
/-. ., 

1022 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 1 I ,  NOVEMBER 1987 

On Waiting for Simultaneous Access to Two Resources: 
Deterministic Service Distribution 

MICHAEL L. HONIG 

Abstmct-Suppose that a test customer in an M / D / 1  queueing system 
can get service only if  he has access to the server and a separate event E 
has occurred. All other  customers only require access to the server. The 
time until the event E occurs is assumed to be an exponentially distributed 
random variable. If the test customer reaches the server before E occurs, 
he must then return to the back of the queue. At any time, however, the 
test customer is allowed to give up his place in the  qnene and  join the back 
of the queue. The test customer represents a computational task that 
depends upon  the results of an associated task. 

The test customer’s mean delay until service is derived assuming that he 
always maintains his position in the  queue until he reaches the server. 
Conditions are given for which this “move-along” policy is optimal, i.e., 
minimizes the test customer’s mean delay until service. A condition is also 
given for which the move-along policy is not optimal. 

I. LNTRODUCTION 

The problem considered in this note is derived from a computing 
environment in which different but dependent computational tasks are to 
be scheduled for execution on multiple processors. Suppose N > 1 
processors are used to process jobs submitted by multiple “parent” 
machines. A particular process W to be submitted by one parent machine 
is split into two smaller tasks Wl and W2 where W2 depends on the result 
from running Wl, and each task must be run on  two different processors 
P I  and P2. Assuming that jobs are generated from the parent machines 
according to a random process, queues may form at each processor. The 
time it takes to complete the process W is therefore random and depends 
on how  many jobs  are currently waiting for processors P I  and P2, and the 
time it takes to complete each job. 

One scheme which minimizes the delay until W is completed requires 
that a special token be attached to W2 so that if it reaches P2 before Wl is 
completed, it  can allow other jobs access to Pz while still maintaining its 
position at the head of the queue. In the more general situation where 
there are numerous processors and numerous jobs which require results 
from associated jobs, however, separate buffers are required for all jobs 
that reach the server but cannot be executed. In addition, a scheduler must 
keep track of which processes are related so that a job can get service as 
soon as the necessary input becomes available. 

A simpler scheme is to submit both tasks Wl and W2 simultaneously to 
PI and P2, respectively. If W2 reaches P2 before Wl is completed, then 
W, is automatically placed at the back of Pz’s queue. To analyze this 
scheme, a queueing model is constructed. Processors PI  and P2 can be 
regarded as servers  for two different queueing systems, i.e., G/G/l in 
the most general case. The task W2 is a “test customer” who is waiting 
for a customer, W,. to receive service from P I .  If the test customer 
reaches the server  before Wl is served, then he must join  the back of the 
queue. At any time, however, the test customer is allowed to give up his 
current position and join the back of the queue. A specific problem studied 
here is to determine when, if ever, using this option reduces the mean 
delay until the test customer is served.  Here we only consider the case 
where the arrival  stream to server Pz is a Poisson process, service times 
are deterministic (M/D/l queueing system), and the time until WI is 
served is an exponentially distributed random  variable, independent of the 
other queue. A general  service distribution is considered in [2] and [ 3 ] .  

Another (possibly more appealing) interpretation of this problem [ l ]  is 
that the test customer is waiting at a theater. He cannot get into the theater 
alone, however, because he does not have enough money. Nevertheless, 
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he is counting on  the  arrival of a friend who will buy his ticket. If he 
reaches the cashier  before his friend  arrives, he must return to the back of 
the line. The test customer must decide whether or not to move to the back 
of the queue before he reaches the  cashier in order  to  decrease his 
expected delay until admission. 

n. THE MAIN RESULTS 

Let t* denote  the object time, which is the  first  time the test customer 
reaches the server  after his friend has arrived. At any given  time t < t*, 
the test customer is waiting in the queue. The state of the system at time t 
is therefore [ u ( t ) ,  j ( t ) ,  k( t ) ] ,  where u ( t )  is a real nonnegative number 
equal to the cumulative service times of  customers, or virtual work, 
ahead of the test customer (including the  customer currently being 
served), j ( r )  is a nonnegative integer representing the number of 
customers in back of the test customer,  and k(t)  is either 1 or 0, 
indicating, respectively, that the test customer’s friend has, or has not, 
arrived.  The  state trajectory from time t = 0 to r = T is defined as the 
continuum of states visited from time t = 0 to t = T, and is denoted as 

Apolicy P maps state  trajectories to actions. For any policy P ,  the only 
actions allowed are either  to stay in the  current position, or  jump  to the 
back of the queue,  Le., move from  state [ u ( t ) , j ( t ) ,  k(t)]  to state [ u ( t )  + 
j ( t ) ,  0, k(t)J.  Suppose  the  state trajectory from t = 0 to t = Tis s[O, TI. 
The mean residual delay until the test customer is served starting from 
time T under policy P is denoted as D(s[O, TI; P ) .  The move-dong 
policy (MAP) is defined as the policy whereby the test customer never 
leaves his position in the  queue unless he has reached the head of the 
queue. The mean delay until the test customer is served under the M A P  is 
denoted as du,j,k, where ( u ,  j ,  k )  is the current  state. In this case the delay 
is independent of the current  time f and the state trajectory prior  to time t. 
Since dv,j,l = u ,  we  drop the k subscript, and write  the mean delay until 
service, assuming the test customer’s  friend has not arrived, as d”,,. 

The first theorem  gives a necessary and sufficient condition for which 
the MAP is optimal. 

Theorem I :  Let s[O, TI be any state trajectory which reaches state (u ,  
j ,  0) at time T. Then du,j = infp D(s[O, TI; P )  if and only if 5 
d , ,  j ,o ,  for all positive u and j .  

This theorem holds for all previously defined policies P.  If du,j > 
d,, j ,o  for particular u and j ,  then moving to state ( u  + j ,  0,  0), rather than 
staying in state (u ,  j ,  0), decreases  the mean delay relative to  the move- 
along mean delay. In this case, policy iteration [4]  can be used to obtain 
the best policy. 

A discrete version of  Theorem 1 in which the parameter u only takes on 
discrete values, and policy decisions are made at each successive time 
step, essentially follows from Theorem 1.1 in [4, ch. 31, and  the fact that 
the object time is finite with probability one. Theorem 1 is obtained by 
letting the time steps  decrease to  zero, and arguing that for any allowable 
policy P ,  there exists a sequence of discrete-time policies Pi such that 
Iim,-- D(s[O, TI; P i )  = D(s[O, 71; P ) .  Details are omitted. 

To decide whether or not the MAP is optimal the mean delay dy,j is 
explicitly computed. Let X denote  the  arrival rate to  the MIDI1  queue, cy 
denote the rate at which the test customer’s friend arrives, and assume that 
the service rate p is normalized to one. It is shown in Appendix A that du,j 
satisfies the recursion 

s[O, TI. 

F o r j  = 0, this expression reduces to 

The following boundary condition holds for d0.0: 

do,o=-+- d,,o. 
1 X  

h+a X+a 
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The first term on the right-hand side is the  average time until either  the 
next arrival to the queue, or event E occurs, and the term multiplying dl,o 
is the probability that event E occurs  before  the next arrival. The solution 
to (Z), derived in Appendix A, can be written as 

where 

~ ~ ~ , = c u f X ( l - e - ~ k ) ,  xo=O, ( 5 )  

and 

x, = lim xk, 
k-m 

that is, 

Combining (3) and (4) gives 

Once do.0 is computed from (5)-(7), du,o, u > 0, can be computed from 
(4)-(6), where the infinite sums are truncated. 

Plots of d,,o as a function of u for two sets of X and a are shown in Figs. 
1 and 2. Also shown in each case is the curve d, = u + e -au /a ,  which is 
the minimum possible mean delay obtained by allowing the test customer 
to wait at the head of the queue. The "hump" in Fig. 2 is due  to  the 
relatively large value of X, and suggests Theorem 3, which follows. 

Computation of dUj for j > 0 merely requires substituting the 
expression for dj+k,O,  given by (4), into (1). Although somewhat messy, 
this substitution is straightforward, and the details are omitted. The result 
is 

Given Theorem 1 and the expression for mean delay (8 ) ,  it is now 
possible to  determine a condition on X and (Y which guarantees that the 
MAP is optimal. Proofs of Theorems 2,3,  and 4 are given in Appendix B. 

Theorem 2: If X I a/(l - eta), then dL,,, I d,, j ,o  for all positive u 
and j .  

Observe that a/( l  - e -") > 1 for all a > 0 so that if the queue is 
stable, then the test customer cannot  decrease his mean delay until service 
by moving to the back of the queue. The next theorem implies that if X is 
large enough, however, then the MAP is not optimal. 

Theorem 3: Given any a,  there exists a threshold &(a), such that if X 
> &(a), then d,+,,o < d",, for  some u and j .  

Theorem 3 is illustrated by the following plausibility argument. 
Referring to  Fig. 2, suppose that X = 100, a = 0.1, and the initial state is 
(10, 0, 0), i.e., 10 customers ahead of the test customer. If the test 
customer adopts the  MAP,  the probability that he will reach the server 
before his friend arrives is e -  I = 0.37, in which case about 1000 new 
customers appear, so that his expected delay is quite large (i.e., 
approximately 380 for X = 100). If, however, the test customer waits 
only for the total number of customers in the  queue  to increase, say,  to 60 
before moving to the back of the  queue, his friend will with high 
probability arrive  before he reaches the server, so that his expected delay 
will decrease significantly (i.e., to approximately 75 from Fig. 2). 

The previous two theorems suggest the following unproven conjecture. 
Conjecture: There exists a X*, which depends on a,  such that the 

Define X(a) as the infimum of all threshholds X,, referred  to in Theorem 
MAP is optimal if and only if X I X*(a). 

l o t  
1 I I I I I I I I 
0 10 2 0 3 0 4 0 5 0  6 0 7 0 8 0  

V 

Fig. I. Plot of d, versus u with X = 1 and (Y = 0.05. 

V 

Fig. 2.  Plot of d,, versus u with X = 100 and (Y = 0.1. 

3, and let 

Theorem 2 implies that x(a) 2 g(a) .  The next theorem states that this 
bound is tight for large a,  and for a close  to  zero. 

Theorem 4: 

i) lim X(.) = 1 
a-0 

ii) lim [X(a)-g(a)]=O. 
e-= 
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We remark that the lower bound X(a) 2 g(a) is fairly tight for 
moderately large CY, i.e., the analysis in Appendix B implies that x(4) - 
g(4) < 0.3. 

m. GENERALIZATIONS 

The problem considered here has many interesting variations and 
generalizations. A general, rather than deterministic, service distribution 
is considered in [2] and [3]. Different distributions for the  arrival time of 
the test customer's friend could also be considered. One example of this is 
a nested problem in which the test customer's friend is waiting in another 
queue (i.e.,  at a bank) and cannot be served until a third person arrives (to 
grant approval of a cash withdrawal). This type of nesting can be 
increased to any finite or infinite level. A similar variation assumes the 
test customer's friend is in another Markov chain and that the test 
customer cannot be served before his friend teaches a specific state. A 
generalization which is perhaps more closely tied to a computer 
environment is one in which there are several test customers in the queue. 
What is the optimal policy for each test customer? 

APPENDIX A 

DENVATION OF (1)-(6) 

To derive (1) let dv,j I denote the mean delay from state (v, j ,  0) given 
that the friend arrives at time T. For u > 0 

T< U 

Since the arrival  time of the test customer's friend is exponentially 
distributed with parameter a, 

do,= J m  ae -aTd  U J ' T ~ T  .' 

0 

A solution to (2) and (3) can be obtained by defining the sequence d(i,b, 
i = 0, 1, ..a, as 

d ::= 0. (A.3b) 

It is easily shown that the solution to (2) and (3) is unique, and that d!,; 
monotonically increases with i and converges  to dL,,o. Iterating (A.3) a few 
times gives: 

APPENDIX B 

PROOFS OF THEOREMS 2-4 

Theorems 2-4 rely on  the following lemma. 
Lemma: The sequence x k  increases monotonically with k. Also, 

( Y S X ~ S A + C Y ,  k 2 1 .  

Proof From (5 ) ,  

xo=o<x,=a.  

Also. 

d.,,,o-d,,=j+g  [Ak+'(v+j) exp [ - x,,-(v+j)xkL, 
k=O m=O 1 

and 

which from  the lemma is negative if 

),=e"'xk+l-xk)-xk. (3.6) 

Consequently, if X is a constant less than or equal to exk, thenf(xk,  &+I) 
is nonnegative. The lemma therefore implies that f(xk,  &+I) 2 0 for  all 
k 2 1 if A I ea. For k = 0, 

f(&, xl)=f(O, a)= j ( l - e -ua) -Aue-"a( l - e - ja ) ,  (B.7) 

which is nonnegative for  all j and u if 

Examining the sequence d(,:),,, i = 1, 2, * . . yields the  series expansion 
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It is easily verified that the right-hand side is minimized by setting j = 1 
and letting u approach zero, so that f (xk ,  xk+ 1 )  2 0 for all k > 0 if 

a hs-<ea  
1 -e -a  (B.9) 

for a > 0. 0 
Before proving Theorem 3, we  remark that for u = j = 1 ,  (B.3) 

becomes 

d 2 . n - d l , l = 5  k = O  i k  exp (- i i ) ( e - x r - e - . * i l ) i l - h e . * + I ) .  (B.10) 

If X > e=, then the  first  term in the  sum will be negative. However, it is 
not true that all of the remaining terms become negative for  large enough 
X. In particular, Xe -"2 = X exp (- X(l  - e -") - a) < 1 for large 
enough X, and Xe > X e - s  > . . . > he-"- > 0. It therefore may be 
true that the sum (B. IO) is positive for all X. 

Proof  of Theorem 3: From (5), (B.3), and the preceding lemma, 

m = 0  

d ~ + l , o - d ~ , l < 6 ( u )  = (1 -e-"")-Xue-""(l  -e-.) 
+he-a(e-a'-e-x~u--ue-vX2(e-c.-e-X2)) 

m 

assuming X is large enough so that he-"2 < 1. For fixed u and cy, as X 
increases, the  terms containing x2 approach zero, so that 

6 ( u ) ~ l - e - " a - X [ u e - " ~ ( ( 1 - e - " ) - e - " ( " + l ) ]  (B. 12) 

which is negative for  large enough X provided that 

u>- 
1 

ea-  1 
( B .  13) 

Consequently, for any fixed u which satisfies (B. 13), there exists a X. 
such that X > X. implies dGTI,0 - dV,, < S ( u )  < 0. 

Proof  of Theorem 4: Since lim,+o g(a) = 1, it follows that liq-o 
X(a) 2 1. Also, limmdo he-"k = X for all k 2 0, so that if X > 1, then 
each term in the sum (B.10) becomes negative for small enough a. 
Therefore, lime+,, X(a) I 1, which proves i). 

To prove ii),  we first examine the conditions for which 6 ( u ) ,  defined in 
(B. 1 l ) ,  is negative for small u. Observe that 6(0) = 0. Also, from (B. 11) 
after  some manipulation, 

< a - X ( l - e - a ) + [ X ( l - e - u ) ] ' e - a + ~ ( a )  ( B .  14) 

where 

€(a)=(x , -x2)  ~ 

X Z e - a - x 2  

1 - Xe-"2 

and the inequality follows from  the assumption X > g ( a ) ,  defmed by (9), 
so that e-xz = e-h(l-e-a)-a < e-20. It is easily verified that XZe-~-x2 
and Xe-"2 are decreasing functions of X for X > 2/(1 - e -"). 
Consequently, if a > 2 ,  kcan  be replaced by g(a) in (B.15) to give 

€((Y)<Xm 

f f 2 e - 3 a  

1-2e-"+e-3". (B.16) 

Since l i q + -  x, = 0, €(cy) is bounded by an exponentially decaying 
function for  large a. 

Setting the right side of (B. 14) less than zero,  and solving the quadratic 
inequality gives 

?I(") = 
2a 

( l - e - = ) ~ l + J 1 - 4 [ " + ~ ~ c ~ ) l e - a }  

< 2 f f  

(1 -e-e){I -41 -4 [a+c(a ) l e -"}  
= Y(a) ( ~ ~ 7 1  

assuming that 

4 [ a + ~ ( a ) ] e - ~ s l  (B.  18) 

which is true  for a 2 2.2. Now lim+%  cy) - g ( a ) ]  = 0,  so that for 
large enough a, if h > g ( a ) ,  then d, + ,,o - < 6 ( u )  < 0 for u close  to 
zero.  The right-hand inequality indicates, however, that if X > ?(a), then 
S ( u )  is positive for u close  to zero. It therefore remains to be shown that 
X(a) I ?(a) for large a. 

Substituting u = l/a in (B.11)  gives 

where 

defined by (B.15).  From (B.19) it follows that 6(1/cy) < 0 if 

a [ ( e - l ) + e c ' ( a ) ]  
'> 1 -e-a(l +a) (B.21) 

which is smaller than T(a) ,  defined by (B.17): for large enough a (i.e., a 
2 2.5), so that X(a) I y(a), - which proves ii). 
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