has  been called an  adaptive  predictive 
coder (APC) [24]. The  purpose of the  pitch  predictor is t o  
further  reduce  the  rms value  of the  prediction residual to  be 
quantized  by  exploiting  the quasi-periodicity in  the  prediction 
residual for voiced utterances.  The  order  of  the  pitch  predictor 
was taken to   be 3 so that  the associated transfer  function is 

C(Z) = c1z-(P- l )  + c 2 z - p  + c3z -p+1  (20) 

where cl, c2, and c3 are the time-varying pitch  prediction 
coefficients.  and p is the  estimated  pitch  period.  The  input 
to the  pitch  predictor in this case is the residual from  the 
“spectral” LS lattice  predictor.  The signals at  the  outputs of 
the.LS  lattice  and  pitch  predictors  areadded  to  form,ji. 

Previous pitch  prediction  techniques have computed  the 
autocorielation,  function over a block  of input  data which 
(hopefully)  includes several pitch.  periods [25], [ 261. The lag 
at which the peak  value  of the  autocorrelation  function occurs 
is  then  used’as  the  estimated  pitch period (this is the  optimal 
estimate  in  the sense that  the resulting mean squared  predic- 
tion  error is minimized). 

Due to the large amount of computation  required to esti- 
mate  autocorrelation coefficients, in [26] it was concluded 
that  the  amount  of  computation required to  include a pitch 
predictor  outweighs  the resulting improvement  in  system 
performance.  The  pitch  detection scheme used here was 
recently  presented  in [20] and uses LS lattice variables to 
decide  whether or not  the  current  input sample constitutes a 
pitch pulse. When used in conjunction with an LS lattice 
predictor,  this  pitch  prediction  scheme  therefore requires 
little  additional  computational overhead. In  addition,  once  the 
pitch  period  has  been  estimated,  the  pitch  prediction coeffi- 
cients can be  estimated recursively, Le., via the LMS t rans  
versa1 algorithm. The  primary disadvantage of this schema i s  

that  errors  in  the  pitch  peiiod  ,estimates cause the  pitch 
prediction coefficients ,to fluctuate  rather  than converge to  
steady-state  optimal values. Also, the  current  estimated  pitch 
period may not  equal  the lag for which the  short-term  auto- 
correlation  function is a maximum, so that  the  maximum pre- 
diction gain cannot  be realized. 

A brief description of the  pitch  detection  scheme follows. 
(For a more detailed description see [ 171 or [20] .) The 
quantity 1 - T(i,In),  where i ( i  in) is the  nth-order  optimal 
weighting factor.appearing  in  the LS lattice  algorithm,  can  be 
interpreted  as a log-likelihood variable if the  input  is assumed 
to  be a  zero-mean Gaussian process. Making this  assumption, 
the log-likelihood ratio 

where 

yil, is given by (18); and R ,  is  the n X n autocorrelation 
matrix.  It is shown in [ io]  that  the log-likelihood variable 
vi ~h can  be  estimated  from  lattice variables as 

where Rb(i l j ) ,  0 G j < N - 1,  are  the backward error covari- 
a,nces in  (13a)  and y(i In) is given by (17). In [ 201 l n  is 
interpreted as “a measure  of the  likelihood of the  duration of 
successive data samples from a Gaussian distribution,” given 
all of the past data samples. This  implies that  the sample log- 
likelihood  ratio &I, - &L 1 l n  indicates  how  far  the  present 
sample  deviates’ from a Gaussian distribution, given all past 
data values. If it is therefore assumed that speech can  be 
modeled  as a mixture of  an approximately  continuous Ga.us- 
sian part (Le., unvoiced speech) plus  a discontinuous  jump 
process (i.e., pitch  pukes),  the  estimated log-likelihood ratio 
can  be used to form a  good statistic  for  separating  the  two 
components. 
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The basic pitch  detection algorithm used here is  as fol- 

1)  Compute + i l f l .  
2) If 3 - 3 i- falls above a given threshold, store ‘ h e  

input  data value. 
3) If the  data value falls above  an exponentially decaying 

window  initialized at  the value of the last pitch pulse (see 
[ 2 1 ] ), record a new pitch pulse. 

Extra  steps were included to  minimize the chance of 
errors.  Accurate pitch estimates are important in this case 
since inaccurate estimates cause the  pitch  prediction coeffi- 
cients to  fluctuate,  thereby significantly  increasing the rms 
value of the signal to  be  quantized. Notice that because the 
computation of the variables y(i 1 n) for all i is an essential 
part of this algorithm,  this pitch  detector  cannot be used 
in  conjunction with an LMS lattice a:lgorithm. 

Once the  pitch period was estimated,  the LMS transversal 
algorithm was used, because of its simplicity, to  adapt  the 
three-tap  predictor using appropria.tely  delayed data values 
from  the previous pitch  period. If inconsistent successive pitch 
estimates were obtained,  or  the  input speech was determined 
to  be unvoiced, the  pitch  prediction  coefficients were auto- 
matically set to  zero. For  the  three-tap case, the response time 
of the filter,  which depends primarily on  the  number of taps 
[7] ,  was found  to  be  adequate. Only the  quantized  data sam- 
ples to  be  transmitted were used to  compute  both “spectral” 
and  pitch  predictions,  and  hence, in the absence of channel 
errors,  the same computations can be reproduced in the re- 
ceiver. 

To  illustrate  the  potential benefits from using this  pitch 
prediction scheme in the  context of ADPCM,  Fig. 3 shows 
plots of (a)  the  input speech waveform corresponding to  the 
sound  /ah/,  (b)  the residual at  the  output of the LS lattice 
predictor, and (c)  the  quantized residual which resulted from 
filtering the waveform in Fig. 3(b) with a  three-tap adaptive 
pitch  predictor.  The rms prediction error averaged over the 
500 samples  shown was reduced fro:m 55.5 t,o 35.7  by incor- 
porating  the  pitch predictor. The corresponding  SNR  increased 
from  11.7 dB to  17.1 dB. For  this case the  input is clearly 
periodic and  the  pitch period is easily identifiable so that  this 
is comparable to  the greatest  improv’ement to  be  expected  for 
different  types of  speech  sounds. 

lows. 

111. SIMULATION RESULTS 
The five  ADPCM systems  described in the last section 

were simulated for  two  input speech files. The first  file  con- 
sisted of a  concatenation of different vowel sounds  and was 
selected  in order  to compare the  steady  state  performance 
of  each  algorithm. Figs. 4  and 5 show,  respectively,  compari- 
sons of rms predictor  error  and SNR averaged over blocks of 
500 samples. Figs. 4(a)  and  5(a)  compare  the LS lattice predic- 
tor plus LS pitch  prediction  scheme with the LS lattice  predictor 
and Figs. 4(b) and 5(b)  compare the. LS  lattice, LMS lattice, 
LMS transversal, and fixed predictor:;. In all cases the predic- 
tion  order was five. A  prediction  order of ten was also tried; 
however, the results were similar, indicating  that large predic- 
tion orders are not advantageous. (This  conclusion was pre- 
viously reached  in [38] using block processing techniques.) 
The  adaptation  step sizes (which were experimentally chosen 
to give the best  results) were also the same in each case (w = 
0.975). The more  complicated  algorithms generally give im- 
proved performance; however, the difference  in performance 
between  the LS lattice, LMS lattice,  and LMS transversal filter 

is hardly noticeable in  this case. The  pitch  prediction scheme 
offers significant improvement (i.e.,  3-5 dB increase in SNR) 
as long as the  pitch period is estimated  correctly.  Unfortu- 
nately, this is quite difficult to   do  consistently,  and  hence  the 
practical  benefits of this scheme  are severely limited.  Informal 
listening tests  indicated  that broad-band  background  noise was 
most  noticeable when the fixed predictor was used; however, 
no noticeable  difference was detected  between  the  other  four 
prediction schemes. 

The second  speech file used was the phrase “Peter Pan 
peanut  butter.”  The plosives in  this  utterance cause the  input 
file to  be highly nonstationary, and  hence  algorithms which 
adapt  faster should yield improved  system  performance. Our 
simulation  results, however, indicate  that  the difference in 
performance  between  the  four adaptive  algorithms  remained 
slight. Figs. 6  and 7 compare, respectively,  rms predictor  error 
and SNR averaged over blocks of 200 samples. Figs. 6(a)  and 
7(a) compare the LS lattice plus pitch  predictor with the LS 
lattice, Figs. 6(b) and 7(b)  compare  the LS lattice  predictor 
with a fixed optimal  predictor, and Figs. 6(c) and 7(c) com- 
pare the LS lattice, LMS lattice,  and LMS transversal algo- 
rithms. The LS lattice  pitch  prediction scheme again shows 
some  improvement over the LS lattice  predictor during vowel 
sounds when the  pitch period  can be easily estimated.  Through- 
out most  of the file, however, the  pitch period  could not  be 
accurately estimated,  and  hence  the  pitch  predictor was dis- 
abled and  the  two algorithms exhibit nearly identical perform- 
ance. 

Surprisingly, the LS lattice algorithm  does not greatly 
outperform  the fixed predictor  in  this case. Informal listening 
tests  indicated  that  there was no clearly noticeable  difference 
among  the predictors. 

The results in  this  section can be explained by considering 
the  interaction  between  the adaptive predictor  and  the adap- 
tive  quantizer. For  a  uniform  quantizer, which is approxi- 
mately the case considered here, in order to  increase the SNR, 
the  quantization  step size must be reduced. When an adaptive 
predictor is used in conjunction with a coarse quantizer,  to 
reduce  the  quantization  step size and, hence,  increase the 
SNR,  the  input residual  energy  must be significantly reduced. 
In cases where all the adaptive predictors are able to track 
changes in input statistics, the  output MSE’s will not differ 
greatly, and hence the  quantization  step sizes for each case 
will behave similarly. Because a relatively small predictor  order 
was used, the response  time  of the LMS adaptive transversal 
filter, which depends primarily on  the  number of tap weights 
[ 71,  is,likely  to  be fast enough  for tracking  changing input 
statistics. The  extra speed associated with the more com- 
plicated  algorithms is therefore  not needed in  this case. Another 
point is that during a plosive, quantizer overload is by  far  the 
dominant  source  of  distortion,  and hence it is difficult to  de- 
tect  any difference in background noise for  the  second  set of 
simulations. Also, this overload distortion, which is fed  back 
to  the  input of the adaptive predictor, may adversely affect 
the filter’s response  time. 

We add that  an  important  distinction  between  the present 
work and  studies which have used “block” processing tech- 
niques (Le., [ 251 and [ 261 ) is that in the  latter case the pre- 
dictor  parameters are computed  directly  from  the  input speech 
and transmitted as side information  to  the receiver. Block 
processing techniques  therefore eliminate the  interaction be- 
tween  the  quantizer and predictor which is offered as explana- 
tion  for  the results reported here. 
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Fig. 3. (a)  Speech  waveform  corresponding to  the  sound  /ah/. (b) Fifth-order least  squares  lattice residual.  (c)  Residual 
waveform  resulting from  both  "spectral"  and  pitch  prediction. 
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Fig. 4. (a)  rms  predictor  error  obtained  from  using  (curve 1) an LS lattice  predictor  and  (curve 2) an LS lattice  predictor 
plus pitch  predictor  for  input vowel  sounds. (b) rms  prediction  error  obtained  from using  (curve 1) a  fixed  predictor, 
(curve 2)  an LMS transversal predictor, (curve 3) an LMS lattice  predictor,  and  (curve 4) an LS lattice  predictor  for in- 
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Fig. 5. (a) SNR obtained  from using  (curve 1) an LS lattice  predictor  and  (curve 2) an LS lattice  predictor  plus  pitch  pre- 
dictor  for vowel  sounds.  (b) SNR obtained  from using  (curve 1) a fixed  predictor,  (curve 2) an LMS transversal predictor, 
(curve 3) an LMS lattice  predictor,  and  (curve 4) an LS lattice  predictor  for vowel  sounds. 
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Fig. 6 .  (a)  rms  prediction  error  obtained  from  using  (curve 1) an LS lattice  predictor  and  (curve 2) an LS lattice  predictor 
plus pitch  predictor  for  the  phrase  “Peter Pan peanut  butter.”  (b) rrns  prediction  error  obtained  from  using  (curve 1) 
a  fixed  predictor  and (curve: 2) an LS lattice  predictor  for  the  phrase “Peter  Pan peanut  butter.” (c) rms  prediction  er- 
ror  obtained  from  using (curve 1) an LMS transversal predictor,  (curve 2) an LMS lattice  predictor,  and  (curve 3) an 
LS lattice  predictor  for  the  phrase  “Peter Pan peanut  butter.” 
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Fig. 7. (a)  SNR  obtained from using  (curve 1) an LS lattice  predictor  and  (curve 2) an LS lattice  predictor  plus  pitch 
predictor  for  the  phrase  "Peter  Pan  peanut  butter." (b) SNR  obtained  from using  (curve 1) a  fixed  predictor  and  (curve 
2) an LS lattice  predictor  for  the  phrase  "Peter Pan peanut  butter." (c)  SNR obtained  from using  (curve 1) an LMS 
transversal predictor,  (curve 2) an LMS lattice  predictor,  and  (curve 3) an LS lattice  predictor  fot  the  phrase "Peter  Pan 
peanut  butter." 
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IV. CONCLUSIONS 

The results in Section I11 indica te   tha t  in the context of 
ADPCM the extra computa t iona l  burden associated with more 
complex  adapt ive linear predict ion  a lgori thms  outweighs the 
accompanying improvement in ;system performance. The 
improvement in performance in m’ost cases was in fact  found 
to be negligible. The reason f o r  this result is that the appro- 
pr ia te   performance criterion, output MSE, is relatively insen- 
sitive to the adaptive  algorithm  used for small   prediction 
orders. In addition, while the LS lattice predictor/pitch  pre- 
diction algorithm  works well for sounds with a clearly  iden- 
t if iable  pitch  period, the effectiveness  of this scheme was com- 
promised   due  to the difficulty i n  obtaining accurate p i tch  
per iod estimates. 

While the results in this paper discourage the use o f  the 
more complicated least squares  algorithms in ADPCM, it 
should be  emphasized that for  other applications of adapt ive 
linear predict ion,  the conclusions m a y  well be  different. 
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