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With large-scale integration and increasing power densities, thermal management has become an

important tool to maintain performance and reliability in modern process technologies. In the core

of dynamic thermal management schemes lies accurate reading of on-die temperatures. Therefore,

careful planning and embedding of thermal monitoring mechanisms into high-performance systems

becomes crucial. In this paper, we propose three techniques to create sensor infrastructures for

monitoring the maximum temperature on a multicore system. Initially, we extend a nonuniform

sensor placement methodology proposed in the literature to handle chip multiprocessors (CMPs)

and show its limitations. We then analyze a grid-based approach where the sensors are placed

on a static grid covering each core and show that the sensor readings can differ from the actual

maximum core temperature by as much as 12.6◦C when using 16 sensors per core. Also, as large

as 10.6% of the thermal emergencies are not captured using the same number of sensors. Based

on this observation, we first develop an interpolation scheme, which estimates the maximum core

temperature through interpolation of the readings collected at the static grid points. We show that

the interpolation scheme improves the measurement accuracy and emergency coverage compared

to grid-based placement when using the same number of sensors. Second, we present a dynamic

scheme where only a subset of the sensor readings is collected to predict the maximum temperature

of each core. Our results indicate that, we can reduce the number of active sensors by as much as

50%, while maintaining similar measurement accuracy and emergency coverage compared to the

case where the entire sensor set on the grid is sampled at all times.
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1. INTRODUCTION

Steady miniaturization and large-scale integration are vital to meet aggres-
sive performance targets in high-performance microprocessors. However, these
advances have led to rapidly increasing power densities on microprocessors
[Borkar 1999]. Power dissipated on a chip is converted to heat. Heat, in turn,
creates reliability threats, adversely impacts leakage, and increases cooling
cost. One of the challenges in semiconductor industry in the nanoscale era is to
provide high performance and reliability at lowest cost possible.

Effective assessment and analysis of the thermal behavior is crucial to over-
come this challenge. Modeling and simulation tools and thermal-aware design
methodologies are one avenue of efforts toward this goal [Cong et al. 2004;
Huang et al. 2004; Sankaranarayanan et al. 2005; Skadron et al. 2003]. A ma-
jor hurdle in this direction is the fact that thermal behavior is input dependent
and sensitive to environmental conditions. Thus, a highly accurate thermal
profile of a complex system can only be established after it is deployed.

Thermal monitoring using on-die thermal sensors provides the means to as-
sess the runtime thermal profile of a system. Thermal monitoring is already
in use in modern processors to assist dynamic thermal management (DTM)
mechanisms. For instance, Intel Pentium 4, Pentium M, and IBM PowerPC
processors are equipped with thermal sensors that trigger alerts if the junc-
tion temperature exceeds a specified limit. Based on these alerts, the processor
power consumption is regulated via clock throttling [Rotem et al. 2004].

Accuracy is crucial for thermal monitoring. Overestimation of temperature
impacts performance negatively because of unnecessary triggering of perfor-
mance throttling, e.g., dynamic voltage and frequency scaling (DVFS). It has
been reported that in mobile computers, 1.5◦C accuracy in temperature mea-
surement is equivalent to 1 W of CPU power and in desk-top computers 1◦C
accuracy translates into 2 W of CPU power [Rotem et al. 2006]. On the other
hand, it has been shown that the mean time to failure (MTTF) decreases
exponentially with increase in temperature [Srinivasan et al. 2004]. There-
fore, underestimation of the die temperature is harmful since the processor
will continue to operate at a higher temperature than its rated operating
condition.

Current sensor implementations are capable of providing accuracy levels
around 1◦C with a corresponding trade-off in size and complexity of the sensor
design. Furthermore, increasing the number of sensors deployed can maximize
accuracy. Although there is a clear trend in elevating the number of sensors
in commercial microprocessors, increasing the number of sensors arbitrarily
will come with several overheads and the construction of sensor networks are
subject to constraints from various sources.
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Fig. 1. Digital thermal sensor.

1.1 Hardware Cost

There are two types of temperature sensors: analog and digital. Analog sensors
can produce a voltage or current proportional to temperature, exploiting the
fact that many electrical parameters of semiconductor devices are sensitive to
temperature variation. Examples of these parameters include PN-junction for-
ward voltage, threshold voltage, leakage current, and gain [Blackburn 2004].
An analog thermal sensor can be built using a temperature-sensing diode,
a factory-calibrated reference current source, and a current comparator (see
Figure 1).

For highest accuracy it would be ideal to place the thermal diode as close to
hotspots as possible. However, other components, such as the reference current
source, are sensitive to temperature variation. One solution is to place the ther-
mal diodes as near the hotspots as possible while the core of the thermal sensor
resides near an area that is better suited for the sensitivities of the analog com-
ponents. This is referred to as remote sensing. The total area requirement for a
basic analog sensor is not significant. However, remote sensing leads to other
overheads. First, the outputs of all thermal diodes need to be routed to another
location for postprocessing and analog-to-digital conversion. After all, the con-
trol mechanism for DTM requires a digital input. Dorsey et al. [2007] discussed
the thermal monitoring mechanism of AMD quad-core Opteron processor. As
shown in Figure 2, the thermal sensors are scattered across four cores, while
the sensor data processing is centralized per core. These processing centers are
called thermal evaluation circuits (TCEN). It can be easily observed that sen-
sor data need to be transmitted across large distances. Several sensors require
routing of data across the entire core. Similarly sensor data is routed across the
length of the interconnect network.

Other types of sensors are more sophisticated [Quenot et al. 1991; Wang et
al. 2003; Tuthill 1998]. They usually include a serial interface, such as I2C, SPI,
or SMBus, which provides communication with embedded microcontrollers and
other digital systems [http:// www.maxim-ic.com]. Additional circuitry is needed
to digitize the analog signals. Many new generation processors employ multiple
on-chip digital thermal sensors of this type (such as IBM Power5). The accuracy
and stability of digital sensors can be enhanced by increasing their sizes, which
will emphasize the constraints on hardware resources.

There are other emerging types of digital sensors. A 4T-decay sensor has been
proposed, which consists of a 4T-memory cell and a decay counter [Kaxiras and
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Fig. 2. AMD quadcore Opteron TM processor floorplan. Locations of thermal diodes and thermal

processing centers are depicted [Dorsey et al. 2007].

Xekalakis 2004]. The 4T-cell senses the temperature and converts it to a digital
signal. Its area and power consumption are 0.0017 mm2 and 221 μW, respec-
tively (as reported at 180-nm technology [Kaxiras and Xekalakis 2004]). The
decay counter performs the average operation on the digital signal to improve
the accuracy. The larger the counting range, the higher the sensor precision.
For example, to achieve +/−1◦C of accuracy, a 7-bit decay counter is needed,
which occupies about 0.0016 mm2 area (doubling the initial area) and consumes
397 μW (tripling the initial power consumption) power (at 180-nm technol-
ogy, according to our evaluation using the synopsys design compiler synthesis
tool).

1.2 Power Consumption

In the AMD quadcore opteron case, the sensors are diodes and the sensor data
are analog signals (continuous current). Let us assume the current of a diode
is 1 mA [http:// www.capgo.com], the resistivity of the interconnect is 1.68 e–8
ohm·m (copper), and the width and thickness of the interconnect are 270 and
135 nm (assuming thickness/width ratio is 0.5), respectively. Based on the die
photo [Dorsey et al. 2007] and the sensor placement reported, on average, the
Manhattan distance between a sensor and its associated TCEN can be esti-
mated as 8 mm. As there are 38 sensors in total, the length of the interconnect
dedicated for sensor data transmission is as long as 304 mm. Based on the
above parameters, the power consumption for transmitting the analog sensor
reading is 140 mW. If we add analog signal amplifiers along this path, the total
power will increase further. As the number of cores per chip and the number
of sensors per core increases (as predicted by the current trends), the power
consumed for thermal sensor data can easily reach tens of watts, which is sig-
nificant. In addition, note that other support circuitry, depending on the sensor
type (A/D conversion, comparator, counters, and registers), will also consume
additional power.
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1.3 Stability Issues and Calibration

One disadvantage of thermal diodes is that the threshold current (i.e., the cur-
rent of the diode at the maximal allowable temperature) depends on some pro-
cess parameters, such as doping density. Process variations can have a large
impact on these parameters. In fact, each processor and each sensor within a
processor needs to be individually calibrated during manufacturing to elimi-
nate any potential manufacturing variations [http:// www.download.intel.com].
Higher number of on-chip cores and more sensors per core will directly impact
the time consumed by this calibration stage.

One of the parameters used to determine the core temperature is the diode
ideality factor, which describes the behavior of the diode relative to a theoret-
ically perfect diode. The ideality factor depends on the characteristics of each
individual processor and will vary slightly from one chip to the next. The inter-
pretation of sensor data should take this range into account in order to improve
the accuracy of the reading. Another variable that influences accuracy is the
series resistance, which is a measure of the resistance in the paths leading up to
and away from the thermal diode. Some diode sensors have the ability to adjust
for the temperature error (which, in turn, incurs additional area overhead),
while some do not. Furthermore, routing sensor data cross-core to central pro-
cessing units will exacerbate this effect. Finally, note that, for remote sensing,
analog signals will travel large distances across cores. The noise induced on the
thermal diode paths by high-speed signals in the surrounding is yet another
source of inaccuracy.

In summary, if remote sensing is used, routing sensor data to far central units
will incur significant overheads in terms of area, power, and sensor stability.
Embedding a large number of digital sensors into the hotspot locations will
be challenging, since the layouts of components are highly optimized. Clearly,
the number and location of sensors used by the monitoring infrastructure will
have a direct impact on the implementation overheads and power cost, as well
as on the calibration effort. This motivates the need to carefully optimize the
allocation and management of thermal sensors.

In this paper, we target this increasingly important problem. Our goal is
to provide accurate temperature readings in a given system while maintain-
ing a reasonable overhead in terms of number of sensors. In this context, we
investigate a wide range of sensor-allocation techniques and their respective
effectiveness. Particularly, we first extend thermal-aware K-means approach
[Mukharjee and Memik 2006] for CMPs. Observing the limitations of this ap-
proach in CMPs, we analyze grid-based methods to distribute sensors on a chip
and analyze their performance while varying the number of sensors allocated
for each core. Third, we introduce an interpolation scheme that estimates the
temperature based on the sensor readings. Finally, we devise a dynamic sensor-
selection mechanism, which activates only a small fraction of the sensors on a
chip and processes their readings at a given time. This filtering mechanism can
correctly select the proper subset of sensors that give the best representation
of the chip temperature.

The thermal behavior of complex systems is affected by various factors. Power
dissipated by different resources can be spatially nonuniform across the entire
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system. Power-management techniques, such as local clock gating, further cre-
ate disparity in power densities among different regions on a chip. These phe-
nomena lead to significant on-chip temperature gradients. For instance, based
on the thermal map provided by Intel researchers [Borkar et al. 2003], on-chip
temperature difference can be as large as 50◦C. Other industrial chips exhibit
even steeper thermal gradients [Tsai et al. 2006]. Besides, chip temperature
profiles may also vary dramatically over time. With the increasing impact of
process technologies and associated process variations, it becomes increasingly
harder to statically predict the hotspots of a processor. For example, because
of increased leakage consumption of a functional unit, it can become a hotspot
instead of another component. It is reported that the single thermal sensor on
the Intel Pentium 4 processor is placed near the rapid-integer ALU, which was
identified as the most likely candidate to cause a hotspot [Krinitsin]. Skadron
et al. [2003] report that in the Alpha 21364 architecture the register file appears
to be the hottest component consistently across a large set of SPEC CPU2000
benchmarks. In addition to these varying results, the high number of sensors
utilized in other architectures (e.g., IBM Power5), is an indication of the fact that
it is very challenging to have precise temperature readings in modern proces-
sors by static estimations of hotspots. More importantly, the shift toward CMP
paradigm complicates thermal monitoring even further. In such architectures,
the thermal profiles can become even less predictable because of the thermal
coupling between cores. In fact, we analyze a thermal sensor placement mech-
anism developed for single-core processors and show that it provides limited
accuracy for CMPs. To make matters worse, a study of thermal behaviors of dif-
ferent SMT and CMP architectures reveals that CMPs will generally be hotter
than SMT machines in future process technologies, which motivates accurate
temperature monitoring in CMPs [Li et al. 2005].

In conclusion, the thermal behavior of a microprocessor can be affected by a
variety of factors. Hence, there is a clear need to establish a thermal monitoring
mechanism that can capture the thermal behavior with high fidelity. In this
paper, we address this challenge. Our specific contributions in this paper are
as follows:

� Analyze clustering-based and grid-based algorithms for CMP sensor alloca-
tion and placement,

� Propose an interpolation scheme to predict the maximum temperature,
� Propose a dynamic sensor-selection scheme to avoid collecting data from those

sensors that will not provide useful information, and
� Present simulation results, studying the impact of different placement strate-

gies on measurement accuracy.

In the following, we give an overview of related work. In Section 3, we intro-
duce the multicore architecture and elaborate on its thermal characteristics. We
discuss the nonuniform sensor placement by thermal aware K-Means cluster-
ing in Section 4. The interpolation and dynamic sensor selection techniques are
presented in Section 5. Section 6 presents our experimental results we conclude
with a summary in Section 7.
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2. RELATED WORK

The sensor allocation on microprocessors is a largely unexplored problem. Lee
et al. [2005] presented an analytical model that describes the maximum tem-
perature difference between a hotspot and a region of interest. Gunther et al.
present observations on thermal maps of a microprocessor and point to opportu-
nities for optimized decisions on sensor placement, however, they do not provide
any solutions [Gunther et al. 2001].

On a different track, Bratek and Kos [2001] present sensor placement for
fault diagnosis of integrated circuits, by linking temperature sensors and power
modules in pairs. Lopez-Buedo et al. [2002] investigated instantiating digital
sensors on field-programmable gate arrays (FPGAs). Velusamy et al. [2005]
used such digital sensors to validate the accuracy of the thermal simulator
HotSpot in modeling a FPGA-based system. Mondal et al. [2006] reported a
sensor-insertion scheme for FPGAs. In their approach, the hotspot-monitoring
problem was reduced to a set-covering problem for a well characterized set
of hotspot locations. Mukherjee et al. [2006] proposed another algorithm for
reconfigurable systems. This divide-and-conquer-based algorithm locates va-
cant configurable logic blocks that can be used to instantiate thermal sensors
and embeds them into a design mapped onto a FPGA. Obviously, the architec-
tural constraints for reconfigurable systems are fundamentally different than
CMPs. Mukherjee and Memik [2006] also presented a thermal sensor allocation
scheme for microprocessors. However, their approach only addresses single-core
processors. Moreover, they propose a profile-driven placement of sensors into
nonuniform locations and do not offer any placement methods where sensor
locations are not dependent on a thermal profile. Such schemes can be inaccu-
rate because of the interaction of cores, which cannot be accurately predicted
statically. In fact, we modify this approach for CMPs and show its limitations.
Furthermore, we contribute new placement strategies that do not depend on
any a priori knowledge on workload or thermal profiles.

3. UNDERLYING ARCHITECTURE AND ITS THERMAL IMPLICATIONS

In this paper, we analyze two different CMP architectures, which are shown
in Figure 3. The first architecture consists of 16 cores, distributed in a 4 × 4
array. Each core includes local level-1 data and instruction caches. The level-2
cache, on the other hand, surrounds the array of cores and it is shared by
all the cores. This architecture will be referred to as the dense architecture
throughout the rest of the paper. The floorplan of the second architecture is
different from the first one in that part of the level-2 cache is dispersed be-
tween the cores. This architecture will be called the sparse architecture in the
remainder of the paper. Throughout the execution, the distribution of threads
to different cores can lead to uneven amounts of activity in different cores.
The slow lateral heat propagation in silicon creates localized heating zones,
hence, hotspots in certain cores. We must note that the task distribution on
such systems will be performed primarily for performance and communication
constraints, since interconnect delay will be a major component of performance.
Therefore, for these systems, task distribution is unlikely to present a thermally
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Fig. 3. Floorplans of the CMP chip for (a) the dense architecture with L2 cache surrounding the

array of cores and (b) the sparse architecture with L2 cache distributed between the cores.

good solution and localized activity will prevail, leading to thermal emergencies.
Nevertheless, thermal-aware task distribution will certainly be an important
component of the thermal-aware system design paradigm and our tempera-
ture measurement techniques would coexist with them in a comprehensive
solution.

Instantiating multiple cores on a single chip improves performance per watt
efficiency [Phan et al. 2005] and it is predicted that we are headed into multi-
core processor era [Borkar et al. 2005]. As new architectures with increasing
number of cores are developed, the arrangement of the cores in the layout
is changing. For instance, Kongetira et al. [2005] presented Niagara, a 32-way
multithreaded SPARC processor. The processing pipeline consists of eight Sparc
pipes, which are stacked immediately next to each other. The first generation
cell processor has a 64b Power core and eight synergistic processor elements
residing next to each other [Phen et al. 2005]. Intel IXP2800 has sixteen in-
dependent microengines arranged in an array and one XScale core [Borkar
et al. 2005]. Further, Intel is experimenting with tens of cores, potentially even
hundreds of cores per single die [Rattner 2005]. These trends indicate that
in future architectures there is a greater likelihood of the cores being placed
physically adjacent without L2 caches thermally insulating them. Our first ar-
chitecture, depicted in Figure 3(a), provides a model for these kinds of CMPs.
In such architectures, the thermal behaviors of cores will not only depend on
the internal activity within the core, but it will also be shaped by the physical
interaction between individual cores. For example, consider the interaction be-
tween cores C6 and C10 in Figure 3(a). At a given time during the execution,
the integer execution unit of core C10 becomes a hotspot. Because of lateral
heat propagation it can cause the hottest point of C6 to lie in its data cache
(placed immediately adjacent to the border from C10) even if the application
mapped on C6 has more accesses to other units, say, the floating-point units.
On the other hand, architectures where parts of the L2 cache are placed be-
tween the cores are also plausible. Powell et al. [2004] assumed that the SMT
cores in a CMP are thermally insulated by L2 cache blocks. The thermal ef-
fects of the adjacent blocks were not considered by Huang et al. [2000], either.
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Table I. Operating Frequency and Voltage Levels

Freq [GHz] 2.5 2.13 1.86 1.6 1.46 1.33 1.2 1.06 0.8

Vdd [V] 1.476 1.372 1.292 1.212 1.18 1.148 1.1 1.068 0.988

Kumar et al. [2005] presented floorplans for 4-, 8-, and 16-core CMPs. The
thermal behavior of such chips can be captured using our second architecture.

The dynamic power consumption of a core due to switching activity is given
by

Pdynamic = 0.5αC V 2
dd f

where α is the switching activity of the core, and Vdd and f are the operat-
ing voltage and frequency, respectively. Power consumed is dissipated as heat,
which leads to a rise in temperature. As temperature rises, DTM methods are
activated to prevent the temperature from reaching critical ranges. Although
DTM is not directly related to our schemes, our evaluation environment im-
plements a DTM scheme that utilizes dynamic voltage and frequency scaling
(DVFS). The reason for implementing DTM lies in our goal of observing the sen-
sor error readings in realistic temperature ranges. Without DTM, a core can
become excessively hot, making comparisons inaccurate and unrealistic. Our
operating frequency and voltage levels for the cores are assumed to be similar
to the Intel Pentium M Sonoma specifications. We also assumed that DVFS can
be independently applied to each core. Similar assumptions about independent
frequency and voltage control of each core can be found in literature [Juang et al.
2005]. The different frequency and corresponding voltage levels are shown in
Table I. We set the emergency temperature level to 82◦C. When the maximum
temperature of a core reaches 82◦C, we start reducing the frequency of the core.
For each degree above 82◦C, we reduce the operating frequency by one level. For
example, if the temperature is 82◦C, we reduce the frequency to 2.13 GHz. If
the temperature is 83◦C, the frequency is reduced to 1.86 GHz, and so on. Once
the core temperature reduces below 82◦C, it then runs at full speed (2.5 GHz).
Note that, as shown in Table I, along with the frequencies, we also change the
supply voltage of the core, which significantly reduces the power consumption.

Leakage power is also accounted for in our power model. We calculate the
leakage power based on the dynamic power and chip thermal profile via an
iterative method [Liu et al. 2007].

Our investigation for effective sensor placement has been conducted under
the aforementioned assumptions on the physical layout and operating condi-
tions. We also assumed a microcontroller-based collection and processing of
sensor data similar to the Foxton [Poirier et al. 2005]. The sensor-placement
methods we have examined can be categorized into nonuniform and uniform.
Nonuniform sensor locations can be determined through optimization of an
objective function, representing the relation between the locations of thermal
events and the proximity of sensors to those locations. Uniform sensor loca-
tions are formed statically by dividing a core using a uniform grid and placing
sensors on the grid points. The nonuniform scheme uses profiling on thermal
behavior of applications. Sections 4 and 5 describe the methodologies we have
developed for each case.
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4. NONUNIFORM SENSOR PLACEMENT

Mukherjee and Memik [2006] proposed a nonuniform sensor placement method
called thermal-aware K-means algorithm for single-core processors. We have
adapted this algorithm to CMPs. The goal is to systematically analyze thermal
maps generated from profiling data to identify locations, which lie close to a
maximal number of eventful thermal spots across a range of applications. The
problem is formulated as a clustering of the points of interest in the spatial
domain. The center of each cluster will indicate the physical location of a sensor.
The reading from that sensor is representative of its respective coverage area.

We define a hotspot as a point, which reaches the highest temperature dur-
ing the execution of an application. This point can be defined globally over the
entire processor (to monitor reliability threats) or locally for each core (to as-
sist in dynamic thermal management of individual cores). In our study, the
hotspots are assumed to be defined locally. If we consider a set of applications
mapped onto our multicore architecture, each application can create a distinct
hotspot in its execution core with a distinct temperature value. The location and
temperature of the hotspot can also change dynamically during the execution
of a single application. Considering all of these possible events yields a set of
hotspots observed across a range of applications as well as over time. Such a
set of hotspots can be obtained via thermal simulation of a given architecture
configuration. We will describe our methodology to perform such a simulation
in Section 6. The thermal-aware K-means clustering is then applied onto this
map to identify a minimal set of sensors that can monitor the thermal behavior
of the given map with a defined error margin.

We collect the hotspots whose temperature is above the emergency tempera-
ture level (82◦C). Figure 4 shows the distribution of these hotspots in the dense
architecture when different sets of applications are executed over a period of
time. The hotspots move into different components of the cores. For example, the
floating-point register can be the hottest point in some applications, whereas
for another application the hotspot can move into the integer-execution unit.
Hotspots can also move into different locations during the execution of one
application. The hotspots for each core over the execution periods of all appli-
cations form the input for clustering. We first fold the hotspots of all the cores
into a single core. This means that all types of hotspot formations that can be
observed across 16 cores are superimposed onto one thermal map. The sensor
placement decision will then be made on this thermal map. As a result, any
given core will be equipped with the best possible sensor allocation ready for
any of the encountered hotspot distributions. The folded hotspot maps for both
architectures are shown in Figure 5. In this example, for the dense architecture,
the input to the K-means clustering contains 667 hotpots. The temperatures of
these hotspots range between 117◦ and 82◦C. The sensor locations for placing
16 sensors obtained by applying clustering method on both architectures are
shown later in Figure 11.

In our experiments, multiple sensors are placed per core to accurately moni-
tor the hotspots. We perform such placement by varying the number of clusters
in thermal-aware K-means clustering. A major limitation of K-means-based
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Fig. 4. Distribution of hotspots for all application sets in the dense architecture.

algorithm is its dependence on profiling data. In addition, as will be shown in
Section 6, the thermal-aware K-means algorithm does not work well for the
dense architecture, where the cores have strong thermal impact on each other.
To address these problems, we have developed several uniform sensor place-
ment methodologies, which are explained in the next section.

5. UNIFORM SENSOR PLACEMENT

Since it is hard to statically predict the exact locations of hotspots on a chip,
a possible methodology is to divide each core into equal-sized quadrants and
place a sensor at the center of each quadrant (these sensors will be referred
to as grid sensors). All grid sensors then work in parallel and the maximum
temperature measured among them will be used as the estimation of the core
temperature. Although this is fairly straightforward to apply, as we will show
in Section 6.2, it exhibits large inaccuracies. Particularly, for the dense archi-
tecture, sensor readings can differ from the actual maximum core temperature
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Fig. 5. Hotspots across different benchmarks and iterations folded onto a single core for (a) the

dense and (b) the sparse architecture.

by as much as 12.6◦C when using 16 sensors per core. Also, as large as 10.6% of
the thermal emergencies are not captured using the same number of sensors.
Even with 36 grid sensors per core, the maximum error can still be as large
as 9.0◦C. Unfortunately, placing an arbitrary number of sensors on the chip is
not the best solution. Therefore, it is beneficial to maintain an upper bound on
the number of sensors. At the same time, the grid-based approach described
above fails to perform reliably even if we dedicate a very high number of sen-
sors. These observations motivate us to investigate more effective techniques
for sensor allocation. First, we present an interpolation scheme that uses the
existing sensor readings obtained from the uniform placement and estimates
the temperature of the points that lie between sensors. Second, we present a
methodology to dynamically select a subset of sensors to provide readings from
a large number of physical sensors.

5.1 Grid-Based Interpolation Method

The relatively large errors in the basic uniform grid are because of the fact that
we cannot control the distances of the sensors to the hotspots by a static place-
ment. A corrective measure is needed to further refine the readings obtained
from the uniform placement. We have developed an interpolation scheme to es-
timate hotspot temperatures using grid sensor readings. For each sensor, we use
its readings and those of its neighbors to estimate the position and temperature
of the hottest spot within its neighborhood. The neighborhood of a sensor Si is
defined as N (Si) = {(x, y)|xi − rs/2 ≤ x ≤ xi + rs/2, yi − rs/2 ≤ y ≤ yi + rs/2},
where (xi, yi) is the x-y coordinates of Si, and rs is the distance between two con-
secutive sensors. This neighborhood represents a square of width rs with sensor
Si at its center. Considering the sensors shown in Figure 6, the neighborhood
of S4 is the region inside the dashed square, whose sides extend midway between
S4 and its immediate neighbors, S1, S3, S5, and S7. Once we have the maximum
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Fig. 6. Illustration of the interpolation scheme.

temperature estimation of the neighborhood of each sensor on a core, we will
use the maximum among them as the core’s peak temperature estimation.

Consider x direction first. In Figure 6, if the reading of S5 is larger than
those of S3 and S4, the hottest spot within N(S4) should be close to the mid-
point between S4 and S5. Particularly, if the gradient of the thermal curve does
not change between S4 and S5, the x coordinate of that hottest spot should be
x4 + rs/2. Likewise, if the reading of S3 is larger than those of S4 and S5, the x
coordinate of the hottest spot within N(S4) can be estimated as x4 − rs/2. If the
reading of S4 is larger than those of S3 and S5, we use both gradients between
S3 and S4 and, S4 and S5 to perform the estimation. We assume that the tem-
perature gradient is constant within the segment between the hottest spot and
the nearest sensor, i.e., in that segment the temperature can be approximated
as a linear function of x and y coordinates. Assuming the reading of S3, S4 and
S5 are T3, T4, and T5, the x coordinate of the hottest spot within N(S4) should be

x4 + 1

2

�T3 − �T5

�T3 + �T5

rs

where �T3 = T4−T3, �T5 = T4−T5. Similar arguments apply to the y direction.
In general, the coordinates of the hottest spot within N(S4) can be estimated
using Equations (1) and (2). We then, substitute the estimated coordinates
of the hottest spot into the linear function representing temperature within
the limited segment between the hottest spot and the nearest sensor location.
This substitution results in Equations (3) and (4), which are used to obtain the
value of the estimated maximum temperature.

�x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

�T3 − �T5

�T3 + �T5

rs.........T4 ≥ max(T5, T3)

−1

2
rs.........................T3 ≥ max(T4, T5)

+1

2
rs........................T5 ≥ max(T3, T4)

(1)

�y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

�T1 − �T7

�T1 + �T7

rs...........T4 ≥ max(T7, T1)

−1

2
rs..........................T1 ≥ max(T4, T7)

+1

2
rs..........................T7 ≥ max(T1, T4)
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(xest , yest) = (x4 + �x, y4 + �y) (2)

�Tx =

⎧⎪⎪⎨
⎪⎪⎩

|�T5 − �T3|
�T5 + �T3

max(�T5, �T3)...........T4 > max(T5, T3)

max(T5, T3)

2
− T4............................T4 ≤ max(T5, T3)

(3)

�Ty =

⎧⎪⎪⎨
⎪⎪⎩

|�T7 − �T1|
�T7 + �T1

max(�T7, �T1)................T4 > max(T7, T1)

max(T7, T1)

2
− T4.................................T4 ≤ max(T7, T1)

T max
N (S4) = T4 + �Tx + �Ty (4)

Equations (1) through (4) are based on the assumption that the gradient of
the temperature curve remains constant between S4 and the estimated hottest
spot. However, on a real chip, this may not be the case. Figure 7 portraits a
temperature surface of the dense architecture. It clearly shows that the tem-
perature gradient can change significantly. Especially within the regions sur-
rounding the maximal temperature points, where we are primarily interested
in, the thermal gradient can change from some large value to zero within a small
distance. Therefore, the peak temperature could be largely overestimated if we
apply Equations (3) and (4) directly. Therefore, we modify Equation set (3) to
obtain the Equation set (5).

�Tx =

⎧⎪⎪⎨
⎪⎪⎩

κ
|�T5 − �T3|
�T5 + �T3

max(�T5, �T3)................T4 > max(T5, T3)

β

(
max(T5, T3)

2
− T4

)
...............................T4 ≤ max(T5, T3)

(5)

�Ty =

⎧⎪⎪⎨
⎪⎪⎩

κ
|�T7 − �T1|
�T7 + �T1

max(�T7, �T1)................T4 > max(T7, T1)

β

(
max(T7, T1)

2
− T4

)
...............................T4 ≤ max(T7, T1)

Equation set (5), along with Equation (4), is used for the temperature esti-
mation. The physical meaning of κ is illustrated in Figure 8(a). When T5 > T3,
κ is the average thermal gradient between x4 and xest divided by the average
gradient between x3 and x4 (if T3 > T5, κ should be the average gradient of the
thermal curve between x4 and xest divided by the average gradient between x5

and x4). The physical explanation of β is similar.
We assume the chip is thermally isotropic, so we use the same κ and β for

both x and y directions. Generally speaking, calculating the value of κ and β

is nontrivial, since it is hard to find an exact equation to fit the temperature–
distance curve [Lee et al. 2005]. However, it can be seen from Figure 8 that
κ should be close to zero since the gradient of the temperature curve quickly
approaches to zero near the maximal point. On the other hand, β should be close
to one, as the gradient does not change much between x4 and x5. We performed
several tests with varying values of κ and β in our experiments. Although κ
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Fig. 7. Dense architecture thermal profile example.

Fig. 8. Physical depiction of (a) κ and (b) β.

and β are complicated functions of sensor location (xi, yi) and sensor distance
rs, and are architecture dependent, we found that setting κ to 0.83/√Nsensor

and

β to 0.93 has given us the smallest estimation error (Nsensor is the number of
sensors allocated per core).

5.2 Interpolation-Based Dynamic Selection Scheme

In many processor families (e.g., PowerPC, Intel Core Duo, Cell Processor), digi-
tal sensors are being employed. Thermal sensor readings are routed to a central
microcontroller for further thermal management. Processing data collected by
a large number of digital sensors presents challenges. Instantaneous commu-
nication across multiple global communication lines will likely incur signifi-
cant interconnect power overhead. Reducing the number of sensors involved in
data communication may help relieve this overhead. However, this will cause
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Fig. 9. Steps for the interpolation-based dynamic selection method. (a) 16 coarse-grain sensors

activated. Hotspot location estimated based on the coarse-grain sensor reading. (b) The grid sensor

closest to the estimated hotspot and eight surrounding sensors are activated.

inaccuracies; as we will further illustrate in Section 6.2, a slight increase in
sensor distance rs (equivalent to reducing the number of sensors) could cause
large measurement errors. In order to address the problem of achieving op-
timal accuracy with minimum sensor data communication and processing, we
have investigated an alternative approach. We have developed an interpolation-
based dynamic selection scheme that embeds a large number of grid sensors
into each core, but receives readings from only a small subset of them at a given
instant. The idea is to create a hierarchy of sensors and first activate coarse-
grain sensors and use their readings to estimate the hotspot location of the
core using the technique illustrated in Section 5.1. The grid sensor closest to
the estimated hotspot location is then activated. To further increase the accu-
racy, eight sensors surrounding this sensor are also activated since the location
estimation may not be precise. The maximum among the readings of these nine
sensors are used as the estimated hotspot temperature of the core. By directly
reading the grid sensor instead of calculating temperature using Equations (4)
and (5), the estimation error caused by the inaccuracy of κ and β is eliminated.
As a result, this method adapts better to different architectures.

The methodology is depicted in Figure 9. The total number of the grid sensors
is 64 (only a subset is shown here). We first divide the chip into 16 equal sized
quadrants and use grid sensors S0 through S15, which reside at the center
of the quadrants, as the coarse-grain sensors. These coarse-grain sensors are
activated in the first stage. Their readings will be fed into Equations (1) and (2)
to estimate the hotspot location. In Figure 9(a), the estimated hotspot location
is marked with a star. In the second stage, the grid sensor that is closest to the
estimated location and the eight sensors surrounding it are activated, as shown
in Figure 9(b). The maximum readings from nine activated sensors will be used
as the hotspot temperature estimation. In this example, the total number of
activated sensors is only 25 (16 coarse-grain sensors plus 9 grid sensors that
are activated later).
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Table II. Categories of Benchmarks and Their Average IPC Values

High IPC Benchmarks Medium IPC Benchmarks Low IPC Benchmarks

Benchmark IPC Benchmark IPC Benchmark IPC
mesa 1.8092 bzip2 1.2689 ammp 0.55

galgel 1.8065 gap 1.2352 applu 0.544

gzip 1.7667 sixtrack 1.0216 equake 0.3594

perlbmk 1.5908 facerec 0.7616 art-470 0.2135

apsi 1.5095 mgrid 0.6885 mcf 0.0292

6. EXPERIMENTAL RESULTS

In the following, we first describe our experimental methodology. In Section
6.2, we present our results for different sensor allocation strategies. Section 6.3
summarizes the results and compares the techniques.

6.1 Experimental Setup

We simulated the SPEC2000 benchmark suite [SPEC-CPU 2000] using M5
Simulator [Binkert et al. 2006]. M5 is a general-purpose architecture simu-
lator employing a detailed performance model of the CPU, memory, and I/O
subsystems [Binkert et al. 2006]. We have considered two different architec-
tures, as shown in Figure 3(a) and (b). The first one has 16 cores arranged in
a 4 × 4 array with level-2 cache surrounding them. In the second architecture,
the level-2 cache is placed in between the cores. In both architectures, each core
is modeled as an Alpha 21364 processor, which is a four-way processor with a
load store queue and register update unit of sizes 64 and 128, respectively. The
level-1 instruction and data caches are 64 KB, four-way associative with 32-
byte block size and two cycle latencies. Unified level-2 cache is 8 MB, eight-way
associative with 128-byte line size and has a latency of 13 cycles.

First, we determine the instructions per cycle (IPC) of SPEC2000 bench-
marks by simulating each benchmark for 400 million cycles after fast-
forwarding an application-specific number of cycles. Based on the IPC, we cat-
egorize the 15 benchmarks as high, medium, and low IPC. This classification
is shown in Table II. The applications are dynamically simulated, generating a
checkpoint after each iteration. The checkpoints for the remaining applications
in the SPEC suite were very large, which resulted in extremely long simulation
times. Hence, they are omitted from our analysis.

We created six different assignments of applications onto cores based on
their IPC characteristics. The assignments are a mix of only high IPC (h-h),
high and medium IPC (h-m), high and low IPC (h-l), only medium IPC (m-m),
medium and low IPC (m-l), and only low IPC (l-l) benchmarks. The assignment
of applications onto 16 cores for each set is shown in Table III. We refer to these
collections of application sets as the training set (shown in columns 2 through 7
of Table III). This training set has been profiled to form the thermal maps, which
were then used for the nonuniform clustering-based placement. We also created
another assignment of applications onto 16 cores using 4 different benchmarks
(not included in our initial 15 benchmark set) and we refer to it as the test set
(shown in the rightmost column of Table III). We have used the test set to verify
the effectiveness of the nonuniform clustering-based placement technique.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 9, Publication date: August 2008.



9:18 • J. Long et al.

Table III. Assignment of Benchmark Sets onto 16 Different Cores

Core h-h h-m h-l m-m m-l l-l Test set

1 apsi bzip2 ammp gap Gap applu parser

2 perlbmk gap applu sixtrack sixtrack equake wupwise

3 gzip sixtrack equake facerec facerec art eon

4 galgel facerec art mgrid mgrid mcf twolf

5 galgel mgrid mcf gap ammp equake wupwise

6 mesa galgel mesa- bzip2 bzip2 ammp eon

7 gzip mesa galgel sixtrack applu applu wupwise

8 mesa gzip gzip bzip2 equake ammp twolf

9 mesa perlbmk perlbmk bzip2 Gap ammp parser

10 apsi mesa apsi facerec sixtrack art eon

11 mesa apsi mesa bzip2 bzip2 ammp eon

12 perlbmk galgel galgel mgrid Mcf mcf wupwise

13 galgel gzip gzip gap-ref ammp applu twolf

14 gzip bzip2 ammp sixtrack-ref applu equake parser

15 perlbmk gap applu facerec equake art parser

16 apsi sixtrack equake mgrid art mcf twolf

We run M5 in SE mode and start our simulation with statically as-
signed benchmarks onto 16 cores. The simulation is first fast-forwarded by
an application-specific number of instructions as proposed by Sherwood et al.
[2001]. The applications are then simulated for 15 iterations, each consisting of
125 million cycles. To obtain architectural level dynamic power data, we have
integrated Wattch infrastructure [Brooks et al. 2000] with 90-nanometer power
model into M5.

Thermal simulation is performed using HotSpot version 3.1 [Skadron et al.
2003]. The floorplan of each core is the same as that of a 90-nm technology
Alpha 21364 without the level-2 cache (the way level-2 cache is modeled de-
pends on whether we simulate the dense or the sparse architecture), which
has a size of 0.43 cm × 0.43 cm. This floorplan is depicted in Figure 5. The
power dissipation of the processor blocks from M5 and the floorplan is used as
inputs to HotSpot. We performed the thermal simulation on both CMP floor-
plans shown in Figure 3. Figure 10 redraws the two floorplans and gives the
relative size of the building blocks, where L is equal to 0.43 cm, the side length
of an Alpha core. As indicated by Figure 10, the dies for the dense and sparse
architecture have the sizes of 2.58 cm × 2.58 cm, and 2.795 cm × 2.795 cm,
respectively. Our spreader and sink are both made of copper. The spreader is
0.1 cm thick and 6 cm × 6 cm, and the sink has a base of 0.7 cm and 12 cm
× 12 cm. The thickness of the die and the thermal interface material are set
to 0.05 and 0.0075 cm, respectively. For other thermal simulation parameters,
we use the default settings of HotSpot. Between the two alternative thermal
simulation options of HotSpot, we have used the grid mode thermal simulation,
which suits our goal better. In this case, the processor floorplan is uniformly
divided into grids and the temperature of each grid element is computed. The
grid size determines the number of grid elements per processor component.
Increasing the number of grid elements (higher resolution) helps capture the
spatial variation in temperature per component, but increases the simulation
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Fig. 10. Floorplans of the CMP chip for (a) the dense architecture with L2 cache surrounding the

array of cores (b) the sparse architecture with L2 cache distributed between the cores.

time. We have used a grid size of 288 × 288 for the entire chip for the dense
architecture and 312 × 312 for that of the sparse architecture, both correspond-
ing to a grid size of 48 × 48 per core. We first perform the steady-state thermal
analysis (grid mode) and use the steady-state temperature profile of the chip
as the initial temperature for transient analysis. This represents the die tem-
perature if the processor was already executing instructions prior to execution
of benchmarks to model the warm-up period. The ambient temperature is set
to 40◦C. Our goal is to capture the transient thermal behavior at any point in
the execution, so the simulations are divided into intervals that correspond to
0.05 s of execution. For a 2.5-GHz clock frequency, this corresponds to a sam-
pling period of every 125 million cycles, which dictated setting the simulation
interval to 125 million cycles. The entire thermal simulation lasts for 15 sim-
ulation intervals (1.875 billion cycles), which is translated to 0.75 s of CPU
execution time. The initial temperature at the start of each interval is taken
from the final temperature of the previous iteration. When the maximum tem-
perature of a core is above the emergency temperature (which is set to 82◦C in
our experiment), we will throttle the core using dynamic voltage and frequency
scaling, as explained in Section 3. The dynamic power output from M5 will be
scaled accordingly. Based on the scaled dynamic power, we calculate the tem-
perature and the leakage power using iterative method until the leakage power
converges.

6.2 Evaluation of Different Sensor Placement Schemes

In evaluating the quality of different sensor placement schemes, we focus on
the hotspots whose temperatures are above the emergency temperature level
(82◦C). Those hotspots with lower temperatures are not taken into account, as
they do not pose any threat on system timing/reliability. We assess the sensor
placement methods from two different aspects.
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First, for each benchmark set and each particular sensor placement, we mea-
sure the sensor errors. We use the following definitions for our evaluation:

T am
i, j : the actual maximum temperature of the ith core during the j th simulation
interval.

T sm
i, j : the maximum value among the temperature readings captured by the
sensors on the ith core during the j th simulation interval.

Reading error: Eij = T am
i, j − T sm

i, j , i.e., the difference between the actual maxi-
mum temperature and the maximum value among the temperature readings
captured by the sensors on the ith core during the j th simulation interval.

Maximum error: Emax = maxi, j {Eij |T am
i, j ≥ 82◦C}, i.e., the maximum of the read-

ing errors over all the cores and all simulation intervals. Notice here that we
only account for the reading error for the hotspots whose temperatures are
above 82◦C.

Average error: Eavg = ∑
i, j αi j Ei j /

∑
i, j αi j , i.e., the average of the reading errors

over all the cores and all simulation intervals. Here αi j signifies whether
the actual maximum temperature of the ith core during the j th simulation
interval is larger then 82◦C, i.e., αi j = 1 if T am

i, j ≥ 82◦C, otherwise, αi j = 0.

Standard deviation of the errors: Estd =
√

(
∑

i, j αi j (Eij − Eavg )2)/
∑

i, j αi j , i.e.,

the standard deviation of the reading errors over all cores and all simulation
intervals.

Although these error parameters are related to the quality of different sensor
placement schemes, they do not directly reflect the impacts on the hotspots
on system reliability and performance. To attain a better understanding of
the sensor placement schemes, for each particular sensor placement, we also
examine its thermal emergency and crisis coverage for each benchmark set. We
use the following terminology for this evaluation:

Thermal emergency: the actual maximum temperature of a core is above the
emergency temperature level (82◦C).

Thermal crisis: the actual maximum temperature of a core is above the crisis
temperature level (which is set to 90◦C in our experiments).

Missed emergency: the actual maximum temperature of a core has reached 82◦C,
but the estimation of maximum temperature given by the on-core sensors is
still below 82◦C

Missed crisis: the actual maximum temperature of a core has reached 90◦C, but
the estimation of maximum temperature given by the on-core sensors is still
below 82◦C.

Fake emergency: the actual temperature of the hotspot of a core has not yet
reached 82◦C, but the estimation of maximum temperature given by the on-
core sensors is above 82◦C.
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Fig. 11. K-means sensor locations for the dense (left) and the sparse architecture (right).

We count the numbers of missed emergencies and missed crises for each
particular sensor placement for each benchmark set. Specifically, we count the
number of fake emergencies for the interpolation scheme, since the interpola-
tion method sometimes overestimates the hotspot temperature, incurring sys-
tem performance penalty. These parameters reflect the emergency and crisis
coverage of different sensor placement techniques.

In this section, we will first provide the results for the sensor error measure-
ment. We will then, present the results on emergency and crisis coverage for
different sensor placement methodologies.

6.2.1 Results for Sensor Error Measurement. First, we present the results
for sensor placement by thermal-aware K-means clustering of the hotspots. As
mentioned in Section 4, the hotspots for each core at every iteration across the
six application sets (the training set) form the data points for the clustering.
We place 4, 16, and 36, for both architectures by applying thermal-aware K-
means. These placements will be referred to as cluster-4, cluster-16, and cluster-
36, respectively. All such hotspot locations are folded into a single core. The
resulting maps are shown in Figures 5 and 11 for both architectures. Figure 11
also depicts the sensor placement for cluster-16. The hotspots are marked with
dots, while the sensors are represented by triangles. To assess the “goodness”
of the clustering method, we set the placement of the sensors as dictated by
the training set and then compute the maximum and average error in reading
for the training and test sets based on this placement. Figure 12 shows the
maximum, errors, and standard deviation of the errors for the seven benchmark
sets, where notation Emax, Eavg, and Estd are short for maximum, average, and
the standard deviation of the errors, respectively. Notice that for the sparse
architecture, the error values for benchmark set l-l are all zeros. This is because
of the fact that the hotspot temperatures never exceed 82◦C. Therefore, none
of the sensor reading errors of this benchmark set was actually taken into
account in our evaluation. The clustering algorithm is efficient for the sparse
architecture. For cluster-16, the mean of maximum errors across the seven sets
is approximately 0.1◦C. The largest error observed is less than 0.2◦C.
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Fig. 12. Maximum and average error for K-means-based clustering method for the dense archi-

tecture (upper) and the sparse architecture (lower).

In addition, it is noticeable in Figure 12 that the maximum and average
errors of the dense architecture are much larger than those of the sparse ar-
chitecture. For instance, for the dense architecture, when there are 16 sensors
present on each core, the average of the maximum errors across all the bench-
mark sets is 3.8◦C. This average value for the sparse architecture is 0.1◦C. Only
after employing 36 sensors per core can the thermal-aware K-means cluster-
ing achieve accurate results on the dense architectures. As we mentioned in
Section 3, on the floorplan of the dense architecture, the cores are next to one
another creating a heavy thermal coupling on each other. A hotspot could ei-
ther be created by a computation intensive component within the same core
or by lateral heat flow from an adjacent core. As Figure 5(a) shows, this re-
sults in dispersed distribution of hotspots, which is a disadvantage for any
profile-driven mechanism. Note that our results are consistent with those of
Mukherjee and Memik [2006], where the thermal-aware K-means algorithm is
shown achieving good results for single-core sensor placement. In other words,
smart placement algorithms can be effectively used for sparse architectures
that exhibit little thermal interaction between different cores. However, as we
have seen, for the floorplan styles where thermal interaction between cores is
strong, such intelligent placement may not be a good choice.

Our second set of results is shown in Figure 13. It represents the errors in
sensor readings for each core for uniform grid-based sensor placement. We have
experimented with different strategies, equally dividing a core into quadrants
and placing a sensor at the center of each quadrant: four quadrants (grid-4),
sixteen quadrants (grid-16), and thirty-six quadrants (grid-36). We observe
that blindly allocating sensors on grid points and using their maximum as the
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Fig. 13. Maximum and average error for uniform grid-based placement for the dense architecture

(upper) and the sparse architecture (lower).

estimation of hotspot temperature, could lead to large error. For example, with
16 sensors on each core, the maximum sensor reading error can be large as
12.6◦C. Even as we increase the sensor number to 36 per core, the maximum
reading error can still be 9.0◦C. Especially for the dense architecture, for each
benchmark set, the maximum reading error are above or at least close to 5◦C.
For benchmark set h-m and h-l, the maximum reading error can even achieve
10◦C with 36 sensors on each core.

Next, we present the results for interpolation methods in Figure 14. We have
performed interpolation on grids of sizes 16 and 36, which we refer to as intp-16
and intp-36. We also present the errors of grid-16 and grid-36 as a comparison.
We observe a reduction in the maximum, average, as well as the standard
deviation of the errors when using the interpolation with the same number of
sensors compared to uniform placement. For example, when using 16 on-core
sensors, for the dense architecture, the maximum value of the maximum errors
across all the benchmark sets reduces from 12.6 (grid-16) to 3.1◦C (intp-16).
For the sparse architecture, using the same number of on-core sensors, the
maximum value of the maximum error is reduced from 3.6 (grid-16) to 2.3◦C
(intp-16). Also, for intp-16, the maximum and average errors have been smaller
than those of grid-36, in most cases.

Note that, the errors observed are always underestimations for the uniform
grid-based method. In some cases, however, we observe that the interpolation
method overestimates the absolute maximum temperatures. The errors for the
interpolation scheme are computed based on absolute values of these errors
capturing both under- and overestimations.

We observe that using the interpolation method, when employing the same
number of sensors per core, the error values do not change much as we switch
from one architecture to the other. For instance, for the dense architecture,
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Fig. 14. Maximum and average error of interpolation methods for the dense architecture (upper)

and the sparse architecture (lower).

when there are 16 sensors present on each core, the average of the maximum
errors across all the benchmark sets is 2.5◦C. This average value for the sparse
architecture is 1.6◦C. As a uniform sensor placement method, the deployment
of the sensors in the interpolation scheme does not depend on the thermal pro-
files. Therefore, the interpolation method enjoys a higher level of “portability”
compared to K-means-based clustering method.

We have experimented with our dynamic sensor selection method on hier-
archical sensor grids deploying 16 deployed sensors (4 coarse-grain) and 36
deployed sensors (9 coarse-grain). These schemes are referred to as dyn-16–4
and dyn-36–9, respectively.

For dyn-16–4, 13 sensors are invoked (4 coarse-grain sensors activated ini-
tially and 9 fine-grain sensors activated subsequently), resulting in a 18.75%
reduction on total sensor data to be routed and processed. For dyn-36–9, 18
sensors are invoked (9 coarse-grain sensors plus 9 fine-grain sensors). The re-
duction on sensor data volume in this case is 50%. The experimental results are
shown in Figure 15, in which the errors of grid-16 and grid-36 are also depicted
for comparison. It is clear that for both architectures across all benchmark sets,
interpolation-based dynamic selection scheme yields almost the same accuracy
compared to grid-based sensor placement, while the number of activated sensor
is smaller. Note that no improvement in accuracy can be expected using the dy-
namic selection scheme over grid-based scheme when same number of physical
sensors are placed on the chip. In this sense, dynamic selection scheme achieves
the accuracy limit bounded by the grid-based while effectively reducing the data
volume needed to be communicated and processed.

6.2.2 Results for Emergency and Crisis Coverage. Table IV provides the re-
sults for the K-means-based clustering method. The columns under “Emer” and
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Fig. 15. Maximum and average error of interpolation-based dynamic selection scheme for the

dense architecture (upper) and the sparse architecture (lower).

“Crisis” give the number of thermal emergencies and crises for each benchmark
set during the execution, while the columns under entry “Missed Emer” and
“Missed Crisis” specify the number of missed emergencies and missed crises.
For the dense (or sparse) architecture, the total number of emergencies and
crises are 667 and 544 (or 402 and 233), respectively. We observe that after em-
ploying 16 or more sensors per core, the sensor system will be able to capture
all the crises. In the meanwhile, the total number of missed emergencies for
all benchmark sets is 3.6% (24 over 667) over the total number of emergencies.
Especially for the sparse architecture, with only four sensors per core, all ex-
cept one thermal emergency are captured. However, note that K-means-based
method does not perform as well on the dense architecture as on the sparse
architecture. This result conforms to our analysis in Section 6.2.1, where we
pointed out that profiling data-driven sensor placement methods are not very
effective in monitoring sparsely distributed hotspots.

Next, we present the results for the grid-based sensor placement in Table V.
We observe that even as we increase the sensor number to 16 per core, the ther-
mal monitoring infrastructure cannot cover all the thermal crises (benchmark
set m-l on the dense architecture). Also, 10.6% (71 over 667) of the emergen-
cies cannot be captured using the same number of on-chip sensors. Even after
inserting 36 grid sensors in each core, the percentage of the missed emergen-
cies can still be 6.9% (46 over 667). For instance, on the dense architecture, for
benchmark set h-l, with 36 embedded sensors on each core, there are still 22
emergencies that could not be captured.

Table VI shows the results for the interpolation scheme. As we have men-
tioned in Section 6.1, the interpolation scheme sometimes overestimates the
hotspot temperature, resulting in spurious alerts that lead to unnecessary
throttling. Therefore, besides the numbers of missed emergencies and crises
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in Table VI, we also report the number of times our thermal-monitoring infras-
tructure initiates fake emergency alerts. As we can see, with only four sensors
per core, we have been able to capture all the thermal crises. If we increase
the number of sensors to 16 per core, the percentage of missed emergencies is
reduced to 1.3% (9 over 667) for the dense architecture and to 2.1% (14 over
667) for the sparse architecture. The total number of fake alerts is only six
for the dense architecture and zero for the sparse architecture. If we increase
the number of sensors to 36 per core, we will be able to capture almost all the
thermal emergencies. Also, we observe that different from the K-means-based
clustering method, the interpolation scheme performs well on both architec-
tures, especially after we increase the number of sensors to 16 per core. This
result is consistent with our observation on the error measurement results of
the same technique discussed in Section 6.2.1.

Finally, we present the experimental results of the dynamic selection scheme
in Table VII. As discussed earlier, the quality of this method (with the same
number of sensors) is bounded by the grid-based placement method. Our in-
terest only lies in whether we can achieve approximately the same hotspot
coverage as the grid-based method, while eliminating a large portion of sensor
reading data needed to be routed and processed. Compared to Table V, it is
clear that using the dynamic selection scheme, in most of the cases, the num-
bers of missed emergencies/crises only slightly surpass those of the grid-based
scheme, revealing that our dynamic selection scheme could, on one hand, elim-
inate a large percentage of on-chip sensors needed to be activated and, on the
other hand, still approximate the accuracy of the grid-based placement using
the same number of sensors.

6.3 Discussion

In summary, our experimental results show that thermal-aware K-means sen-
sor placement strategy, though being efficient for single core and some CMP
architectures, may not be suitable for all CMP chips, especially for those hav-
ing strong intercore thermal interaction. We note that even for the architectures
where thermal-aware K-means algorithm effectively minimizes the reading er-
rors and the number of missed thermal emergencies, the sensor placement
still depends on the benchmark sets. The nonuniform placement technique us-
ing clustering relies on profiling data and resulting thermal maps of hotspots.
Although the benchmark suite we have used aims to represent a fairly typ-
ical workload for a high-performance microprocessor, there can be unexpect-
edly large variations in some outlier applications, which could not be captured
by the benchmark suite. Also, new applications emerge over time. To address
these problems, we first examined the grid-based sensor placement. Our results
show that simply placing sensors in a grid can present significant inaccuracies
even when the number of sensors is increased to 36 per core. Our interpolation
method reduces the amount of sensors to a great extent while maintaining rel-
atively small average reading errors. For example, for the dense architecture,
the maximum value of the maximum errors across all the benchmark sets re-
duces from 12.6 (grid-16) to 3.1◦C (intp-16), which is even much smaller than
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the 9.0◦C error observed with grid-36. Also, in terms of thermal emergency cov-
erage, the percentage of uncovered emergencies is reduced from 10.6 (grid-16)
to 1.3% (intp-16). It is intriguing that although Lee et al. [2005] have pointed
out the difficulty of finding an exact equation to fit the temperature-distance
curve, our experiments reveal that simple interpolation scheme has achieved
acceptable accuracy. Furthermore, dynamic selection scheme results in similar
accuracy with large reduction in number of sensors involved in data collec-
tion over the grid-based scheme. For both architectures, when only invoking 18
out of 36 sensors (dyn-36–9), dynamic selection scheme yields almost the same
accuracy and emergency coverage as grid-36. The interpolation and dynamic
selection mechanisms are built upon a static placement, independent of the pro-
filing assumptions. The interpolation scheme achieves relatively small reading
errors using a small number of sensors; the dynamic selection method effec-
tively reduces the amounts of sensor data routed at a time and has reasonable
accuracy.

7. CONCLUSIONS

We have introduced novel techniques to estimate the maximum temperature
on a multicore chip. Our goal is to provide accurate temperature readings on
a given chip while maintaining a reasonable overhead in terms of sensor data
collection. Dynamic thermal management schemes can leverage on the sensor
infrastructure that are built by our systematic approaches.

We first experiment with the thermal-aware K-means algorithm, which has
been shown to be successful for single-core sensor placement. Our results re-
vealed that this method might not be suitable for some CMP architectures. We
then analyzed a grid-based sensor placement and observed that the number
of sensors should be increased dramatically to achieve high accuracy. We im-
proved upon this solution by introducing (1) an interpolation scheme and (2) a
dynamic selection scheme. The interpolation scheme is able to reduce the av-
erage errors for a given distribution. On the other hand, the dynamic selection
method provides reasonable accuracy, by using only a relatively small fraction
of embedded sensors per core. Overall, these schemes achieve accurate temper-
ature readings with small number of embedded sensor readings—a desirable
property for multicore processors.
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