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ABSTRACT

Minimum Mean Squared Error (MMSE) detection
has been recently proposed for Direct Sequence-Code
Division Multiple Access (DS-CDMA) systems. MMSE
detectors are near-far resistant, and can be adapted with
standard adaptive algorithms without knowledge of user
parameters (i.e., spreading codes). These algorithms rely
on a known training sequence for intial adaptation, and
subsequently switch to decision-directed mode. After the
switch, the performance of the adaptive algorithm may
degrade substantially if a strong interferer suddenly
appears (i.e., if power control is relaxed). We present a
“rescue’ algorithm that monitors for sudden changes in
the signal space, which may be caused by the appearance
of a strong interferer. If a new interferer is detected, deci-
sion-directed adaptation is suspended, and an estimate of
the optimal filter coefficients is obtained without a training
sequence. It is shown that in the presence of low-level
background noise, a good estimate can be obtained within
a few symbol intervals. A numerical example is given
which illustrates the performance of the rescue algorithm
in a synchronous DS-CDMA system.

1. INTRODUCTION

Direct Sequence-Code Division Multiple Access
(DS-CDMA) offers a number of important benefits for
multi-user wireless communications. Namely, it can be
operated asynchronously, it is robust with respect to nar-
rowband fading and interference, and it does not require
frequency assignments. A disadvantage of Direct-
Sequence (DS)-CDMA is the near-far problem: Because
the transmitted waveforms are not orthogonal, a transmit-
ter close to a base station receiver can disrupt communica-
tions from a transmitter relatively far away. Current DS-
CDMA systems (e.g., IS-95) solve this problem with
closed-loop power control [1]. However, because of the
stringent requirements on received power for acceptable
system performance, this solution adds substantially to
system complexity.

Recently, Minimum Mean Squared Error (MMSE)
estimation has been proposed for detecting a DS-CDMA
signal in the presence of multiple-access interference
[2]-[4]. The linear MMSE detector has the following prop-
erties:

. It is robust with respect to strong interference (i.e.,
it is near-far resistant [5]).

. It can be implemented as a single tapped-delay line
for each desired user, analogous to the linear equal-
izer for a dispersive single-user channel.

. It can be adapted using standard adaptive filtering
algorithms (i.e., stochastic gradient or least
squares).

. Initial adaptation relies only on a training sequence.
Knowledge of user spreading sequences, ampli-
tudes, and relative phases is not needed.

. The performance degrades gracefully as the number
of (equal power) users increases.

The linear MMSE detector is less complex and eas-
ier to adapt than many of the multi-user detectors previ-
ously proposed (i.e., see [5]). This detector might there-
fore help to alleviate the stringent requirements on power
control in DS-CDMA. A remaining problem, however, is
that after initial adaptation with a training sequence, a
conventional adaptive algorithm must switch to decision-
directed mode. This switch occurs once the error proba-
bility is sufficiently low. It therefore can happen that the
detector adapts to an initial set of users, but once in deci-
sion-directed mode, a new strong interferer appears. This
would render the decisions made by the detector unreli-
able, and may prevent the adaptive algorithm from con-
verging to the new set of users. An additional problem is
making sure that the adaptive algorithm can track changes
in the wireless channel.

To solve the preceding problem, we present an algo-
rithm that monitors for sudden changes in the signal
space. If a significant change is detected, then decision-
directed adaptation is suspended, and the tap weights of



the detector are adapted blindly without a training
sequence. The purpose of the blind adaptation is to find a
new initial condition from which decision-directed adapta-
tion can proceed.

In this paper we assume an ideal channel, and con-
sider only the addition of new users (interferers). We pre-
sent a blind adaptation algorithm which exploits the fact
that the tap weights have converged to one set of users,
and that an additional interferer (or interferers) has sud-
denly appeared. The blind adaptation then reduces to esti-
mating only one parameter per new user for synchronous
CDMA, and two parameters per new user for asyn-
chronous CDMA. In the absence of noise, and assuming a
single new interferer, only two symbol periods are needed
to compute this parameter for synchronous CDMA, and
three symbol periods are needed for asynchronous
CDMA. The algorithm therefore ‘‘rescues” the tap
weights each time a strong interferer appears. If the num-
ber of strong interferers is sufficiently small, then in the
absence of noise the algorithm finds the zero-forcing solu-
tion (i.e., the contribution from the interferers is nulled
out). The complexity of the algorithm is quite modest
when used with a decision-directed stochastic gradient
(LMS) algorithm.

2. SYSTEM MODEL

There are K users transmitting to a single receiver.
User K transmits the signal

Sc(t) = 3 bylilpy(t=iT) (n)

where by[i] O {1} is the ith bit transmitted by user kK
and py(t) is the pulse shape assigned to user k. For DS-
CDMA,

N-1
Pt = ZO a[i]W(t —iTo) @

where a[i], i =0,..., N —1, is the spreading sequence,
W(t) is the chip waveform, T is the chip duration, and
N = T/T, is the processing gain.

This model applies to both the uplink (mobile to
base station) and downlink (base station to mobile) in a
cellular system. In what follows we assume that the
receiver wishes to detect a single user (i.e., user 1) in the
presence of interference from the other users. Our discus-
sion still applies to the uplink, since for the detector con-
sidered, minimizing total MMSE summed over all desired
users is equivalent to minimizing MMSE for each user.
Consequently, MMSE detection of each user is equivalent
to joint MMSE detection of all users.

The problems of interest are present in both syn-
chronous and asynchronous CDMA systems. For simplic-

ity, we therefore consider symbol- and chip-synchronous
DS-CDMA. Generalization of the following discussion to
an asynchronous system is conceptually straightforward.
We assume that the receiver contains a chip-matched filter
followed by a chip-rate sampler. (For asynchronous
CDMA, the MMSE detector requires a higher sampling
rate [4].) Let r[i] denote the vector of samples obtained
during the ith symbol interval. That is, r contains N ele-
ments, where N is the processing gain, and the jth ele-
ment corresponds to the jth chip. For the baseband
model, we can write

K
rli] = kzl Acbylilpy + nli] 3)

where b, [i] O{x 1} is the ith bit transmitted by user K,
Py is the unit-norm vector of N samples received from
user k, Ay is the amplitude associated with user k, and n is
the vector of noise samples.

For the synchronous system considered, the MMSE
detector consists of the N-vector €, where C is chosen to
minimize E{(by[i] = c'r[i])* }. The estimated symbol is
Bk[i] =sgn (c'r[i]). In principle, any standard adaptive fil-
tering algorithm can be used to estimate the MMSE solu-
tion for c. However, suppose that power control is
relaxed, the algorithm continues in decision-directed
mode, and a new interferer (subscript K + 1) suddenly
appears. If the associated amplitude Ay, is large enough,
then the estimated symbols Bl[i] will be unreliable
(assuming Py4;'P; # 0), causing the adaptive algorithm to
lose track of the desired user. Sudden changes in channel
characteristics due to mobility might also cause an adap-
tive algorithm to lose track.

3. RESCUE ALGORITHM

To explain this algorithm, we neglect the noise term

in (3). The numerical example which follows assumes a

signal-to-background noise ratio (SNR) of 15 dB. Let

S m denote the space spanned by {p,...,p,} where
|

m> |, and let Pg(X) denote the orthogonal projection of
the vector X onto the space S. Before user K + 1 appears,
the sequence of received vectors {r[i]} spans Sk, so that

1 .
IPg,  (r[iDIl = 0. Suppose that user K + 1 appears at time
ig- If P4y Sk, thenr[ig] TS, k, and

K+1 . 1
kZ Acbyliol Ps,, (Py)
= ’

P, (lioD

1
Ax+1P+liol Ps, (Pk+1) (4

It is desirable that the set of pulse vectors {p;} have low
cross-correlations, which means that

||P§1.K(pK+1)|| = llpgyll = 1. Let &i] :PSLLK(r[i]). If



user K + 1 suddenly appears, and Ay, is large, then the
norm of &[i] must suddenly increase. To detect the
appearance of user K +1 at time i we therefore use the
decision rule:

<n: Kusers

lafill )

K + 1 users

where the threshold 7 is selected so that the error proba-
bility (or MSE) in decision-directed mode remains suffi-
ciently low given the decision “K users”. The perfor-
mance of this detector is illustrated in the next section.

Note that any set of K linearly independent received
vectors {r[i;]}, j=1,...,K (prior to the appearance of
user K +1 at time i), can serve as a set of basis vectors
for the space S, x. However, an orthogonal basis can be
obtained by replacing r[i;] by the orthogonal projection of
r onto the space spanned by the existing basis vectors.
Computing the preceding orthogonal projection then
becomes quite simple. The decision (5) determines when
to add a new basis vector to the existing set.

In the absence of noise, the MMSE estimate for C

il
given K + 1 users is Psl o (P (the zero-forcing solution),
and it is easily shown that

P;Kﬂ(pl) = K%;K(pl) + aa['o] E (6)

where « is a scale factor, and « is a parameter to be esti-

1 .
mated. Note that Psz (Y is the zero-forcing solution for
c given K users, and lies in S; k. Equation (6) is therefore
an orthogonal decomposition of the zero-forcing solution

Pgm(pl). Since binary symbols are assumed, the scale
factor x is unimportant. Consequently, if user K +1
appears at time i, then the new optimal vector can be
written as

€ = clip — 1] + adliy] 7
Once « is determined, € is used as the initial condition for
decision-directed adaptation, starting from time i.

The orthogonal decomposition in (7) is central to
this approach, and was motivated by the minimum vari-
ance blind interference suppression technique presented in
[6]. This decomposition allows the MMSE criterion to be
replaced by output variance. To see this we write the
MMSE as

E{[Ab, —&r*} = A{(1 -28p) +E[EN’], (8)

which says that the MMSE and output variance E[(E'r)z]
differ by a constant. Consequently, choosing « to mini-
mize the output variance also minimizes the MMSE. Min-
imizing output variance does not require a training
sequence. Furthermore, the output variance is a quadratic

function of o with a unique minimum. Consequently, we
choose o to minimize

i ﬁ
r[i
E (1] 0’
0
where i| — iy is large enough to obtain a good estimate for
«. In the absence of noise, the @ which gives the (scaled)

1
zero-forcing solution € :K_IPS2 ., (P1) can be obtained
from just two received vectors, r[ig] and r[iy+ 1], pro-
vided that they are linearly independent.

Remarks

(i) Extension of this algorithm to asynchronous DS-
CDMA is straightforward. However, because each
interferer contributes two linearly independent vec-
tors to the received vector r[i], when a new user
appears two parameters must be estimated, instead
of the single parameter ¢ in (7). In the absence of
noise, these parameters can be computed from three
linearly independent received vectors [[i],
rlip+1], and r[ig+2]. Also, unlike the syn-
chronous case considered here, the performance can
be improved by increasing the size (number of
dimensions) of C.

(i) If a user disappears, then the error probability can
only improve. This implies that the decisions by [i]
remain reliable, and that decision-directed adapta-
tion can continue.

(iii)) As the level of background noise (or low-power
interference) increases, it becomes more difficult to
obtain basis vectors for the space S, . Averaging
techniques may prove useful for obtaining better
estimates of the basis vectors. Also, the estimate €
deviates further from the zero-forcing solution as
the noise increases.

4. NUMERICAL RESULTS

The performance of the rescue algorithm is illus-
trated in Figure 1, which shows estimated Signal-to-
Interference Ratio (SIR) vs. time for a synchronous
CDMA system with processing gain N = 10, K = 6 users
(initially), and a signal-to-background (Gaussian) noise
level (SNR) of 15 dB. The SIR was computed as
El(C'[ilp)*VE{[c'[i1(r[i] = by[i]p,)]*}, where the expec-
tation is replaced by an average over 200 runs. The inter-
fering amplitudes satisfy A/A; =3, k=2,...,6, and the
new interferer has amplitude A;/A; =15. The LMS algo-
rithm is used for the first 200 iterations with a training
sequence, and then switches to decision-directed mode. At
iteration 300 a new user appears. Without the rescue oper-
ation, the new user is strong enough to cause the adaptive



algorithm to lose track of the desired user. However, the
rescue operation (which in this case uses three received
vectors to compute « in (7)) is able to maintain positive
SIR.
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Figure 1. SIR vs. time for for the LMS algorithm, and the
LMS algorithm with a rescue at time iteration 300.
N =10, K=6, SNR=15 dB, AJ/A, =3, k=2,...,6,
A/A =15

The performance of the rescue algorithm depends
critically on the performance of the decision (5). The
probabilities of a false detect (detecting a user not actually
present) and a miss, given that a new user is present, are
difficult to compute in general. However, an optimistic
performance evaluation can be obtained by assuming that
K =1 (no interferers). Figure 2 shows the probability of a
miss (Pp,) vs. the probability of a false detect (P¢) for
K =1 with the power of the new user as a parameter.
These results were obtained by choosing different values
of 7 and approximating lInl* as a Gaussian random vari-
able. As in Figure 1, N = 10 and the SNR is 15 dB. The
new user’s power varies from 0 to 6 dB above the desired
user. Of course, the performance of the detector degrades
as the background noise level increases, and as the number
of users increases. It is, of course, possible to improve
upon the performance of the decision (5) by making use of
more than one received vector. We leave this for future
work.

5. CONCLUSIONS

A technique has been presented for detecting the
onset of a new interferer in DS-CDMA, and rapidly adapt-
ing the filter coefficients of a tapped-delay line to suppress
this interferer. This rescue technique does not require a
training sequence. The numerical example presented here
is preliminary in that the channel is assumed to be ideal,
and there are relatively few interferers. In a cellular sys-

tem, there are likely to be many (i.e., more than N) low-
level interferers, along with time-varying multipath, which
may cause rapid fades. It is important to determine how
robust this technique is (used in conjunction with either
stochastic gradient or least squares estimates for ) with
respect to these impairments.

log probability of miss

L
-15 -10 -5
log probability of false detect

Figure 2. log,, Pn, vs. log,, Pq for the decision rule (5)
assuming K =1, N =10, and SNR = 15 dB. Each plot
corresponds to a different power level for the new inter-
ferer.
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