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Convergence  Properties of an Adaptive 
Digital  Lattice  Filter 

Ahstpact- Convergence  properties  of  a continuously adaptive  digital 
lattice filter. used as a  linear  predictor  are  investigated for both an 
unnormalized  and  a  normalized  gradient  adaptation  algorithm. The 
PARCOR coefficient mean values and the output  mean-square  error 
(MSE) are  approximated  and  a  simple  model is described  which  approxi- 
mates these quantities as functions of time. Calculated  curves  using this 
model  are  compared  with  simulation  results. Results obtained for a two-stage 
lattice are  then  compared  with the two-stage least mean-square (LMS) 
transversal filter algorithm,  demonstrating  that  it is possible but  unlikely 
for the transversal filter to converge faster than the analogous lattice filter. 

I.  INTRODUCTION 

, T  HE ADAPTIVE  digital  lattice  filter  has  recently  re- 
ceived much attention  in  the  contexts of channel 

equalization, where it  can effectively compensate  for  linear 
channel  distortion [3], and  in  LPC speech processing, where 
it  can  be used as a  linear  predictor [ 131, [ 141. When used as 
a  linear  predictor,  the  lattice  coefficients,  known  as  partial 
correlation  (PARCOR) or "reflection" coefficients [ 141, 
can be adapted  to minimize the  output  mean-squared 
prediction  error  either by processing blocks of data or 
continuously using either  a  least  mean-square (LMS) gradi- 
ent  algorithm  or  a recursive version of the  least  squares 
(LS) block processing method [9],  [IO]. 

When compared  to  the simpler adaptive  transversal  filter, 
the  lattice  filter  appears  to have superior convergence 
properties  and reduced sensitivity to  finite  wordlength 
effects [ 151, [16]. Simulation  studies have shown that  the 
lattice  gradient  algorithm converges substantially  faster 
than  the  comparable  transversal  algorithm [3], [5]. No 
analytical  studies of the convergence properties of the 
adaptive  lattice have appeared, however, presumably  due 
to  the highly nonlinear  nature of the  adaptation. 

This  paper  presents  a  first  attempt  at  quantitative  under- 
standing of the  behavior of a  lattice  linear  predictor  using 
an  LMS  gradient  adaptation  algorithm. A number of sim- 
plifying assumptions  are  made  in  order to obtain simple 
results which give insight  into  the convergence process. The 
culmination of this  effort is a  simple model for  lattice 
convergence which predicts  the  mean value trajectories of 
the  PARCOR coefficients and  the  output  mean-squared 
error (MSE) in  a  multistage  adaptive  lattice  filter.  Simula- 
tions show that  the model gives reasonably  accurate  results. 

In Section I1 the  lattice  structure  and  gradient algo- 
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Fig. 1 .  Lattice filter  structure. 

rithms  are  discussed, in Section I11 the convergence behav- 
ior of one  stage of the  adaptive  lattice is examined,  and 
Section IV presents  the model for  multistage  lattice  conver- 
gence. In Section V earlier  results  are utilized to  determine 
the  dependence  of  lattice convergence speed upon  the 
input signal statistics. In particular  a two-stage adaptive 
lattice is analyzed in some detail.  Although  the general 
n-stage case  is  significantly  more  complicated,  the  basic 
ideas used to  discuss  the two-stage case should  carry 
through.  Finally,  the two-stage adaptive  lattice  and two- 
stage  adaptive  transversal  filter  are  compared.  Although 
the  adaptive  lattice  filter generally converges faster  than 
the  analogous  transversal  filter, this is.not universally the 
case as is demonstrated by counterexample. 

Throughout this paper'  the  filter  input  random process is 
assumed to be  stationary.  The  resulting analysis will  give 
insight  into  adaptation of the  filter  for  a  nonstationary 
input where variations  are slow relative to the  adaptation 
speed of the  filter. 

11. LATTICE  STRUCTURE 
The  lattice  filter  structure shown in Fig. 1 is char- 

acterized by the recursive equations 
e/(i ln)=e,(i ln- l)-k,(i)eb(i-lln- 1) (2.1a) 

e,(iIn)=e,(i- I ln-  l)-k,(i)ef(iIn- 1) (2.lb) 

where ef(i I n )  and  eb(i I n )  are, respectively, the  forward 
and backward prediction  errors  at  the  output of the nth 
stage  at  the ith sampling  interval, e,(i 10)=ef(i 10) =yi, a 
stationary  filter  input sequence, and k , ( i )  is the nth stage 
PARCOR coefficient at the ith sampling  interval.  Using 
(2.1 a),  the value of k,( i) which minimizes the  mean-squared 
forward  prediction  error E [  e;( i I n)] ,  
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where the  dependence  upon i, the  sampling  interval,  is  due 
to the  adaptation of k , ( i ) , .  . - , k , -  ,(i) (which cause e,(i I n 
- 1) and eh( i- 1 I n - 1) to be  nonstationary). Note also  that 
if  the  coefficients  are fixed then 

E[ef2( i ln)]=E[e; ( i - - l ln )] ,  l G n G N  (2.3) 

The  adaptive  gradient  algorithm  for  the  lattice  filter  is 
where N is the  order of the  filter. 

obtained  as follows [ 11: 

where PI is  a  small  adaptation  constant.  Evaluating  the 
derivative gives 

k , ( i + ~ ) = [ ~ - ~ , e ? ( i l n - l ) ] k , ( i )  

+P,e,(i l>- l)eb(i- I l n -  1). (2.4) 

A modification of this algorithm  attempts  to recursively 

C,(i+ ] ) = ( I  -&)Cn(i)+ef(iIn-I)e,(i- ]In- I )  
estimate  the  numerator and denominator of (2.2): 

(2.5a) 

~,(i+l)=(l-p,)~,(i)+ef2(iln-l) (2.5b) 

and 

(2 .5~)  

It is easily verified that (2.5) can be rewritten  as 

+ e,(iln- I)eh(i- I ln-  I )  
D,( i + 1) (2.6) 

and hence. is a  normalized version of (2.4). The  “unnormal- 
ized” and “normalized”  gradient  algorithms given, respec- 
tively,  by (2.4) and (2.6) are  the only adaptive  lattice 
algorithms  considered in this paper.  Other  gradient types 
of algorithms have been proposed [2],  [4], [ 5 ] ,  and they can 
be analyzed by the  same  techniques we employ here. In 
addition  the model of convergence presented in Section IV 
can be extended to apply  to  the  lattice  joint process 
estimator [2] and to recently developed recursive least 
squares  lattice  algorithms  [lo]-[12]  (details will be reported 
in a  future  paper [17]). 

The  objective of the  adaptive  lattice  algorithm is to 
rapidly  drive  the PARCOR coefficients to the set of values 
which minimizes the  short term mean-squared  output. In 
the case of a  stationary  input we therefore wish to drive  the 
coefficients  to  their fixed optimal values as  rapidly  as 
possible. Unfortunately, because these algorithms use a 
noisy version of the  error  gradient  to  drive  the  coefficients, 
the convergence rate is somewhat slower than  the  “block 
data” method  referred to in Section I and  in  addition each 
coefficient  has  some  nonzero  variance even after  conver- 
aence which increases  the  resultant  outnut MSE. 

In Appendix A we calculate  the  optimal  mean value of 
k , ( i )  given that it has some nonzero  variance. As would be 
expected the  optimal value of E[k , (  i)]  is very close (but 
not generally equal)  to  the  optimal fixed coefficient value 
given by (2.2) assuming ef(iln- 1) and  e,(iln- 1 )  are 
stationary. 

From (2.4) if  we assume PI is small enough so that 
convergence takes  place, 

Effi[k,(i)e~(i~n-l)]=Effi~e,(i~n--l)eb(i-l~n-l)] 

where E,[X,] denotes  the  asymptotic mean value of the 
sequence Xi. If k , ( i )  and e?(i 1 n - 1 )  are  approximately 
uncorrelated we have E,k,(i) m k,,,,( co). Similarly, from 
(2.6) 

In general if X and Y are two random  variables, 

and  hence  the  estimate of k,,,, obtained using the  normal- 
ized algorithm is biased; however, simulations  indicate  the 
bias  to be generally very small. 

111: SINGLE-STAGE  ADAPTATION 
In this section we investigate  the convergence behavior 

of a single stage of a  multistage  lattice  assuming  that  both 
inputs  to  that  stage  are  stationary.  This  is  equivalent to 
assuming  that  the  previous stages have fixed coefficients,  as 
would approximately  be  true if they have already  adapted. 
Our  motivation is to  determine  the  important  factors which 
affect  the  convergence of a single stage,  deferring  consider- 
ation of the  effects of the  previous  adapting  stages to 
Section IV. 

As implied in Section 11, there  are two distinguishing 
features  to  the  adaptation  algorithms being discussed. These 
are: 1) the time required  for  the  filter  to adapt from  some 
initial  state to its  final  (stationary)  state,  and 2) the  final 
mean-squared value of the  output  error signal after  conver- 
gence is achieved. 

A .  Single-Stage Convergence  Time 
To characterize  the convergence time for  a single stage 

we first  iterate (2.4) and take the expected value of both 
sides  to get 

i I 

+ ~ , E [ e , ( i ~ n - 1 ) e , ( i - 1 ~ n - 1 ) ] .  (3.1) 

I In general,  evaluation of the  right-hand  terms  is  nontriv- 
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ial due to  correlations present in both sequences e/( i I n -- 1) 
and e,,(il n - I ) . ’  To simplify the discussion  we therefore, 
assume  that  both sequences are each independent. Note 
that this assumption improves as n increases since each 
stage of the  lattice  attempts to whiten its two input signals. 
In  addition,  simulations have  shown this  assumption does 
not introduce major inaccuracies in our final results. We 
can then rewrite (3.1) as 

E[’,,(‘+ 111 -‘,,.opt 

E [ k , , ( i ) ]  therefore, decays exponentially towards kn,opt 
with time constant 

1 1 
7,t - -- 

ln{I-p,E[e!(iIn-l)]) ~ ~ [ e ! ( i l n - l ) ]  
x 

(3.2) 
in particular,  the first-stage time  constant r1 = 1 / P , R ,  
where R m = 0: 1,2,. . . , is the  autocorrelation sequence 
of the  input signal. A disadvantage of this unnormalized 
algorithm which  is approximately eliminated by the  nor- 
malized algorithm is the  dependence of adaptation speed 
upon the input signal variance. 

When using the normalized algorithm given by (2.5), the 
initial value of the  denominator is commonly set at PT’ 
times an initial estimate of the input power [3] (note  from 
(2.5b) that E ~ [ D , ~ ( i ) ] = ( l / p * ~ ~ [ e ~ ( z l n - - l ) ] ) .  If thisis  done 
successfully we have p2 E, [ Drl( i)] = E  [ e/’( i I n -- l)]. Using 
this initial  value and (2.6) we rewrite (3.2) for  the  normal- 
ized algorithm as 

1 

I 

(3.3) 

implying that in this case the single-stage time constant is 
dependent only upon pZ. 

I f  we make  no assumptions  about  the residual energies, 
we can use  (2.5) to write 

k , N =  

(l-&ycn(0)+i (1-p*)‘-’e/(j- .~1n-1)eh(;-21n-1) 

(1 -P,);D,,(O)-+ i ( I . - & )  e / ( j -  ] In- 1) 

./ = 1 ~ _ _  

1 --I 2 

J-- 1 

(3.4) 
Multiplying through by the denominator,  taking expected 

‘A similar problcm is  discussed by Mazo in the context of adaptive 
equalization [IS]. 

P * ( l - P Z ) i ~ n ( 0 ) + [ 1 - ( 1 - P 2 ) t ] E [ e ~ ( - ( i l n - ~ 1 ) ]  

(Note that as P2 decreases, k,( i )  should fluctuate less, and 
hence should be less correlated with $( ; In -  1)) ’The 
trajectory of E [ k , ( i ) ]  is not  exponential: however, defining 
r,l as the time it takes E [ kn( i)] to reach the value k,l,opt +- 
(kn(0)-k, ,~o,,)y where O<Y< 1 we  get 

In this case the  “time  constant” rn depends upon the 
normalized input signal variance 

E [  ef<i 1 n -- I)]  

D m  
_ _ _ _ _ ~  

B. Single-Stage Output MSE 
To compute  the  asymptotic  mean-squared  output signal 

for the nth stage of the  adaptive lattice after convergence i s  
achieved we square (2.1 a), let 

where k”,( i) represents the instantaneous  fluctuations of 
k n ( i )  about  its mean value, and take asymptotic expected 
values of both sides to get 

E,[e~( i ln)]=E,[e / ’ ( i In- l ) ]  

+{E,[k,,(i)]}2E,[e~(i--lln-- l)] 

+E,[/Fi(i)ei(i-lln- I)]  

- 2 ~ ~ [ L , ~ ( i ) e / ( i l n . - l ) e / , ( i . - -  l / n - - -  I ) ]  

+2E,[kn(i)]E,[i,(i)ei(i-- lln--  l)] 

-2E,[k,,(i)]E,[e,(i~n-l)e~,(z-l~n-l)]. 

(3.7) 
Unfortunately,  the “noise” term Ln( i )  is generally corre- 
lated with both e,(ijn- 1) and e,,(i- l ln  - 1). As a first- 
order  approximation, however, we shall ignore this effect, 
assume  that E,[kn(z)J=kn,opt, and use (2.3) to get 

E,[e/ ’( i ln)]={ l-k~,,,+E,[i,S(i)l}E[e~(il” -111 

(3.8) 
where E,[L;(i)] E var - k n  x E [ k ; ( i ) ]  - k;,opt. The 
asymptotic variance of kn( i ) ,  therefore, contributes an 
asymptotic excess mean-squared  error at the  output  of  the 
nth stage approximated  by [var,k,,]E,[e/’(iIn- l)]. 

Completion of the  description, therefore, requires an 
expression for var ,kn for each of the two algorithms. 
Squaring (2.4), taking expected values of both sides assum- 
ing k n ( i )  is independent of ef(i I n-- 1) and eh(z-- l l n -  l),  
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and  rearranging gives 

var (13 k n 

645 

and e,,(i- 1 I n- 1) are  jointly  Gaussian  to give 

var ,k, w 

(3.9) 
As a  first  approximation, if we further assume e((i1n- 1) 
and e,,(iln- 1) to be jointly  Gaussian, (3.9) simplifies to  (3.13) 

(1 -k,'.opt)L[.r'(il~- I ) ]  where 
var , k ,  =PI . (3.10) 

2 - 3 ~ , ~ , [ e ? ( i / n - 1 ) ]  E,[e/(iln- l )e f ( i+rnln-  I)] 
Pm = 

It  is interesting to note  that  as jkn,opt I -+ 1, (3.10) predicts  E,[e;(iln-l)] 

doing  spectral  estimation where in general the closer I k ,  1 is 
to  one,  the more accuracy is  needed to  represent k ,  in P 2  var ,k, x - (1 - /c,',opt). 
order to stay within a given maximum spectral  deviation 2 + P 2  

that var wkr? -to' This prove advantageous when If e , ( i ln -  1) is an  uncorrelated  sequence  this  simplifies to 

[ 161. 
Similarly, using (2.6) and assuming k , ( i )  is independent 

var oc k ,  
of e!,(i- Iln- 1) and  e/(jjn-l), OGjGi, 

ef2(i lrf-1)  ef(i ln-l)eb(i-l ln-l)  
E a [ k n - o P '  D,,(i+ 1) - D,( i +  1) 

(3.1 1) 
If P2 is small enough so that 

D,(i)x-E,[e,?(iIn-l)] 1 
P 2  

for large i we can rewrite (3.1 1) as 
var ,k, x 

E,[k,,.,,,~~(iIn-I)-e~(iln--I)eh(i-~jn-~)] 2 

(3.12) 
Note  that  coefficient  variance  produced by the  unnor- 
malized algorithm as given  by (3.9) is identical  to coeffi- 
cient  variance  produced by the normalized algorithm  as 
given by (3.12) provided  that 

P 2  =- 
I 

E,Ie:(iln- 1)1 . 

Simulations have shown that (3.8), (3.9), and (3.13) are 
accurate when an  uncorrelated  Gaussian  noise  sequence is 
used as  the  input  to  a  multistage  lattice.  Unfortunately,  the 
accuracy of these formulas becomes questionable when 
applied  to  arbitrary  correlated  inputs using an  arbitrary 
step size. In general the  correlations  tend  to  make  the 
coefficient variance  and hence, output MSE somewhat 
smaller  than  the  previous  formulas  predict. 

Thus  far only the  asymptotic  behavior of the MSE 
output of a  filter  stage  has been investigated. In Appendix 
B we investigate how this MSE varies with time. In particu- 
lar we use the  same  approach used in  [19]  to  compute 
single-stage output MSE as  a  function of time and  to  find  a 
step size sequence P ( i )  which minimizes this  output MSE 
at each  sampling  interval. 

In this section we have explored  the  convergence  behav- 
ior of a  single  stage of an  adaptive  lattice  filter  assuming 
that  the  inputs  are  stationary.  The  results  presented  can  be 
used to gain insight  into  the  relationships between conver- 
gence time, output MSE, the  step size P, and the  input 
signal variance.  The time constants  also give us some'idea 
of the speed of convergence of the  filter  as  a whole, if  we 
make  the  worst-case  assumption  that  the  first ( n  - 1) stages 
have  to  adapt  before  the nth stage  can begin its  adaptation. 
Intuitively, however, it is clear that this assumption is very 
pessimistic  and  hence, out interest  in  a  simple model for 
the  adaptation of a  multistage  filter  in  the next section. 

IV. MULTISTAGE  ADAPTATION MODEL 
Intuitively we expect that  the nth stage of a  lattice  filter 

will start  adapting in the  direction of its  asymptotic  opti- - .  

Simulations have generally verified this result. 
mum value before  the first ( n -  1) stages have completed 
their  adaptation.  In  fact,  in  Appendix C i t  is shown that 

An alternative  method for calculating coefficient vari- 

where "*" refers  to  the  condition 

k m = k m , o p t ,  1 G m G n -  1 (4.2) 
The  right-hand  side can be evaluated  assuming e,,('[ n -  1) which indicates  that kn,opt is to  first-order  insensitive  to k ,  
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through kn- ,  when the latter  are in the region of their 
optimum values. 

The previous time  constant calculations are, therefore, 
unsatisfactory for predicting the behavior of the multistage 
adaptation, since the affect of previous stages, adaptation 
must  be  taken into account. Our interest is in the trajecto- 
ries of the mean  values of the N PARCOR coefficients 
versus time, which could  be  obtained by averaging the 
results of multiple simulations of the algorithms. However, 
since multiple simulations are expensive and do not  pro- 
vide much insight, we develop in this section a .  simpler 
model for the multistage adaptation,  and  then  demonstrate 
its  accuracy  through  comparison to simulation results. 

Our  model for the adaptation of the nth stage is to 
simply ignore the statistical fluctuation of k , ( i )  through 
k,_ ,(i) about their mean values, since those fluctuations 
should have little effect on the mean value of kn(z). We can 
then  assume that k , ( i )  through k , - l ( i )  are following their 
deterministic mean value trajectories. These plus the input 
statistics provide  a set of second-order statistics for e/(  i 1 n 
- 1) and e,,( i I n- 1)  versus time, which can  be used to 
predict the mean value trajectory of k,(i). Proceeding  one 
stage at  a time, we can  thereby predict the mean value 
trajectories of all the  PARCOR coefficients. The resulting 
model, which is unfortunately represented by  a  computer 
program  rather  than analytically, is nevertheless much 
simpler and less  expensive than  a simulation. Further, by 
plotting quantities  such as kn,opt versus time, much insight 
can  be gained. Simulation results indicate that the model is 
fairly accurate, even for relatively large n (i.e., n= 10). 

In order to describe our. model in more detail, we first 
note  that e f ( i j n )  and e,(iln) are linear combinations of 
yj, yip,,. . -,yi-,, 1% 

n 

es(z ln)=yi-  f , l n ( i ) y j - , = ~ T ( z l n ) ~ .  (4.3) 
j =  1 

and 
n- 1 

e, ,( iIn)=yjpn- 2 b j In ( i ) y j ,=BT( i ln )Y ,  (4.4) 
;=0 

where 
PT(iln)=[l  -f+(i) . . . -f&(i) 0 * * .  01 

BT(iln)=[--h, , .( i)  .. . -bn,,(i) 1 0 . . .  01 

I y = [ y i  y L - ,  . . . yipn . . . yi-W-11 

and all vectors have  dimension N+2.  We  can, therefore, 
advantageously represent e/(  i I n )  and e,,( i 1 n )  by the coeffi- 
cient vectors F( i I n )  and B(i  I n).  The  lattice recursions 
(2.1),  with k,(i) replaced by its  mean value trajectory, can 
then  be  reformulated as 

F(i~n)=F(i~n-l)-E[kn(i)][z-lB(i-l~n-l)] 

(4.5) 
and 

B(iln)=~-~(i-lln-l)-E[k,(i)]F(iln-l) (4.6) 

where z -'B( i- 1 I n - 1) represents B( i- 1 I n - 1) shifted 
" down" one element, i.e., 

[Z-'B(i-lln)]j=[B(i-l~n)]j-l, 

for 2 < j < N + 2  and [z-'B(i-lln)],=O. 

z  %(i-lln-1) must be used instead of B(i-lln-1) 
since e,(i - 11 n - 1) is a  linear  combination of 
yj- , ,  . .,y1-,,. Once we have F and B trajectories the 
second-order statistics of ef and e,, can  be  estimated as 

- 

I n  ~ [ e ? ( i l n ) ] = ~  yj- E hln(i)yi-, 
j =  1 I' 

n f l  n t l  

n + 1  n + 2  

j = l   n 1 = 2  

where R, =E[yjyj ,] .  Finally, the trajectories of the 
PARCOR coefficient means follow from (2.4) or (2.5) 
where each random element  is replaced by its mean,  i.e.,  in 
the case of the normalized  algorithm we approximate 

It should  be  noted that since reducing the step size p will 
reduce the statistical fluctuations present in each  coeffi- 
cient, the accuracy of the model should  improve as ,8 
decreases. 

To illustrate the accuracy of the model we  show graphs 
of E[k , , ( i ) ] ,  n= 1, 2, 4, and 10,  for a particular case of 
input statistics in Fig. 2 (unnormalized algorithm) and in 
Fig. 3  (normalized algorithm). Shown in addition to 
E[k , ( i ) ]  as generated by the model  is kn,opt( i ) ,  the value 
towards which E[k, , ( i )]  is converging  at time i. The  change 
in direction of E[k , ( i ) ]  whenever it crosses kn,opt is evi- 
dent. Also  shown  is E[k , ( i ) ] ,  n= l ,  2, 4, and 10, as 
obtained by averaging the results of 200 simulations of 
each algorithm  (the input was obtained by passing white 
Gaussian noise through  a ten pole filter). Figs. 4  and 5 
show output MSE versus time as obtained  from the model 
and from averaging 200 simulations. 

Much of the difference between the model and  simulated 
curves can  be  attributed  to the different asymptotic values 
towards which they converge. The value of E[k,( i )]  as 
generated by the model  converges to the optimum value of 
k ,  for the given input statistics under the assumption  that 
k , ,  . e ,  k,- I are fixed at their optimal values. In reality, 
however, k ,  through k,- have some  nonzero variance not 
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i KIC 

- . 2  
I I ', v. 

( 4  

Fig. 2. Mean value trajectories of PARCOR coefficients I ,  2, 4, and I O  
in a  tenth-order filter using the unnormalized gradient algorithm by 
(Curve 1) simulation and (Curve 2) from the model in Section IV. 
Curve 3 shows the trajectory of k,r .opt( i )  given  by the model. 

Fig. 4. Output MSE of a tenth-order lattice unnormalized gradient 
algorithm by (Curve 1) simulation and (Curve 2) from the model in 
Section IV. 

Fig. 3. Mean value trajectories of the PARCOR coefficients, 1, 2, 4, and 
I O  in a  tenth-order filter using the normalized gradient algorithm by 
(Curve 1) simulation and (Curve 2) from the model in Section IV. 
Curve 3 shows the trajectory of kn ,op t ( i )  given by  the model. 

Fig. 5 .  Output MSE of a  tenth-order  lattice normalized gradient algo- 
rithm by (Curve I )  simulation and (Curve 2) from the model in Section 
IV. 
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Fig. 6. Mean value trajectories (Curve 1) of the second PARCOR coefficient in a two-stage adaptive  lattice (given by the 

model in Section IV) using different  input statistics. Curve 2 shows the trajectory of k2,0pt(i) .  Fig. 6(b) represents a “fast 
mode” of the filter, Fig. 6(b) represents a “slow mode.” 

accounted  for  in  the  model.  The  offset shown in  the 
simulated  curve  is  therefore  primarily  due  to  the  fact  that 
the variances of k ,  through kn-,  perturb  the  statistics of 
ef( i In - 1) and eh( i I n - l), producing  an offset between the 
simulated and calculated versions of kn,opt. (Note  also  that 
the  asymptotic MSE predicted by the model is the  mini- 
mum attainable  by  a fixed coefficient filter.) 

In the  next  section we use the  results  obtained  thus  far  to 
discuss  the  dependence of the  lattice filter’s convergence 
speed  upon  the  input  statistics  and to compare this behav- 
ior with that  exhibited  by  the  adaptive  transversal  filter. 

V. TWO-STAGE  LATTICE-TRANSVERSAL 
COMPARISON 

Two common claims  concerning  the  adaptive  lattice 
filter  are: 1) the convergence speed of the  adaptive  lattice is 
approximately  independent of the  input  statistics (eigen- 
value spread of the  input  autocorrelation  matrix), and 2) 
the  adaptive  lattice  filter will generally converge faster to  a 
given (stationary)  input  than  the  adaptive  transversal  filter 
assuming  that  both  filters have already converged to some 
different set of input  statistics.  In  this section we show that 
these claims are  not  strictly  true by presenting two-stage 
counterexamples. A detailed discussion of the general n- 
stage case appears to be  considerably more complicated, 
although  the basic ideas used to derive our two-stage 
counterexamples  should  carry  through. 

We begin by considering  the  first claim when the  nor- 

malized algorithm  is used along with the  assumptions used 
to derive (3.3). In particular if we assume each stage 
(coefficient)  does not  start  to converge until  its  inputs  are 
stationary (i.e.,  when kn,opt(i) reaches its  asymptotic value), 
the  adaptive  lattice will converge stage  by stage. From (3.3) 
we know that the  time  constants  for  each  stage  are  at least 
approximately  dependent only upon  the  step size /3 and 
hence  are  independent of the  input signal statistics. We 
have  already seen, however, that  the convergence speed of 
the nth stage  is  significantly  influenced by the  behavior of 
the  first ( n  - 1) stages. In particular, E [  k,(i)] is continually 
moving towards kn,opt(i) which does depend  upon  the 
input signal statistics.  The  trajectory of kn,opt(i) before  it 
reaches  its  asymptotic value will, therefore,  significantly 
influence  the  trajectory of E[k,( i )]  and hence the  conver- 
gence time of the  filter. 

In general the  trajectories of kn,opt, n>2, are  quite 
complicated  (as Figs. 2 and 3 will testify) so that it  is quite 
difficult  to  analytically  determine  the  dependence of 
kn,opt(i), n >2, upon  the  input  statistics. For n = 2; how- 
ever, the  problem simplifies considerably. To illustrate  the 
previous  discussion we, therefore,  consider  a two-stage 
lattice  for which k,(O)=k,(O)=O and  examine  the  depen- 
dence of the  trajectories of E [  k,( i)] and E [  k,( i)] upon  the 
input  statistics (i.e. R,, R, ,  and R2) .  Since we assume a 
stationary  input E [ k , ( i ) ]  will follow an  approximately 
exponential  path with time constant given by (3.3) inde- 
pendent of the  input  statistics. We, therefore,  concentrate 
on the  behavior of E[k,( i )] .  Using our standard  assump- 
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Fig. 7. Trajectories of (Cuive 1)  E[k2(i)],and (Curve 2) k2 ,  ( i )  for a two-stage adaptive lattice using different input 
statistics. The  value of R ,  used m ths case is significantfy iess than  that used to generate the curves in Fig. 6. 

tions we have significantly alter  the convergence time of. E [ k , ( i ) ] ,  and 
hence  the convergence time for  the  filter. Fig. 7 shows the 
same type of behavior for  a smaller value of R , / R , .  Figs. 

corresponds  to k2(0)<k2,0pt while Figs. 6(b) and 7(b)  rep- 

E[e,(illJe,(i--1Il)] 
kz ,opt ( i )=  

E[er”(’ll)]  6(a)  and 7(a) represent  a  fast  “mode” of the  filter which 

- - E [ ( y ,  -k1(i)yi-11(yi-2 -kl(i)yi-l)] resent a slower “mode” whlch corresponds io k,(0)>kZ,opt.  

which can be rewritten as 

This implies that 

b , o p t G ) - k 2 , 0 p t ( 4  

It is  instructive  to  compare this behavior with ;hat 
exhibited by the two-stage adaptive  transversal  filter. 
Specifically, the transversal algorithm  considered is the 
familiar LMS algorithm 

~ l f l ( ~ + l ) = ~ , f l ( i ) + ~ ~ i - j e , ( i I n )  ( 5  4 
wherefjlfl(i) is thejth  tap coefficient for  an  nth-order filter 
at time z. (Note that  this is an  unnormalized  algorithm 
analogous  to (2.4). A normalized version of (5.2) could  also 
be considered.) As discussed in [20], for n =2 the  mean 
value of the tap vector converges towards  its  optimal  value 
according  to fast  and slow normal modes. The time con- 

2 0  stant associated with each normal  mode is T~ = l/pA i, 
i = 1,2,  where x i  is  the i th eigenvalue of the 2 X 2  autocorre- 
lation matrix. In particular we have A ,  = R ,  +R, and A, = 
R, - R , .  If f,(O) and X(0) are fixed, as discussed in  Ap- 
pendix D we can excite each  mode  to  different degrees by 
changing  the value of R ,  / R 0 .  This  is  siinilar  to  the two- 

(5.1) stage  lattice  behavior just discussed. Furthermore, for both 
the two-stage lattice and two-stage transversal  filters as 

for all i,  independent of the input signal statktics.  Now I R ,  I (and  hence  the eigenvalue spread)  increases the dif- 
k2,0pt(i) is  monotonically decreasing; hence, by changing ference  between convergence times associated with each 
the value of k2,0pt(0)=R2/R0,  as shown in Fig. 6 ,  we can “mode”  becomes  greater. 
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Fig. 8. Output MSE curves by (Curve 1) simulation and (Curve 2) from 

the model in Section IV for (a)  a two-stage adaptive lattice, and (b) a 

and input statistics. 
two-stage adaptive transversal filter using equivalent initial conditions 

We, therefore, conclude  that  lattice convergence  speed is 
not independent of the  input signal statistics. In  fact  the 
two-stage lattice exhibits a similar type of dependence 
upon  the  input signal statistics  as  the two-stage transversal 
filter.  On  the  other  hand  the difference between  slow and 
fast  “modes”  as shown in Figs. 6 and 7 is less than the 
difference between normal modes in a two-stage transver- 
sal filter using the same  value of R , .  

We  now examine  the second  claim stated  at  the begin- 
ning of this section by considering  a two-stage adaptive 
transversal filter and a two-stage adaptive  lattice which 
have  converged to  an initial set of input statistics, and  at 
time i=O apply  a  stationary  input with different  statistics. 
In  Appendix D we  use the previous discussion to  derive 
necessary conditions  for which the two-stage transversal 
filter will  converge faster  than  the two-stage lattice.  As an 
example, Fig. 8 shows output MSE by both simulation and 
as  generated by the model in Section IV for two-stage 
adaptive  lattice  and  transversal filters, respectively, using 
initial  conditions and  input signal statistics derived in 
Appendix D. (The  asymptotic output MSE for  both filters 
were approximately equal.) It is clear that  in  this case the 
transversal filter converges faster  than  the lattice. 

We, therefore, conclude  that  the  adaptive  lattice filter 
does  not always  converge faster than  its transversal coun- 
terpart.  On  the  other  hand in Appendix D we show that if 
the first autocorrelation coefficient of the  input sequence is 
near unity, as is often  the case in speech, the two-stage 
transversal filter can converge faster  than  the two-stage 
lattice only if the  initial  misadjustment is slight. (Note  that 
this is a necessary but  not sufficient conditions.)  In speech 
processing applications  the (two-stage) adaptive  lattice 
would therefore appear to have a significant advantage 
over  the (two-stage) adaptive transversal filter. 

VI. CONCLUSIONS 
This  paper  has begun the task of quantitatively  char- 

acterizing the convergence properties of the  adaptive  lattice 
filter. While the  adaptation process displays an  unfortunate 
nonlinear  interaction between a given stage and all those 
before it, by  making approximations we  have  succeeded in 
obtaining results. The model presented in Section IV repre- 
sents  a  first  step  towards  predicting  the  behavior of the 
multistage  adaptive  lattice filter for  an  arbitrary  stationary 
input,  and achieves reasonable accuracy and  at  the same 
time is simple and inexpensive to compute. 

Due  to  the different  statistical behavior of different 
PARCOR coefficients when  processing speech, it is likely 
that the convergence properties of the  adaptive  lattice 
(using gradient  algorithms)  can  be improved  by  using 
different  step sizes for  the  different stages. Another  open 
issue is the convergence properties of appropriately mod- 
ified versions of the  algorithms given in this paper  in 
comparison  to  those exhibited by the  algorithms given in 
[ 101 and [ 1 11 which obtain  an exact least squares  solution  at 
each time instant. These issues are currently being investi- 
gated. 

APPENDIX A 
Given that each coefficient has some nonzero variance 

after convergence is achieved we ask  whether the  optimal 
mean value of each coefficient is  equal  to  its  optimal fixed 
coefficient value. To answer this question we examine (3.7) 
which  gives E,[ e;(i I n )  as  a  function of E,[k,(i)], L,(i), 
and  the  input signals to stage n. Minimizing E,[e;(il n ) ]  
with respect to E,[k,(i)] gives 

- Em[/c,(i)e,2(i-lln-1)] 

E,[e,Z(iln-l)l 
. (A.l) 

In general /c,( i) is  correlated with e,’( i - 1 In - 1);  however, 
simulations have  shown the offset term to be generally 
negligible, and  hence 

{ ~ m [ k , ( i ) l } o p t ~ k k n , o p t .  

We note  here  that  the  same  technique  can also be used 
to investigate the  nature of the coefficient bias referred to 
in Section 4. If we  assume k,+,(i) converges to k,+,,  opt 

given  by (2.2), this bias is caused  by the  fluctuations of 



HONIG AND MESSERSCHMITT: CONVERGENCE PROPERTIES OF LATTICE FILTER 65 1 

k l (  i )  through.k,,( i)  about their mean values which cause 
k , + l .  opt to differ  from  the value of k,, ,, opt calculated by 
assuming k , ( i )  through k , ( i )  are fixed at their optimal 
values. The effect of k , ( i )  upon E,[k,+ ,( i)] can,  therefore, 
be estimated by  using (3.6), (2.1), and (2.2), and assuming 
that k,( i) is statistically independent of the  input signals to 
stage n. Unfortunately, while the resulting relation il- 
lustrates  the  nature of the bias, simulations have  shown it 
to  be  an  inaccurate  estimate of coefficient bias. The effects 
of correlations  must, therefore, be taken into account, 
making the  problem  considerably  more difficult. We  have 
empirically observed,  however, that  in general the simu- 
lated value of IE,[k,]l is  less than IE,[k,]l as  generated 
by the model  (which  is intuitively satisfying if  we  view the 
effect of previous coefficient variations  as  partially whiten- 
ing  the  input  to  the  current stage). 

APPENDIX B 
We investigate single-stage output MSE as a  function o f  

time considering, for simplicity, only  the  unnormalized 
algorithm.  Squaring (2. la), substituting (2.4) for k,( i), 
assuming ef(z/n- 1) and eb(i /n-  1) are  jointly  Gaussian 
and  independent of k,(z), and using (2.3), we get (after 
some  manipulation)  the following recursive equation  for 
~[ef2( i ln)]:  

E[ef2(iln)].tl[a(3a-2)+l]E[e;(i-lln)]+2a(l-a)~,, 

(B.1) 

where 

a=/3,E[e?(iln- 111 
and 

(Note that 

which agrees with (3.8) and (3.10).) For stability we require 
that 

O<a(3a-2)+ 1 < 1 
or equivalently 

2 
O<a< -.  

Note that this stability  requirement  for output MSE is 
stricter  than  the  stability requirement for coefficient mean 
values (O<a< 1) obtained  from (2.4). (An  analogous  result 
holds for the LMS transversal algorithm (5.2) [21].) The 
fastest convergence rate  occurs when 3a2 - 2 a - t  1 is mini- 
mized,  i.e.,  when a =  1/3. In this case the  asymptotic 
output MSEx4/3cmin. 

3 (B 4 

As in [I91 we can find a time  varying  sequence of step 
sizes a(i) which  minimizes the  output MSE at each itera- 
tion. Following the  same  procedures  outlined in [ 191  we get 
the following iterative  formula  for the  optimal  step size 
sequence: 

If 

~rn[e?(i/n)]=crnin. 
This result is similar to  the  optimal  step size  sequence for 
the LMS transversal filter obtained  in [ 191. Interestingly,  in 
contrast to the  transversal filter, for  the multistage  lattice 
the  optimal  step sizes for  different stages will be  unequal. 
(Although  the general n-stage solution  has not been at- 
tempted,  intuition would suggest that  the  optimal  step size 
sequence  for  the nth stage might be  obtained by  keeping 
a,( i) -j3,J i ) E [  e!( i I n - l)] = 1/3 until  the input to that 
stage is approximately  stationary (i.e.,  when 

E[e;(i/n--l)]xE,[e/Z(iln-l)]) 

and then  using (B.3).) 

APPENDIX C 
We wish to establish (4.1). We  first  note  that 

n- 1 

e / ( i I n - l ) = ~ i -  X J/n-lyj-j (C.1) 
j= 1 

and 
n -  1 

eb(i- lln-  l)=yi-,- X bji,-,yi-, (C.2) 

where the  forward  and  backward  prediction coefficient 
satisfy 

j =  I 

i<j<n- 1 .  
Now 

and hence 

a kj  
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where  all prediction errors have order ( n  - 1). Given (4.2) it 
follows that E[ef2(il n -  l)] is at  its minimum value, and 
hence 

Also, 

(C-5)  
from (C.1) and (C.2). From the principle of orthogonality 
it follows that this term is also zero, and  hence (4.1)  follows 
from (C.3)-(C.5). 

Note that this result does  not  hold  for prediction coeffi- 
cient, i.e., for  a two-stage transversal filter, 

~ [ ~ / 2 ~ ~ l ~ ~ ] = ~ o ( ~ + ~ l ; 2 + f ~ 2 ) + ~ ~ ~ ~ Z ~ f 2 , 2 - ~ ~ ~ 1 - ~ f 2 ~ 2 ~ 2  

from which it follows that 

f212,opt =r2 -fq2r1 

where ri =Ri/Ro, for all 

APPENDIX D 
Following the discussion presented in Section V we 

examine the conditions under which a two-stage transver- 
sal filter will converge faster than the analogous two-stage 
lattice. For simplicity we use  (2.4) and (5.2) as our  adaptive 
algorithms, although the following discussion can  be rein- 
terpreted for the respective normalized versions. 

We first observe the following inequalities: 

where rj = Ri/Ro which can  be rewritten as 

7- ( f )  1 7 ,  < ( 0  1 7 2  < (1)  G7s(f) (D-1) 

where r j r )  and 7;‘) represent, respectively, the time  con- 
stants associated with the two-stage transversal fast and 
slow normal  modes  and $‘I, i = 1,2, is the i th-stage lattice 
time  constant  obtained  from (3.2). If we, therefore, select 
the initial conditions and  input statistics to (1) excite only 
the fast normal  mode of the transversal filter and ( 2 )  cause 
the lattice filter to exhibit the type of behavior  shown in 
Figs. 6(b) and 7(b), i.e., excite its slower “mode”,  the 

adaptive transversal filter should then converge faster than 
the adaptive lattice. 

To derive an  example satisfying both of these conditions 
consider a  second-order all-pole input sequence, 

yi = q i  +uyi-, +byj-, 

where qi is a  stationary  zero-mean  independent sequence. 
We have 

YI = 
U 

(D .2a) 

U L  
rz = 1-6 +b. (D .2b) 

The mean  values of the tap coefficients are given by 

Without loss of generality we can  assume R ,  >O.  To excite 
only the fast normal  mode we, therefore, require 

or 

f2(0) - f , ( O )  = b -a.  (D.3) 
To ensure that the actual “time  constant”  for the second 

stage of the lattice is greater.  than  or equal  to 72(‘), the 
discussion in Section V tells  us 

f2(0)=k2(0)>k2,0pt. 

l~l=lk2,optl<1 

Now 

for stability, hence  from (D.2a) and (D.5) 
u>O. 

From (D.3)-(D.5), 
f,(0)-u=f2(0)-b>0 

so that f,(O)>a>O. For stability we also require 

or 

fZ(0) +fI(O) =z 1 ’ 

Combining  (D.3)-(D.6) gives 



O<a<f,(O)G 
1-(b-a) 

2 
l+(b-a)  

2 - 1 < b<f2(0) G 

(D.7a) 

(D.7b) 

To make  our  example  as  dramatic  as possible we  wish to 
strengthen  the  inequalities given by (D.1). To do this we 
must  make r1 relative large. Finally,  to  make  the  example 
meaningful  we  would like the  initial MSE to be signifi- 
cantly greater than  the  asymptotic MSE. This implies 
making 

dEf,(O) -a=f2(0) - b 

relatively large. From (D.7) we, therefore, will select 

so that 
1-(b-a) 

2 d= -~=1/2[1- (b+a)]  (D.8) 

and  attempt to make (b+a)  as negative as possible. To 
illustrate  the previous discussion suppose we select I ,  = 0.9. 
From  (D.l) 

Also, from (D.2a) 
a+b=0.9+0.lb 

which is most negative when b= - 1. From (D.8) 
d=1/2[1-(0.9-0.1)]=0.1. 

For this case we, therefore, see that  the transversal filter 
coefficients will  converge nearly twice as fast as  the  lattice 
coefficients, however, the (maximum) initial  misadjustment 
is slight. In  order  to find an example with a larger initial 
misadjustment we must  decrease the value of I , .  The exam- 
ple shown in Figs. 8 and 9 was obtained by setting d=0.7, 
a=0.3, and b= -0.7.  This  in  turn gives r1 =0.176, and 
r2 = 0.647. From (D. 1) 

From  (D.7)  and (D.8), fl(0)= 1, k2(0)=f2(0)=0, and k,(O) 

kl,opt = I , .  The same  step size  was  used for  both algorithms 
since  the  asymptotic MSE was approximately  the  same in 
both cases. 

=f1(0>/(1 -f2(0))= 1. Also, f l ,opt  =a, k2,0pt -f2,0pt =b,  and - 
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