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Abstract— In this paper, we explore the design and 
optimization of an on-chip active cooling system based on thin-
film thermoelectric coolers (TEC). We start our investigation by 
establishing the compact thermal model for the chip package 
with integrated thin-film TEC devices. We observe that 
deploying an excessive number of TEC devices and/or providing 
the TEC devices with an improper supply current might 
adversely result in the overheating of the chip, rendering the 
cooling system ineffective. A large amount of supply current 
could even cause the thermal runaway of the system. Motivated 
by this observation, we formulate the deployment of the 
integrated TEC devices and their supply current setting as a 
system-level design problem. We propose a greedy algorithm to 
determine the deployment of TEC devices and a convex 
programming based scheme for setting the supply current levels. 
Leveraging the theory of inverse-positive matrix, we provide an 
optimality condition for the current setting algorithm. We have 
tested our algorithms on various benchmarks. We observe that 
our algorithms are able to determine the proper deployment and 
supply current level of the TEC devices which reduces the 
temperatures of the hot spots by as much as 7.5 ºC compared to 
the cases without integrated TEC devices. 

I. INTRODUCTION1 
S THE manufacturing technology steps into the 
nanometer regime, power density has become a limiting 

factor for integrated circuit design. Heat dissipated highly 
unevenly in the active silicon layer, with the peak localized 
heat fluxes (> 300 W·cm–2) being an order of magnitude 
larger than the average value across the entire chip [1]. This 
creates high temperature spots, posing threats on the reliability 
and performance of the entire chip. Thus, removal of the high-
density heat fluxes becomes a crucial task of the chip cooling 
systems. 

Most of the current cooling technologies fall into the 
category of passive cooling, where heat produced by the chip 
is removed via conduction and convection. In order to 
improve the efficiency of the heat exchange system, 
remarkable progress has been made in recent years in the 
development of heat transport materials and advanced heat 
exchanger structures such as nanotubes and microchannels [2, 
3]. These passive cooling technologies are most effective in 
removing heat from bulks where heat is distributed evenly. 
However, they are not as efficient when the chip presents high 
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degrees of spatial power density variation. The inability to 
provide localized cooling at the hot spots might result in over-
design of the heat exchange system, leading to excessive 
cooling cost. Cooling cost is already a major item in overall 
system cost. In data centers, the cooling energy cost has 
surpassed the energy consumption of the computation 
equipment [1]. 

On the other hand, by making use of specially designed 
miniature heat pumps, active cooling technologies can provide 
site-specific and on-demand cooling, promising new 
opportunities in cost effective cooling [1, 4-6]. More 
profoundly, the capability of providing tunable cooling at a 
fine granularity has significant implications on the thermal 
aware design of the entire chip. Potentially, the active cooling 
system, the thermal monitoring system, and the architecture-
level thermal management mechanisms [7] can operate 
synergistically to achieve enhanced performance under a safe 
operating temperature. 

In order to bring this vision into reality, two major hurdles 
need to be overcome, namely the technology for 
manufacturing on-chip active coolers and design automation 
of the cooling system. Recently, intensive research effort has 
been devoted to multiple candidate active cooling schemes, 
including integrated thermoelectric cooler (TEC) [1, 6], mini-
scale vapor compression [8], and miniature capillary pump 
loop [9]. Among these techniques, integrated TEC is the most 
accessible one. Off-the-shelf macroscopic TEC devices have 
long been available [10]. Very recently, Intel researchers have 
demonstrated the first viable on-chip thin-film TEC 
manufacturing technology, which has the potential to enable a 
wide range of currently thermally limited applications [1].  

In spite of these promising results in the manufacturing 
technology, system-level design automation of active cooling 
system remains largely unexplored. In this paper, we 
investigate the design and optimization of an on-chip active 
cooling system based on the recently developed super-lattice 
thin-film thermoelectric coolers [1]. More specifically, we 
focus on the following active cooling system configuration 
problem: Indentifying (1) the deployment of TEC devices, i.e. 
the regions of the silicon layer that need to be covered by TEC 
devices; (2) the supply current setting of the on-chip TEC 
devices. The resulting cooling system should guarantee the 
operating temperature to remain within the allowable range 
under the worst-case power profile. We propose an 
optimization framework for this problem and have tested it 
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using various benchmarks. We observe that our algorithm was 
able to bring down the temperatures of the hot spots by as 
much as 7.5 ºC (compared to the cases without integrated TEC 
devices). The total power consumption of the resulting cooling 
system is reasonably small (around 2 W). Moreover, for all 
benchmarks, the execution time of our algorithm is less than 3 
minutes. 

In summary, our contribution lies in the following aspects:   
 We conduct the first architectural level study of the active 

cooling system based on integrated TEC devices; 
 We reveal the cooling system thermal runaway 

phenomenon; 
 We propose a greedy deployment algorithm and a convex 

programming based supply current setting algorithm; 
 We lay out the theoretical foundation for the analysis of the 

thermoelectric cooling system by extending the theory of 
inverse-positive matrix [11].  

 We analyze the optimality of the current level configuration 
algorithm using our proposed thermoelectric cooling system 
analysis framework. 
The remainder of the paper is organized as follows. Section 

II gives an overview of the related works. In Section III, the 
design of an on-chip active cooling system based on thin-film 
thermoelectric coolers is presented, followed by the in-depth 
discussion of our proposed compact thermal model of the 
entire chip package in Section IV. We introduce the 
optimization framework for the cooling system in Section V. 
Experimental results are presented in Section VI. Finally, we 
conclude our work with a summary in Section VII. 

II. RELATED WORKS 
There has been a few early-stage works concerning the 

optimization of TEC devices. Abramzon examines the optimal 
parameters (such as the height/area ratio) for a single TEC 
device using a numerical optimization approach [12].  Hou et 
al. propose an analytical framework to determine the optimal 
height of the TEC devices [13]. These works concentrate on 
the optimization of the physical parameters of the TEC 
devices. To the best of our knowledge, our work is the first 
attempt to systematically study the system level optimization 
problem of the integrated TEC-based active cooling system 
and evaluate the impact of the active cooling system on the 
overall thermal behavior of the entire chip package. 

III. ACTIVE COOLING SYSTEMS LEVERAGING THIN-FILM 
THERMOELECTRIC COOLERS 

A. Basics of Thin-Film Thermoelectric Cooler 
A TEC device is typically composed of a couple of 

dissimilar semiconductor strips connected electrically in series 
and thermally in parallel (Figure 1(a)). The principle behind 
the thermoelectric cooler is the Peltier effect: when an 
electrical current is sent through the strips, heat is absorbed at 
one side and released at the other side. Denoting the heat flux 
absorbed from the cold side as qc and dissipated from the hot 
side as qh at temperatures θc and θh, respectively, the following 
equations describe the principle of thermoelectric cooling 

[13]: 

€ 

qc = αiθc −
1
2
ri2 − k θh −θ c( )                           (1) 

      

€ 

qh = αiθh +
1
2
ri2 − k θh −θ c( )                          (2) 

where i is the electrical supply current of the TEC device; α is 
the Seebeck coefficient of the TEC device; r and κ are the 
electrical resistance and thermal conductance of the device, 
respectively. The first term in these two equations describes 
the Peltier cooling effect. The second term is due to Joule 
heating that occurs in the TEC device – half of the Joule heat 
is dissipated at the cold side and the other half at the hot side. 
The third term is contributed by heat conductance from the hot 
side to the cold side. 

According to Equations (1) and (2), the input power of a 
TEC device is equal to  

€ 

pTEC = qh − qc = ri2 +αi ⋅ Δθ                          (3) 
In steady state, the input power of the TEC devices will be 

converted to heat in the chip package before being dissipated 
to the ambient. Hence, an excessive deployment of TEC 
devices and/or improper setting of the TEC supply current 
levels could lead to the overheating of the chip package.  

It is worth to note that although the above equations are 
widely used in the literature, they have omitted the Thompson 
effect, which accompanies with the Peltier effect [14]. The 
Thompson effect is caused by the dependence of the Seebeck 
coefficient on temperature. However, the Thompson effect can 
be accounted for by substituting α with (αH + αC)/2, where αH 

Figure 2. Integration of the thin-film TECs into the chip package. 

Figure 3. Compact thermal model of the chip package. 

Figure 1. (a) The side view of a single TEC device (b) multiple TEC devices 
connected electrically in series and thermally in parallel (c) the 3D view of a 
4x4 array of thin-film TEC devices. 
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and αC are the Seebeck coefficients at the highest and lowest 
allowable operating temperature of the system, respectively 
[14]. In our model, we have adopted this more accurate 
approximation.  

In order to enhance the cooling effect, multiple TEC 
devices can be connected electrically in series and thermally in 
parallel (Figure 1(b)). Figure 1(c) shows the 3D view of a 4 x 4 
array of super-lattice thin-film TEC devices [1]. Thin-film 
TEC devices occupy small areas. For instance, a 7 x 7 array of 
thin-film TEC devices has a lateral dimension of about 3.5 
mm x 3.5 mm [1]. Hence, the lateral area of a single TEC 
device can be estimated by 0.5 mm x 0.5 mm. 

B. Thin-film Thermoelectrics based Active Cooling System 
Figure 2 illustrates the integration of the thin-film TEC 

devices into the chip package [1]. The thin-film TEC devices 
are immersed in the thermal interface materials (TIM) layer, 
lying between the silicon layer and the heat spreader layer. 

The supply current of the on-chip TEC devices is provided 
by an external source via one or multiple pins. In this paper, 
we focus the simplest setting where only one extra pin is 
added to the chip package. As a result, we assume that the 
supply current of all the on-chip TEC devices are the same. 
Allowing only one extra pin is desirable to the high 
performance microprocessor systems for which the thin-film 
TEC technology is intended. These chips are already restricted 
in pin usage (a maximum number of pins would be desirably 
allocated for I/O etc.) and have limited room for extra pins. 

The deployment and the supply current levels of the TEC 
devices need to be carefully determined to prevent the chip 
package from overheating. We will provide the formal 
definition of the cooling system optimization problem in 
Section V. Before that, we first present our compact thermal 
model for chip packages with integrated TEC devices in 
Section IV. 

IV. COMPACT THERMAL MODEL FOR CHIP PACKAGE WITH 
ON-CHIP THERMOELECTRIC COOLERS 

As a design requirement, the cooling system should 
guarantee that the peak steady state temperature of the silicon 
layer stays below the maximum allowable temperature under 
the worst-case power profile. The compact thermal model 
derived in this section is intended for the steady state analysis 
of the chip package.  

A. Compact Thermal Model for the Chip Package 
There is a well-known duality between heat transfer and 

electrical phenomena. The heat flow can be treated as 
“current” passing through thermal conductance, creating 
temperature differences analogous to “voltage” drops. Such 
equivalency has been leveraged to develop compact thermal 
models for chip packages [7]. Figure 2 demonstrates the 
typical chip package for high-performance microprocessors. 
The silicon layer is placed against a heat spreader layer, made 
of aluminum or copper, with a TIM layer in between. The heat 
spreader layer is in turn placed against a heat sink cooled by a 
fan [7].  

In order to derive a compact thermal model for the chip 
package, each layer is first dissected into smaller tiles. Next, a 
thermal conductance network can be constructed, where each 
node corresponds to a tile and each edge represents the 
thermal conductance between adjacent tiles. Air convection is 
described by a thermal conductor between the nodes in the 
heat sink layer and the ambient node. The ambient 
temperature can be modeled by a constant voltage between the 
ambient node and the hypothetical ground node representing 
the absolute zero temperature. Power dissipation in the silicon 
layer is modeled as current sources. The left part of Figure 3 
demonstrates the dissection of the layers into tiles, while the 
right part depicts the conductance network for the shaded 
portion of the package. Notice that the thermal capacitance is 
not included in our model since we are focusing on the steady 
state behavior of the package. 

Validation of existing architecture-level thermal simulation 
tools based on this model has shown that the compact model 
achieves excellent agreement with the accurate finite element 
models [7, 15].  

B. Compact Thermal Model for Systems with TECs 
We propose a thermal model for 

the TEC device based on Equation (1) 
and (2) as depicted in Figure 4. The 
two nodes represent the hot side and 
the cold side of the device. A thermal 
conductor κ connecting the two nodes 
models the term κ(θh – θc) in Equation 
(1) and (2). The Joule heating effect 
can be described by two heat sources 
connected to the hot side and cold 
side node, each having the magnitude 
of ri2/2. The Peltier heat αiθc absorbed at the cold side can be 
described by a thermal conductor αi connecting the cold side 
and the ground node which represents the absolute zero 
temperature. Likewise, the Peltier heat αiθh released at the hot 
side can be modeled by a negative thermal conductor –αi 
connecting the hot side and the ground. We note that the 
values of these two conductors depends on the supply current. 
Hence, in Figure 4, arrows were used to indicate that they are 
“tunable conductors”. In addition, we place two thermal 
conductors gh and gc at the hot/cold nodes to account for the 
contact thermal resistance between the hot/cold side and the 
rest of the package. Such thermal conductors which lie 
between the hot side and the ambient end up playing an 
important role in the thermal runaway problem. We remind 
the reader that Figure 4 represents a thermal flow circuit and 
the physical current i does not flow through any of these 
“conductances”.  

As mentioned above, the TEC devices reside in the TIM 
layer. After the set of silicon tiles that need to be covered by 
TEC devices is determined, we simply substitute the 
corresponding TIM node with the thermal model of the TEC 
device. We note that after the substitution, at a fixed value of 
TEC supply current, the compact thermal model for the 
package is still a linear network. Hence, standard linear 

Figure 4. TEC device 
thermal model. 
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network analysis techniques can be applied to study the 
thermal behavior of the package. 

C. Thermal Steady State Analysis 
The thermal steady state of the network can be computed 

using the nodal analysis technique [16]. Let us use notations 
SIL, HOT, and CLD to denote the set of nodes in the silicon 
layer, the hot side, and the cold side of the TEC devices, 
respectively. We use a vector p to represent the input heat 
power at each node, where pk equals the heating power of the 
transistors inside the silicon tile if k 

€ 

∈ SIL, ri2/2 if k 

€ 

∈ HOT 

€ 

∪ 
CLD, and 0 otherwise. Then, the steady state temperature 
profile θ is related to the power profile p by a system of linear 
equations 

€ 

G − iD( )θ = p                                       (4)  

where matrices G and D are defined in the following  

€ 

G =

g1l
0≤l≤n
∑ −g12 ... −g1n

... ...
−gk1 ... gkl

0≤l≤n
∑ ... −gkn

...
−gn1 −gn2 ... gnl

0≤l≤n
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

D =

α1 0 ... 0
α2 ... 0

αk

0 ... ...
0 ... 0 αn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

     (5) 
Here gkl is the thermal conductance between node k and node l 
(gkl is zero if node k and node l are not adjacent in the 
network); αk equals to +α if k 

€ 

∈ HOT, –α if k 

€ 

∈ CLD, and 0 
otherwise, and α accounts for the transfer of Peltier heat in the 
network. 

Matrix G has several special structural properties essential 
to our proposed active cooling system optimization algorithm. 
They are captured by the following definitions and Theorem 1. 
For the sake of brevity, theorem 1 and several theorems in 
Section V are stated without proofs. The formal proofs are 
provided in Appendix A. 

Definition 1: We call a network an irreducible network if 
and only it contains at least one path between any given pair 
of nodes.  

Given an n x n symmetric matrix M = (mij)nxn, we can 
construct a corresponding network containing n nodes. We 
connect the ith and jth node by an undirected edge if mij ≠ 0.  

Definition 2: A matrix is called an irreducible matrix if and 
only if its corresponding network is an irreducible network.      

Definition 3: An n x n real matrix M is positive definite if 
xTMx > 0 for all non-zero vectors x with real elements. 

Definition 4: A Stieltjes matrix is a real symmetric matrix 
with non-positive off-diagonal elements [11].  

Theorem 1: The matrix G defined in Expression (5) is an 
irreducible positive definite Stieljes matrix. 

V. OPTIMIZATION OF THE ACTIVE COOLING SYSTEM 

A. Problem Definition 
Based on the discussions in Sections III and IV, we define 

active cooling system configuration problems as follows. 
Problem 1 (Cooling System Configuration): Given: 1) p x q 

tiles representing the silicon layer where each tile has the same 
area as a TEC device, and 2) the worst case power 
consumption of each tile;  

Determine: 1) the minimal set of tiles that needs to be 
covered by the TEC devices, and 2) the proper supply current 
of the TEC devices; 

Objective: the peak steady state temperature of the silicon 
layer does not exceed the maximal allowable temperature. 

B. Optimization Algorithms 
Figure 5 provides the pseudo code of our algorithm, which 

solves the deployment problem following the greedy strategy. 
It works in an iterative manner. In the beginning, it identifies 
the set of tiles T whose temperature exceeds the maximum 
allowable operating temperature θmax and covers these tiles 
with TEC devices (Line 4, 7). Then, a subroutine will be 
invoked to compute the supply current of the TEC devices that 
minimizes the peak temperature of the tiles in the silicon layer 
for the given TEC deployment (Line 8). We will elaborate on 
this subroutine in the subsequent section. Adding more TEC 
devices into the package has two consequences: The 
temperatures of the tiles that are covered by these TEC 
devices may decrease; however, the temperatures of other tiles 
might increase since the new set of TEC devices dissipate an 
extra amount of heat in the package. Hence, in each iteration, 
after adding TEC devices, we update set T (Line 10). If T is an 
empty set, the peak tile temperature must be below θmax. The 
algorithm then returns true, indicating a proper deployment is 
found (Line 11~12). If all the tiles whose temperature are 
above θmax have already been covered by the TEC devices, the 
algorithm returns false, indicating that it failed to find a proper 
TEC deployment (Line 13~14). Otherwise, the main loop 
proceeds to its next iteration. 
1) The peak tile temperature minimization problem 

This section would elaborate on the subroutine for peak tile 
temperature minimization (invoked in the 8th line of Figure 5). 

Problem 2 (Peak tile temperature minimization): Given the 
deployment of the TEC devices, determine the supply current 

ALGORITHM GreedyDeploy(p) 
INPUT:  p  // the worst case power consumption of each tile 
OUTPUT: STEC // the set of tiles that need TEC devices 
1  BEGIN 
2      STEC = Φ;  
3      Solve Gθ = p;  
4      T = {tilek | tilek.temperature > θmax}; 
5 
6      WHILE (True) BEGIN 
7          STEC = STEC 

€ 

∪ T; 
8          Find iopt, which minimizes the peak tile temperature; 
9          Solve (G – ioptD)θ = p; 
10        T = {tilek | tilek.temperature > θmax}; 
11        IF (T == Φ) 
12              RETURN True; 
13        IF (T 

€ 

⊆ STEC) 
14              RETURN False; 
15    END 
16 END 
 

 
   

Figure 5. The greedy algorithm for the deployment problem. 
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of the TEC devices which minimizes the maximum 
temperature of the tiles.  

This problem can be formulated as follows: 

€ 

minimize max θk i( ) ∀k ∈ SIL{ }                        (6) 

€ 

subject to G − iD( )θ = p, i ≥ 0                          (7) 

In the following, we will develop a convex programming 
based algorithm for this problem. Firstly, we show that there 
exists an upper limit λ for the supply current of the TEC 
devices. Any supply current level larger than λ would cause 
thermal runaway. Mathematically, as the supply current 
approaches λ, the temperature of each tile approaches infinity. 
We provide a polynomial time algorithm to calculate λ. Then, 
we propose a conjecture in matrix theory. Based on the 
conjecture, we provide a sufficient condition for the cost 
function (6) to be a convex function of the supply current i 
over [0, λ). 

2) The active cooling system thermal runaway 
phenomenon 

We will leverage the theory of inverse-positive matrix [11] 
to show the existence of the upper limit λ in this section.  

Theorem 2: Given a positive definite irreducible Stieltjes 
matrix G and a real diagonal matrix D with at least one 
positive element, define 

€ 

λ = inf θTGθ
θTDθ

θTDθ > 0
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

Let A = G – iD. We have the following:  
1) For any i ∈ [0, λ), A is positive definite. 
2) When i = λ, A is singular and semidefinite. 
3) For any i ∈ [λ, +∞), A is not positive definite. 

Theorem 3: Given matrix A and real number λ as defined in 
Theorem 2 and denoting H = A–1, for any 1≤ k, l ≤ n, we have 

€ 

lim
i→λ−

hkl i( ) = +∞                                        (8) 

where symbol hkl(i) represents the element of H in the kth row 
and the lth column (as a function of i). 

Figure 6 depicts hkl(i) as a 
function of i. Note that according 
to Equation (4), θ = A–1·p = H·p. 
Thus, the physical interpretation of 
hkl is the temperature of node k if a 
unit of power is input at node l. 
Theorem 2 reveals that if there is 
one node in the network that has 
non-zero input power, then, as i 
approaches λ, the temperature of 
each node approaches infinity, 
indicating thermal runaway. 

The physical interpretation of the thermal runaway is as 
follows. λ represents the input current level which causes the 
active cooling system to have zero heat pumping capability 
since Peltier cooling is offset by ohmic heating and heat 
conduction. In the thermoelectric literature, this occurs when 
the coefficient of performance of the thermoelectric cooler 
becomes zero [17]. Similar situations have been investigated 
but under different boundary conditions [17]. The above 

discussion reveals we should restrict the search of the current 
level that minimizes the maximum silicon layer temperature 
within [0, λ). 

This upper limit λ can be calculated using a binary search 
based on Theorem 1. Cholesky decomposition (O(n3) time 
complexity) is employed to check whether a matrix is positive 
definite [18]. 

3) The convexity of the cost function 
In this section, based on a conjecture, we provide a 

sufficient condition for the maximum temperature of the tiles 
to be a convex function of i over [0, λ). 

Definition 5: Given a vector r, denote the kth element of r 
by rk. We define notation DIAG(r) to be a square diagonal 
matrix with all off-diagonal elements being zero and the 
diagonal element in the kth row and kth column equals to rk. 

Conjecture 1: Given an n x n positive definite Stieltjes 
matrix S, denote R = S–1. Denoting the kth and lth row vector 
of R by rk and rl, then DIAG(rk)·R·DIAG(rl) is positive 
definite for any 1≤ k, l ≤ n. 

Although we have not yet been able to prove this conjecture 
theoretically, we have randomly generated millions of positive 
definite Stieltjes matrices and verified this property in all 
cases. Hence, it seems that this property is applicable in all 
practical cases. 

Theorem 4: Given matrix H and real number λ as defined in 
Theorem 2, if Conjecture 1 holds true, then every element 
hkl(i) of matrix H is a convex function of supply current i over 
[0,  λ). 

Theorem 3 and Theorem 4 characterize hkl(i) over range [0, 
λ): it is a nonnegative convex function which approaches +∞ 
when i approaches λ. Figure 6 illustrates these properties. 

According to Equation (4), θ = A–1·p = H·p. Hence, the 
temperature of the kth node in the network equals 

€ 

θk i( ) =
1
2
ri2 hkl i( )

l∈HOT∪CLD
∑ + hkl i( ) ⋅ pl( )

l∈SIL
∑ =

1
2
ri2 ⋅ η i( ) +ζ i( )   (10) 

We note that if Conjecture 1 is true, functions η(i) and ζ(i) 
are both convex functions of i since they are positive weighted 
sums of convex functions. However, the product term ri2η(i)/2 
is not guaranteed to be a convex function in general. In the 
following, we derive a simple sufficient condition to check 
whether θk(i) is a convex function. The verification of the 
sufficient condition can be performed in polynomial time. 
According to Equation (10), we have 

€ 

θkʹ′ʹ′ i( ) = rη i( ) + riη ʹ′ i( ) +
1
2
ri2η ʹ′ʹ′ i( ) +ζ ʹ′ʹ′ i( )

≥ rη i( ) + rη ʹ′ i( ) ⋅ i

                   (11) 

Noticing that η'(i) is an increasing function since η(i) is 
convex, we have the following sufficient condition: 

Theorem 5: Assuming Conjecture 1 holds, if the following 
problem (12) is infeasible, then θk(i) is convex over [it, it+1]. 
Here, it and it+1 are real values satisfying 0 ≤ it < it+1 < λ. 

€ 

rη i( ) + rη ʹ′ it( ) ⋅ i < 0, i∈ it , it+1[ ]                            (12) 

In the above formulation, η'(it) is a constant that equals to 
the derivative of η(i) at it. The left hand side of the inequality 

λm 0 
Figure 6. hkl(i) as functions 
of the supply current i. 
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is a convex function, since it is the sum of a convex function 
and a linear function. Hence, problem (12) is a convex 
feasibility problem, which can be solved in polynomial time. 
In order to calculate η'(it), we note that dH / di = HDH. Since 

               

€ 

η ʹ′ i( ) = hklʹ′ i( )
l∈HOT ∪CLD
∑                                    (13) 

η'(it) can be determined accordingly in polynomial time.  
We note that θk(i) is twice differentiable over [0, λ). Hence, 

the convexity of the function over each of the sub-ranges 
implies the convexity of the function over [0, λ). We thus 
reach the following theorem which enables us to check 
whether θk(i) is convex over [0, λ) in polynomial time. 

Theorem 6: Assuming Conjecture 1 holds, given any finite 
sequence of real numbers satisfying 0 = i0 < … < it < it+1 < … 
< im = λ, if convex feasibility problem (12) is infeasible for 
each [it, it+1], then θk(i) is convex over [0, λ ). 

In theorem 6, the increasing sequence {it} can be chosen 
arbitrarily. For instance, we can chose 0 = i0 < i1 = λ. This 
would minimize the runtime of the checking process. 
However, the optimality check would be quite pessimistic 
since η'(0) is a very loose lower bound for η'(i) over [0, λ). 
Dividing [0, λ) into more sub-ranges would increase the 
accuracy of the lower bound for η'(i) at the expense of 
runtime. 

4) Algorithm minimizing the peak tile temperature 
Based on the above discussions, we developed a convex 

programming based algorithm for Problem 2. In the 
beginning, we determine the upper limit λ. Then, we employ 
the gradient descent method to solve formulation (6~7) [18]. 
At the end, we perform an additional optimality check based 
on Theorem 4. If Conjecture 1 is true and the problem instance 
passes the optimality check, then, formlation (6~7) is a convex 
optimization problem. Thus, the solution obtained by the 
gradient descent method is guaranteed to be optimal. 

VI. EXPERIMENTAL RESULTS 
We have implemented our optimization framework in C++ 

and evaluated our proposed algorithms on various 
benchmarks. All the experiments were carried out on a Linux 
server with four 2.8 GHz Intel® Xeon™ processors and 1 GB 
memory. In our implementation, the physical parameters 
(Seebeck coefficient, electrical resistivity and thermal 
conductivity) of the thin-film TEC device provided by 
Chowdhury et al. [1] are used. Other parameters such as the 
silicon thermal conductivity, convection, etc., were set 
according to an existing thermal simulator, HotSpot 4.1 [7]. 
We have first validated our thermal model against HotSpot 4.1 
by performing steady state analysis without the TEC devices. 
For a given floorplan and a set of power traces, we performed 
steady state analysis using both our model and Hotspot 4.1 and 
compared the temperature of each tile generated by them. The 
two results agreed closely – the worst-case difference is less 
than 1.5 ºC. Next, we conducted experiments with our model 
including the TEC devices to evaluate the impact of the active 
cooling system on the thermal behavior of the chip package.  

A. Experimental Study for a DEC Alpha-21364-Like Chip 
Our first set of experiments was performed on a 

microprocessor floorplan similar to that of a 65nm DEC 
Alpha-21364 microprocessor (Figure 7(a)) [7]. The silicon die 
has a dimension of 6 mm x 6 mm. As mentioned in Section 
III.A, we estimated the lateral area of a single TEC device by 
0.5 mm x 0.5 mm. Hence, the silicon die was divided into 
12x12 tiles in our experiment (Figure 7(b)). To obtain the 
worst case power consumption of each silicon tile, we 
simulated the SPEC2000 benchmark suite [19] using M5 
simulator [20] with an embedded architecture level power 
simulator Wattch [21]. We collected the worst case power 
consumption of each functional unit and added a 20% margin 
to them. Based on these numbers, we calculated the worst case 
power consumption of each tile. As mentioned earlier, the 
power dissipation of the functional units is highly uneven. The 
power density of the heavily used units such as integer register 
(IntReg) can be as high as 282.4 W·cm–2 while that of L2 
Cache is only 25.0 W·cm–2. The total worst case power 
consumption of the chip is 20.6 W. The heavily used units 
such as integer register, integer execution unit (IntExec), 
instruction queue (IQ), load and store queue (LSQ), floating 
point multiplier (FPMul), and floating point adder (FPAdd) 
consumes 28.1% of the total power while occupying only 
10.4% of the total area. 

The first row of Table I summarizes our experimental 
results on the Alpha-21364 microprocessor floorplan. We first 
computed the steady state of the Alpha-21364 chip without the 
TEC devices. The temperature of the hottest tile in the silicon 
layer is given in Column θpeak (91.8 ºC). Next, we employed 
our GreedyDeploy algorithm to determine the set of tiles that 

Figure 7. (a) The floorplan of an Alpha-21364-like microprocessor 
(b) dividing the floorplan into 12x12 tiles. 

(a) (b) 

 No TEC Greedy Deployment Full Cover 

 θpeak  
ºC #TECs θlimit 

ºC 

Iopt 
A 

PTEC 
W 

minθpeak 
ºC 

SwingLoss 
ºC 

Alpha 91.8 16 85 6.10 1.31 90.2 5.2 
HC01 90.1 12 85 6.82 1.26 88.5 3.5 
HC02 92.5 15 85 6.90 1.63 90.9 5.9 
HC03 89.8 16 85 7.24 1.93 88.3 3.3 
HC04 90.5 16 85 6.57 1.57 88.9 3.9 
HC05 89.9 18 85 7.10 2.09 88.4 3.4 
HC06 94.2 17 89 5.27 1.03 92.6 3.6 
HC07 91.2 14 85 8.26 2.24 89.6 4.6 
HC08 89.4 11 85 5.05 0.60 87.9 2.9 
HC09 95.3 12  88 10.42 3.02 93.8 5.8 
HC10 90.6 14 85 7.82 1.97 89.1 4.1 
Avg.     1.70  4.2 
 

TABLE I.  EXPERIMENTAL RESULTS FOR THE BENCHMARKS 
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need to be covered by TEC devices. The maximum allowable 
tile temperature was set to 85 ºC (Column θlimit). The 
GreedyDeploy algorithm determined 16 tiles that need to be 
covered by TEC devices (Column #TECs). These tiles are 
shaded in Figure 7(b). It can be seen that only the functional 
units with high power density (such as IntReg and IntExec) 
are needed to be covered. Table I also reports the supply 
current (Column Iopt) determined by the GreedyDeploy 
algorithm, as well as the power consumption of the TEC 
devices (Column PTEC). The external power consumed by the 
TEC devices is reasonably small (1.31 W). Our algorithm is 
efficient in terms of execution time – the deployment and level 
configuration algorithms combined terminated within 2 
minutes. 

We compared our optimization framework with a baseline 
strategy where every tile is covered by a TEC device with the 
supply current determined by our convex-programming based 
peak tile temperature minimization algorithm (Section V.C). 
The experimental results are listed in the two columns under 
the Full Cover label. It is noticeable that at the optimal supply 
current, the peak tile temperature is as high as 90.2 ºC 
(Column minθpeak), 5.2 ºC higher (Column SwingLoss) than 
what could be achieved by our GreedyDeploy algorithm. As 
mentioned in Section III.B, the external power consumed by 
the TEC devices would counteract their cooling effect. This 
phenomenon reveals that placing excessive TEC devices 
would decrease the efficiency of the active cooling system. 

B. Experimental Study for Hypothetical Chips 
The second set of experiments was conducted on 10 

hypothetical chips, each represented by a 12x12 array of tiles 
corresponding to a 6 mm x 6 mm floorplan. For each chip, we 
first randomly divided the floorplan into several functional 
units, each containing between 5 and 15 tiles. In order to 
imitate the non-uniform power distribution, we randomly 
selected two units and assigned them higher power density 
than the rest. Typically, the two selected units consume 30% 
of chip power while occupying 10% of the chip area. The total 
power consumption of the chip ranges from 15 W to 25 W. 

We conducted experiments and a comparison similar to 
those described in Section VI.A. Rows 2 until 11 of Table I 
provide the experimental results. We observe that for all the 
benchmark chips except for HC06 and HC09, the 
GreedyDeploy algorithm was able to guarantee that the 
maximum tile temperatures stay below the given limit (85 ºC) 
with reasonably small power overhead (around 2 W). Without 
the TEC devices, the maximum tile temperature can be as high 
as 92.5 ºC (HC02). Hence, the active cooling swing can reach 
7.5 ºC. Here the term “cooling swing” refers to the drop of the 
maximum tile temperature after employing the active cooling 
system. This conforms to the maximum on-demand cooling 
swing (5.4 ºC to 9.6 ºC) reported by Chowdhury et al. [1]. 
Besides, for each benchmark, the execution time of our 
algorithms is less than 3 minutes. 

For benchmark chips HC06 and HC09, our algorithms fail 
when the maximum allowable temperature is set to 85 ºC. This 
is mainly because the temperatures of the hot spots in these 

two chips are too high (Column 1). It is beyond the capability 
of the TEC devices to cool them down to 85 ºC. However, 
when the maximum allowable temperature is set to higher 
values (89 ºC for HC06 and 88 ºC for HC09, Column 3), our 
algorithm would be able to determine proper deployments and 
supply currents for these two benchmarks. 

Finally, similar to the Alpha 21364 case, for these ten 
benchmark chips, assigning a TEC device to every tile 
increases the lowest achievable peak tile temperature. 
Compared to the deployment determined by the 
GreedyDeploy algorithm, the cooling swing loss is 4.2 ºC on 
average. This confirms our conclusion that allocating 
excessive TEC devices would reduce the overall efficiency of 
the active cooling system and the system design process 
benefits from a systematic approach to this problem.  

VII. CONCLUSIONS 
In this paper, we have examined the design and 

optimization of an on-chip active cooling system based on 
thin-film thermoelectric coolers. We first established the 
compact thermal model for the chip package with integrated 
thin-film TEC devices. Next, we formulated the configuration 
problem of active cooling system. We proposed algorithms for 
both problems and discussed the optimality condition of the 
algorithms. For most of the benchmarks, our algorithms were 
able to determine the proper deployment and supply current of 
the TEC devices which guarantee that under the worst-case 
power consumption, the chip stays below the given limit of 85 
ºC, commonly used in practice. Moreover, for all benchmarks, 
the execution time of our algorithm is less than 3 minutes. 

APPENDIX A. THEORETICAL FOUNDATION FOR THE ANALYSIS 
OF ON-CHIP THERMOELECTRIC COOLING SYSTEMS 

In Appendix A, we build up the theoretical foundation for 
the analysis of the on-chip thermoelectric cooling systems 
upon the theory of inverse-positive matrix [11]. The theorems 
stated without proofs in the previous sections are formally 
proven for a generalized network. The thermal network of the 
chip package with integrated TEC devices is a special case of 
the generalized network. Although inverse-positive matrix has 
been studied extensively in the literature [11], to the best of 
our knowledge, none of them has considered the inclusion of 
tunable negative conductors, which play a critical role in the 
analysis of the thermoelectric cooling system. We note that 
due to the generalization, the theorems presented the appendix 
might be stated slightly different than the corresponding 
theorems in the previous sections. 

The generalized network under consideration is a connected 
conductor network containing both fixed and tunable 
conductors (Figure 8(a)). The fixed conductors must have 
positive values. In Figure 8, the conductors colored in black 
are the fixed conductors. We require these fixed conductors to 
form a connected sub-network. A special node labeled 0 in 
this sub-network is defined as the ground node. The tunable 
conductors can be placed between any node in this sub-
network and the ground node. In Figure 8(a), they are colored 
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in gray and attached with arrows. The value of the tunable 
conductor connected to the kth node is –αki, where i is a real 
number representing an external tuning force (in the case of 
thermoelectric cooling system, i is the supply currrent). All the 
tunable conductors share the same value of i. The tunable 
conductors can have either positive or negative values. 
Further, in order to make our analysis to be applicable to the 
thermoelectric cooling system, we at least one of tunable 
conductor has negative value. That is, at least one αk has to be 
positive. This is due to the fact that a TEC device would 
introduce a negative tunable thermal conductor to the thermal 
model of the chip package. 

Let us denote the fixed conductance between node k and 
node l is denoted by gkl. We construct matrices G and D to 
describe the sub-network formed by the fixed and tunable 
conductors, respectively. The definitions of matrices G and D 
are given in Expression (A1). 

€ 

G =

g1l
0≤l≤n
∑ −g12 ... −g1n

... ...
−gk1 ... gkl

0≤l≤n
∑ ... −gkn

...
−gn1 −gn2 ... gnl

0≤l≤n
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

D =

α1 0 ... 0
α2 ... 0

αk

0 ... ...
0 ... 0 αn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

  

(A1) 
Definition 6: Given an n x n irreducible matrix, if for each k 

= 1, 2, …, n, the sub-matrix formed by its first k row and k 
column is irreducible, then we call the given matrix a fully 
irreducible matrix. 

Lemma 1: Given a generalized conductor network 
containing at least one negative conductor, it is always 
possible to label the nodes such that 1) matrix G is fully 
irreducible, and 2) α1, the element at the upper-left corner of 
matrix D is positive. The definitions of matrices G and D are 
given by Expression (5). 

Proof: Since the chip package containing at least one 
TEC devices, its thermal model contains at least one negative 
thermal conductor. Let us label the non-ground end node of a 
negative conductor as the first node, the element at the upper-
left corner of matrix D would be positive. Starting from this 
node, we continue to label the nodes such that the latest 
labeled node is adjacent to at least one of the nodes that have 

been labeled. This labeling order ensures that the sub-matrix 
formed by the first k row and k column of G corresponds to a 
connected component. Hence, G is fully irreducible.              ■ 

For instance, the labeling in Figure 8(a) leads to fully 
irreducible matrix G, while the labeling in Figure 8(b) does 
not. Without loss of generality, in the following, we assume 
that the network modeling the chip package is properly labeled 
such that matrix G is fully irreducible, and the element at the 
upper-left corner of matrix D is positive. 

Notations: the notations in Appendix A are fixed as follows 
unless stated explicitly: 

n: The total number of nodes (except for the ground node) 
in the networks. 

G: A matrix as defined in Expression (A1). 
D: A matrix as defined in Expression (A1). 
A: An n x n matrix defined as G – iD. Here i is a real 

number. Note that A is a function of i (a mapping from a 
scalar to a matrix). 

H: The inverse of matrix A, i.e., H = A-1. Similar to matrix 
A, matrix H is also a function of i. 

Ak: Sub-matrix of A formed by the common parts of the 
first k row and first k column of A. As a special case, A is 
identical to An. Notations Gk and Dk are defined in a similar 
way.  

Akl: Modified matrix A after kth row and lth column 
removed. 

Vector Comparison Notations: Given a vector v, we write v 
≥ 0 if and only if each element of v is nonnegative. We write v 
> 0 if and only if each element of v is nonnegative and v 
contains at least one positive element. We write v >> 0 if and 
only if each element of v is positive. 

Theorem 1: Matrix G is a fully irreducible positive definite 
Stieljes matrix. 

Proof: We have mentioned in our earlier discussion that 
G is fully irreducible. Secondly, It is easy to verify that G is a 
Stieltjes matrix according to Definition 3. Finally, it is known 
that matrix G is a positive definite matrix [22].                       ■ 

Lemma 2: If vector θ satisfies Gθ > 0, then θ >> 0. 
Proof. Let us assume Gθ = u > 0. Let us prove θ >> 0 by 

contradiction. 
Firstly, it is known that the inverse of a positive definite 

Stieltjes matrix (either reducible or irreducible) contain only 
nonnegative elements [11]. Hence, we have θ ≥ 0. Suppose the 
lth element θl of θ is zero, the lth equation of Gθ = u can be 
written as  

€ 

glj θ l −θ j( )
j∈Nr l( )
∑ + gll ⋅ θ l = ul  

where Nr(l) is the set of neighboring nodes of node l, and ul is 
the lth element of vector u. Obviously, ul ≥ 0. Since the 
coefficients glj > 0, if θl is zero, each θj must be non-positive. 
As mentioned above, θj cannot be negative. Hence, each of 
them must be zero. Repeat this reasoning, we can prove that if 
θl is zero, the θ value of any node in the connected component 
containing node l must be zero. Further, we note that since G 
is an irreducible matrix, every node should belong to a 

Figure 8. A simple example of the generalized network (a) label the 
nodes such that the corresponding matrix G is a fully irreducible 
matrix (b) label the nodes such that the corresponding matrix G is not 
a fully irreducible matrix. 

(a) 

(b) 
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connected component. Hence, θ = 0, and thus Gθ = 0. 
However, this is contracted to u > 0. Therefore, every element 
of θ must positive.                                                                    ■ 

Lemma 3: Every element of the inverse of a fully 
irreducible positive definite Stieltjes matrix must be positive. 

Proof. Let us use uk to denote a vector whose kth element 
is one and other elements are zeros. We note that G · G-1 = I = 
(u1, u2, …, un). Besides, uk > 0 for each k = 1, 2, …, n. 
According to Lemma 2, each element of G-1 must be a 
positive number.                                                                       ■                                                   

Lemma 4: For every k ≤ n, Gk is an irreducible positive 
definite Stieljes matrix. 

Proof: Firstly, since G is fully irreducible, Gk must be 
irreducible. Secondly, since G is symmetric and positive 
definite, det(Gk) > 0 for k = 1, 2, …, n. Hence, Gk must be 
positive definite. Finally, it is easy to verify that Gk is a 
Stieltjes matrix.                                                                         ■ 

Lemma 5: For any k ≤ n, det(Ak) = 0 has at least one 
positive root. Moreover, denote the smallest positive root of 
equation det(Ak) = 0 as λk, we have 

λn < λn-1 < … < λk < … < λ1 < +∞ 
Lemma 6: For any k ≤ n, equation Akθk = 0 has nonzero 

solutions θk when i = λk. All the elements of θk have the same 
sign. 

Proof: We will prove Lemma 5 and Lemma 6 together 
using mathematical induction. 

Base Case: When k = 1, we note that as indicated by 
Lemma 1, α1, the upper-left corner element of D is positive. 
Moreover, the upper-left corner element of G 

€ 

g1 = g1l
0≤l≤n
∑  

is positive since G1 is positive definite, according to Lemma 4. 
Hence, det(A1) = 0 has a positive root λ1 = g1 / α1 < +∞. The 
corresponding nontrivial solution θ1 can be any nonzero real 
number. 

Induction Step: Suppose when k = m – 1, we have λm-1 < … 
< λ2 < λ1 < +∞. Besides, all the elements of θm-1 satisfying 
equation Am-1θm-1 = 0 are non-zero and have the same sign. 
Without loss of generality, we assume these elements are all 
positive. 

Induction for Lemma 5: let us first show that when k = m, 
we can construct a nonzero vector θ, such that  

θT(Gm – λm-1Dm)θ < 0 
We note that Gm and Dm can be represented as: 

€ 

Gm =
Gm−1 −g
−gT gm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , Dm =

Dm−1 0
0T αm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Let us construct θ = (θT
m-1, x)T where x is a positive number. 

We have 

€ 

θT Gm − λm−1Dm( )θ
= gm − λm−1αm( ) ⋅ x 2 − 2gTθm−1⋅ x + θm−1

T Gm−1 − λm−1Dm−1( )θm−1
= gm − λm−1αm( ) ⋅ x 2 − 2gTθm−1⋅ x

 

According to Lemma 4, matrix Gm is an irreducible Stieljes 
matrix. Hence, vector g can only contain nonnegative element. 

Furthermore, at least one element must be positive. Base on 
the induction of Lemma 6, all the elements of θm-1 are positive. 
As a result, 2gTθm-1 must be a positive number. Hence, when x 
is small enough, 

θT(Gm – λm-1Dm)θ < 0 
The above inequality means matrix Am is not positive 

definite when i = λm-1. On the other hand, the induction 
hypothesis λm-1 < … < λ2 < λ1 indicates that when i = λm-1, 
det(Ak) ≥ 0 for any 1 ≤ k ≤ m – 1. Hence, the fact that Am is 
not positive definite indicates det(Am) < 0 when i = λm-1. On 
the other hand, we note that when i = 0, det(Am) = det(Gm) > 
0. Since det(Am) is a continuous real value function of i, 
equation det(Am) = 0 must has a positive root λm < λm-1. This 
proves the induction hypothesis of Lemma 5 for k = m. 

Induction for Lemma 6: Denote θm = (vT
m-1, vm)T, when i = 

λm, Amθm = 0 can be written as 

€ 

Amθm =
Gm−1 − λmDm−1 −g

−gT gm − λmαm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
vm−1
vm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  

Hence, Amθm = 0 is equivalent to the following two equations: 
(Gm-1 – λmDm-1) · vm-1 = vm g 
gT

 · vm-1 = (gm – λm α m) vm 
If vm is zero, vmg must be a zero vector. On the other hand, in 
the induction step for Lemma 5, we have just proven that λm < 
λm-1, which means Gm-1 – λmDm-1 is positive definite. Hence, 
vm-1 must be a zero vector. Therefore, in a nontrivial solution, 
vm ≠ 0. Without loss of generality, let us assume vm > 0. Since 
G is a fully irreducible Stieltjes matrix, vector g > 0. As a 
result, vector vm g > 0. According to lemma 2, vector vm-1

 >> 0. 
This proves the induction hypothesis of Lemma 6 for k = m. 

Conclusion: Based on the above discussion, Lemma 5 and 
Lemma 6 hold true.                                                                  ■ 

Lemma 7. The smallest positive root λn of equation det(A) = 
0 is equal to the following infinum. 

€ 

λ = inf θTGθ
θTDθ

θTDθ > 0
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
                          (A2) 

Proof: Firstly, let us show that λ ≤ λn. Since λn is the 
smallest positive root of det(A) = 0, there exists θn ≠ 0 such 
that Aθn = (G – λnD) θn = 0. Hence, λn = θn

TGθn / θn
TDθn. 

Moreover, according to Lemma 5, λn is a positive number. 
θn

TGθn is a positive number also since G is positive definite. 
Hence, θn

TDθn > 0. Therefore, λn = θn
TGθn / θn

TDθn ≥ λ. 
Secondly, we show that λ ≥ λn. If this is not the case, 

according to Lemma 5, for any k = 1, 2, …, n, det(Gk – λDk) > 
0. Hence, G – λD is positive definite. Then, for any nonzero 
vector θ, θT(G – λD)θ > 0, i.e., θTGθ / θTDθ > λ. However, 
this contradicts with the definition of λ. 

Based on the above discussion, λn and λ are identical.         ■ 
Since λn and λ are identical, we will use them 

interchangeably in the rest of the proofs. 
Theorem 2: Given λ as defined in Lemma 7, matrix A has 

the following properties:  
1) For any i ∈ [0, λ), A is positive definite. 
2) When i = λ, A is singular and semidefinite. 
3) For any i ∈ [λ, +∞), A is not positive definite. 
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Proof. 1) Since λ is the smallest positive root of det(A) = 
0, it is obvious that for any i ∈ [0, λ), A is positive definite.  

2) When i = λ, A is singular since det(A) = 0. In the 
meanwhile, Lemma 4 and Lemma 6 indicate λ1 > λ2 > … > λk 
> … >  λn = λ. Thus, for any k < n, det(Ak) > 0 when i = λ. 
Hence, A is semidefinite when i = λ.  

3) When i > λ, according to the definition of λ given in 
Lemma 7, there is a nonzero θ satisfying θTGθ / θTDθ = λ < i. 
That is, θT(G – iD)θ < 0. Hence, for any i ∈ [λ, +∞), A is not 
positive definite.                                                                       ■ 

Before proving Theorem 3, we first prove that following 
lemmas: 

Lemma 8: When i = λ, if Aθ ≠ 0, then θTAθ > 0. 
Proof. According to Lemma 5 and Lemma 7, det(A) = 0 

when i = λ. Moreover, we note that A is a symmetric matrix. 
Hence, there exists an orthogonal matrix P, such that A can be 
eigendecomposed to be  

€ 

A = PTQP = PT

µ1 0
µ2 0

µk

0 µn−1

0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

P
 

where µk > 0 for k = 1, 2, …, n – 1. Given any θ ∈ Rn, denote 
y = Pθ, 

€ 

θTAθ = Pθ( )TQ Pθ( ) = yQy = µk yk
2

k=1

n−1

∑ . 

Hence, θTAθ = 0 if and only if y = yn· un. Here un = (0, …, 0, 
1)T and yn can be any real value. Therefore, θ = P-1 y = ynP-1un. 
For this θ vector, we have Aθ = A·ynP-1un = yn(PTQP)P-1un = 
ynPT(Qun). It is easy to verify that Qun = 0. As a result, Aθ = 
0. Note that A is semidefinite. Therefore, for any given θ, if 
Aθ ≠ 0, then θTAθ > 0.                                                             ■ 

Lemma 9: Define Uk to be a matrix where the element at the 
kth row and kth column is one while other elements being zeros. 
Matrix B = A + Uk is positive definite when i = λ. 

Proof. For given any θ ∈ Rn, we have 
θTBθ = θT(A + Uk)θ = θTAθ + θTUkθ 

If the kth element of θ is zero, according to Lemma 6, when 
i = λ, Aθ ≠ 0. According to Lemma 8, we have θTAθ > 0. On 
the other hand, θTUkθ = 0. Hence, θTBθ > 0. 

If the kth element of θ is not zero, we have θTAθ ≥ 0 since A 
is semidefinite according to Theorem 2. Moreover, θTUkθ > 0. 
Hence we still have θTBθ > 0. 

Therefore, matrix B is positive definite.                                ■ 
Lemma 10: When i = λ, det(Akl) > 0 for any 1 ≤ k, l ≤ n. 

Proof: Define B = A + Uk as in Lemma 9. Denote the 
matrix form by removing from B its kth row and lth column by 
Bkl, Akl and Bkl must be identical. On the other hand, according 
to Lemma 9, B is positive definite when i = λ. Further, it is 
easy to verify that B is a fully irreducible Stieltjes matrix. 
According to Lemma 3, every element of C = B-1 is positive. 
Using Cramer’s rule, we have det(Bkl) = ckl det(B) > 0, where 

ckl is the element at the kth row and lth column of C. This leads 
to det(Akl) > 0.                                                                          ■ 

Theorem 3: Denote the element of H in the kth row and the 
lth column (as a function of i) as hkl(i). For any 1≤ k, l ≤ n, we 
have 

€ 

lim
i→λ−

hkl i( ) = +∞  

Proof: Applying Cramer’s rule, we have 

€ 

lim
i→λ−

hkl i( ) = lim
i→λ−

det A kl( ) det A( )  

According to Lemma 10 and Theorem 2, when i = λ, 

€ 

lim
i→λ−

det A kl( ) > 0, lim
i→λ−

det A( ) = 0 

Therefore,  

€ 

lim
i→λ−

hkl i( ) = +∞ .                                    ■ 

Conjecture 1: Given an n x n positive definite Stieltjes 
matrix S, denote R = S–1. Denoting the kth and lth row vector 
of R by rk and rl, then DIAG(rk)·R·DIAG(rl) is positive 
definite for any 1≤ k, l ≤ n. 

Theorem 4: If Conjecture 1 holds true, then for every 1 ≤ k, 
l ≤ n, hkl(i) of matrix H is a convex function of i over [0,  λ). 

Proof: According to matrix analysis theory, we have 

€ 

Hʹ′ʹ′ i( ) =
d2H
di2

=
d
di
dH
di

=
d
di
H dH

−1

di
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

d
di
HDH( )

=HDdH
di

+
dH
di
DH = 2HDHDH

 

Denote the the kth and lth row vector of H by hk and hl, the 
element in the kth row and lth column of H as a function of i by 
hkl(i), the vector formed by the elements in the main diagonal 
of D by d, we have 

€ 

hklʹ′ʹ′ i( ) = 2hk
T ⋅ DHD ⋅ hl = 2hk

T ⋅ DIAG d( ) ⋅ H ⋅ DIAG d( ) ⋅ hl
= 2dT DIAG hk

T( ) ⋅H ⋅DIAG hl( )( ) d
 

According to Theorem 2, for any i 

€ 

∈ [0, λ), A is a positive 
definite Stieltjes matrix. Then, (DIAG(hk)·H·DIAG(hl)) is 
positive definite if Conjecture 1 holds. As a result, hkl"(i) is 
positive over [0, λ), which means hkl(i) is a convex function of 
i over [0, λ).                                                                              ■ 

Remark: At the end, we remarks that the theoretical analysis 
presented in Appendix A can be viewed as an extension of the 
classical eigenvalue/eigenvector theory in linear algebra. A 
general diagonal matrix D replaces the role of the identity 
matrix in the classical eigenvalue/eigenvector theory. The 
value λ is similar to the concept of the smallest eigenvalue. 
The definition of λ given in Expression (A2) generalizes the 
concept of Rayleigh’s quotient. 
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