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Abstract-Ensuring resilience against environmental variations is 
becoming one of the great challenges of chip design. In this 
paper, we propose a self adjusting clock tree architecture, 
SACTA, to improve chip performance and reliability in the 
presence of on-chip temperature variations. SACTA performs 
temperature dependent dynamic clock skew scheduling to 
prevent timing violations in a pipelined circuit. We present an 
automatic temperature adjustable skew buffer design, which 
enables the adaptive feature of SACTA. Furthermore, we 
propose an efficient and general optimization framework to 
determine the configuration of these special delay elements. 
Experimental results show that a pipeline supported by SACTA 
is able to prevent thermal induced timing violations within a 
significantly larger range of operating temperatures (enhancing 
the violation-free range by as much as 45°C).      

I. INTRODUCTION 
Steady miniaturization and large-scale integration lead to 
increasing power densities. As a result, on-chip temperatures 
are rising steadily as technology is scaling down. Making 
matters worse, power management techniques such as clock 
gating, voltage islands, and power gating may lead to drastic 
temporal and spatial variations of chip temperatures. In 
addition, a chip may be deployed in diverse environments 
where the level of cooling support as well as the nominal 
temperature could not be accurately predicted at the design 
time. Finally, power consumption of a chip can be highly 
input dependent, leading to variations in chip temperature 
throughout the execution of an application. 
Temperature variation affects timing since interconnect 
resistance and cell delay are dependent on temperature. Both 
temporal and spatial temperature variations may cause 
significant changes in switching speed of gates and result in 
timing violations. This phenomenon further amplifies the 
challenges of chip design considering thermal effects. The 
idea of designing circuits with guaranteed performance 
bounds while exhibiting resilience against environmental 
variations arises as an attractive option.   
In this paper, we introduce SACTA, a Self-Adjusting Clock 
Tree Architecture to address this problem. SACTA guarantees 
correct timing behavior in pipelined circuits within a large 
range of thermal conditions through a self-adjusting, 
temperature-sensitive skew distribution mechanism. SACTA 
exploits clock skews to maintain the performance in the 
presence of delay variations within pipeline stages. 

Adaptability is achieved by utilizing a set of special skew 
buffers. These elements are designed to exhibit carefully 
tuned temperature dependent delay behavior in 
synchronization with the temperature levels prevalent in the 
logic of the pipeline. Thereby, they generate a self-adjusting 
skew tailored to the temperature dependent timing behavior of 
each pipeline stage. We also developed a systematic design 
method to determine the physical specifications of these skew 
buffers (i.e. parameters that define their delay behavior) for a 
given pipelined circuit and a range of operating temperatures.  
Our approach aims to provide a solution that can effectively 
avoid thermal induced delay violations considering the impact 
of temperature on both the clock tree and the datapath. We 
have evaluated the effectiveness of SACTA using a set of 
synchronous pipelined circuits. SACTA is able to prevent 
thermal induced timing violations within a significantly larger 
range of operating temperatures (enhancing the violation-free 
range by as much as 45°C). SACTA effectively enhances 
reliability while introducing negligible circuit level overhead. 
The remainder of this paper is organized as follows. Section II 
provides an overview of related work. In Section III, our 
model of temperature dependent delay variation is presented, 
followed by the detailed discussion of the self-adjusting clock 
tree architecture. Design of our automatic temperature 
adjustable (ATA) skew buffers is described in Section IV. We 
introduce our clock tree design framework in Section V. Our 
experimental evaluation is presented in Section VI. We 
conclude with a summary of our findings in Section VII. 

II. RELATED WORK 
The increasing impact of temperature variation on circuit 
timing has motivated several techniques. Some effort has been 
devoted to developing temperature-insensitive zero/bounded 
skew clock trees. Dual-supply-voltage clock tree [1] utilizes 
the fact that CMOS gate delay is insensitive to temperature at 
a specific supply voltage level VZTC. VZTC is technology 
dependent and is at around 0.83V for 90nm. By supplying the 
on-tree buffers with this voltage, the clock tree is made to 
have zero skew for any given thermal profile. Although this 
technique can effectively eliminate delay fluctuations on the 
clock tree, considering the clock tree alone is insufficient. In a 
circuit where a zero-skew tree is used, to achieve maximal 
performance, Tcp is roughly set to the delay of the critical path. 
Since the delay of the critical path has positive dependence on 
temperature, as temperature increases, the delay of the critical 
path may exceed Tcp at a certain point. A zero-skew design 
will fail beyond this temperature. Also, it might at first appear 

This work was supported by the National Science Foundation CAREER 
Award CNS-0546305 and NSF grant CCF-0541337. 
†Now with Samsung Electronics Co., Ltd., Korea. 

1-4244-1382-6/07/$25.00 ©2007 IEEE 75



as a viable approach to supply the entire design with VZTC to 
achieve a system with absolute temperature independence. 
However, technology trends, particularly the relationship 
between supply level and the necessary threshold voltage 
levels for transistors, indicate that supply levels are unlikely to 
scaled beyond a certain level [2].  �
An alternative is to use clock skew to enhance immunity to 
temperature variation. An integer linear programming 
formulation for clock skew scheduling in the presence of 
process and environment variations has been proposed [3]. 
However, improvement in reliability was achieved at the 
expense of performance, making this approach less attractive 
to high performance circuit designers. 
Lee et al. proposed a circuit-level timing error detection/ 
correction scheme [4]. The idea is to create clock skews 
dynamically such that those pipeline stages that require longer 
execution times due to environmental fluctuations are 
assigned longer intervals. However, compared to our scheme, 
this requires significantly more hardware resources (such as 
shadow registers and a central control unit for error 
monitoring and skew creation) and is able to provide only a 
discrete set of skew values (versus the continous scale 
generated by our scheme).  
Finally, a large body of work addressed static clock skew 
scheduling [5-7]. These techniques do not attempt to solve the 
problem of delay variability, hence, our problem is 
fundamentally different. 

III. THE SELF-ADJUSTING CLOCK TREE ARCHITECTURE 
Consider a local pipeline stage between two registers Ri and 
Ri+1. The following two constraints should be met to preserve 
correct circuit functionality [7]:    
             xi + Di,i+1 ≤  xi+1 + Tcp    and     xi + di,i+1 ≥  xi+1  
Here xi and xi+1 are defined as the clock signal delays from the 
clock source to Ri and Ri+1. The difference between the arrival 
times of the clock signal at two successive registers is defined 
as the clock skew. It could be expressed as (xi – xi+1). Di,i+1= 
Tc-q+ Tlogic(max)+Tsetup,  di,i+1=Tc-q+Tlogic(min)+Thold signify the 
largest and shortest expected latencies for the pipeline stage 
located between these registers.  
A clock skew schedule for a given pipeline is a set of delay 
values {xi} satisfying these constraints. Existing techniques 
only address static clock skew schedule. However, these 
constraints are in fact temperature dependent. Therefore, a 
given static clock skew schedule satisfying the constraints for 
some temperature profiles may fail for others, even if for 
these profiles, a static clock skew schedule does exist. This 
has motivated us to develop a dynamic clock skew scheduling 
scheme and the self-adjusting clock tree architecture. 
On circuit layout, the logic gates and the registers in the same 
pipeline stage are normally placed in close proximity, since 
this will help shorten the critical path. Due to this spatial 
correlation, the temperature of the combinational logic and the 
associated pipeline registers are approximately the same. We 
use θi,i+1 to denote this local temperature for the pipeline 
stage between registers Ri and Ri+1.  Then, the maximum and 

minimum stage latencies Di,i+1 and di,i+1 can be expressed as 
functions of the local temperature as Di,i+1(θi,i+1) and 
di,i+1(θi,i+1).      
Our goal is to design a self-adjusting clock tree that is able to 
adapt to different thermal profiles. In other words, for a given 
thermal profile, if there exists a static clock skew schedule to 
guarantee correct operation, our clock tree should be able to 
configure itself to provide this clock skew. To solve this 
problem we need to first understand the relationship between 
temperature and delay for circuit elements. In the following 
we present the temperature dependent delay model we have 
utilized to describe the behavior of logic. 

A. Temperature Dependent Delay Model and Its Validation 
Circuit delay of a CMOS gate can be written as 

                 
d

dd

I
CV

∝τ                      (1) 

where C is the load capacitance driven by the gate, Vdd is the 
supply voltage (voltage swing), and Id is the drain current of 
the transistors. The drain current stays mostly in the saturation 
region in deep submicron technologies due to velocity 
saturation [8]. Using the alpha-power law [8], the drain 
current in the saturation region is expressed as 

        ( ) ( )( )αθθµ thgsd VV
L
WI −∝        (2) 

θ denotes the gate temperature, µ is the carrier mobility, W 
and L are the channel width and length, respectively, Vgs is the 
gate-to-source voltage, Vth is the threshold voltage, and α is 
the velocity saturation index whose value is between 1 and 2 
(closer to 1 in deep submicron technologies) [8]. Note that µ 
decreases as the temperature is raised, but its temperature 
dependence weakens to a linear relationship in the saturation 
region due to velocity saturation [9]. The temperature 
dependence of µ in the saturation region can be written as 
             ( )00 θθηµµ −−=         (3) 

where µ0 is the mobility at the nominal temperature θ0, which 
is typically 25ºC, and η is the temperature coefficient. Vth also 
decreases linearly as the temperature is raised, and is given by 
            ( )00 θθκ −−= thth VV                       (4) 

where Vth0 is the threshold voltage at the nominal temperature, 
and κ is the temperature coefficient. Substituting (3) and (4) 
into (2) and (1), and taking a first order approximation, the 
temperature dependence of a CMOS gate delay can be 
simplified to a linear function of temperature [9]: 
              ( )00 θθττ −+= k ,                     (5) 

where τ0 is the delay at the nominal temperature. 
This linear model was validated against HSPICE using a 
chain of several different gates such as NAND, NOR, and 
XOR in the 90nm PTM technology [10]. The result is shown 
in Figure 1. It can be seen that there is an excellent agreement 
between the linear model and HSPICE. 
Note that this linear temperature dependence of the delay is 
equally applicable to the combinational logic and the skew 
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buffers. In the local datapath of pipeline stages, the RC delay 
of the signal is dominated by the gate capacitances. We can 
safely ignore the share of the interconnect delay. As a result, 
we can assume the same temperature dependence for the 
combinational logic and the skew buffers. 

B. Temperature Dependent Dynamic Clock Skew Scheduling 
Our methodology to design the self-adjusting clock tree 
utilizes the linear model described in the previous section. 
Given this model, we formulate our problem as follows: 
Problem 1. Thermal-aware dynamic clock skew 
scheduling: Given a pipeline driven by a clock with period 
time Tcp and the temperatures of the pipeline stages {θi,i+1 | θmin 
≤ θi,i+1 ≤ θmax}, if the set of inequalities  
              – di,i+1(θi,i+1) ≤ xi – xi+1 ≤ Tcp – Di,i+1(θi,i+1)               (6)    
have a static solution {xi}expect, then, the self-adjusting clock 
tree should be able to adjust the actual arrival time {xi} to 
{xi}expect in order to avoid circuit malfunction.  
Figure 2 illustrates the timing constraints as functions of 
temperature. According to the analysis in Section IV.A, both  
di,i+1(θi,i+1) and Di,i+1(θi,i+1) are linear functions of θi,i+1. 
Therefore, the timing constraints can be represented with two 
lines as shown in Figure 2(a). Furthermore, the temperature 
range, where correct operation must be guaranteed, can be 
represented with two vertical lines. If static clock skew 
scheduling is used, the best we can do to cope with 
temperature variation is to set (xi – xi+1) equal to –di,i+1(θmin). 
However, as shown in Figure 2(a), timing violations can still 
occur even below the maximum operating temperature θmax. If 
we can couple the value of (xi – xi+1) with θi,i+1, with a linear 
function, then Constraint (6) may never be violated as long as 
the local temperature θi,i+1  remains between θmin  and θmax. An 
example of such a linear function is depicted in Figure 2(b). 
Now our problem becomes designing a clock tree that can 
supply dynamically changing skew values to pipeline registers, 
where the relationship between the skew value and the 
temperature in the region of interest should be in the form of a 
linear function. Note that we have established a linear 
relationship between the delay of a logic gate and temperature. 
We will take advantage of this result and employ special skew 
buffers in our clock tree architecture, which will render the 
temperature dependent behavior we desire. 

C.  Self-Adjusting Clock Tree Architecture 
Figure 3 depicts a pipeline with our proposed Self-Adjusting 
Clock Tree Architecture (SACTA). The white triangles 
represent the Automatic Temperature Adjustable (ATA) skew 
buffers. The relationship between their delay and temperature 
is expressed as si – ki∆θ. si is the delay of the skew buffer at 
the worst case temperature θmax. We refer to this delay value 
as the base delay of the ATA skew buffer. ki is the 
temperature sensitivity coefficient. Here, ∆θ is defined as θmax 
– θ, i.e., the difference between θmax and actual operating 
temperature in the vicinity of the skew buffer. The gray 
triangles represent the temperature-insensitive skew buffers 
(which will be refered to as fixed buffers) with base delay fi.   
In this architecture, the skew of the ith pipeline stage will be 
                  xi – xi+1 = fi – fi+1 – si +ki (θmax– θ)                      (7) 
In order to ensure that this function is linearly dependent on 
the local temperature θi,i+1 of the pipeline stage i, all we need 
to do is to place the ith ATA skew buffer close to the logic of 
the ith pipeline stage on the circuit layout. Spatial correlation 
will enable the coupling between the temperature variable θ in 
Equation (7) and the local temperature θi,i+1 of pipeline stage i.  
It can be easily seen that the purpose of the ATA buffers is to 
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Figure 1. Validation of the linear model for the temperature 
dependence of gate delay against HSPICE. 
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      Figure 3. SACTA: Self-Adjusting Clock Tree Architecture. 
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Figure 2. (a) Failing Temperature θfail; Timing violations may 
occur if θfail is exceeded. (b) Utilizing temperature-sensitive skew 

to improve system immunity against temperature variation. 
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generate the temperature-dependent coupling between 
pipeline latencies and the skew needed to ensure timing 
correctness. However, by employing ATA buffers alone we 
can only create negative skew between consecutive registers. 
Positive skew might also be needed. The purpose of the fixed 
buffers is to provide such positive skews. 

D.  Applications of SACTA and Its Limitations 
With different temperature profiles the skew distribution of 
SACTA will clearly be different. As a result the total skew 
created within the pipeline (i.e., the sum of all skews across 
the stages) will be variable with temperature. This means, that 
there is not a single fixed total skew value between any two 
registers. In fact, this is the special property of SACTA that 
enables us to achieve adaptability. At the boundary case, this 
can be interpreted as having a variable non-zero skew 
between the input registers and the output registers.  
For a one-dimensional linear pipeline this does not pose any 
limitations. On the other hand, if the pipeline is expected to 
communicate synchronously with another entity, then this 
might become an issue. In such a case, one possibility is to 
isolate the last pipeline stage from SACTA, thereby confining 
the end-to-end skew. In systems such as the Globally 
Asynchronous Locally Synchronous (GALS) system, this 
would not be needed. SACTA can be safely applied to the 
entire pipeline. Since for GALS inter-module communication 
is asynchronous, zero off-module clock skew is not required. 
For those pipeline stages lying on the feedback loops, the 
ATA skew buffers of SACTA cannot completely cover the 
associated combinational logic along this loop. However, if 
those uncovered pipeline stages do not lie on the critical path, 
then this will not be crucial. 
In the remainder of our discussions, each synchronous 
pipeline will be modeled as a one-dimensional pipeline 
corresponding to a submodule. This model is representative 
for a large number of synchronized circuits, such as various 
ASICs for signal processing and applications [11-13]. 

IV. SKEW BUFFER DESIGN 
In this section, the designs of the fixed skew buffer and the 
ATA skew buffer are presented. 

A.  Temperature-Insensitive (Fixed) Skew Buffer 
Temperature insensitive skew buffers can be designed by 
biasing the gate to the ZTC (Zero-Temperature-Coefficient) 
point. The ZTC point is a gate bias where the effect of change 
in the threshold voltage cancels out that of the mobility, 
making the drain current independent of temperature [14]. 
Thus, fixed skew buffers can be designed by using inverters 
whose gate-to-source voltage corresponds to the ZTC point. 
In order to bias the gate to the ZTC point, a voltage reference 
circuit that generates the ZTC voltage is needed. Figure 4(a) 
shows the voltage reference circuit using a transisor (M4) 
whose drain is connected to its gate and a current source. The 
connection between the drain and the gate ensure its operation 
to take place in the saturation region. The current equation in 
the saturation region in (2) can be rearranged as 

          
th

d
gs V

KW
LIV += α

µ
                    (8) 

where K is a constant that is specific to a given technology. 
Hence, the current source can be used to provide the 
necessary amount of Id to bias M4 to the ZTC point. The 
current source shown in Figure 4(a) consists of an inverter 
whose input and output are tied together and M3. By careful 
sizing of M1 and M2, the output of the inverter can be 
controlled to generate the ZTC voltage which, in turn,  
produces the required Id for ZTC point through M3. Our 
HSPICE simulation showed that the ZTC voltage in the 90nm 
technology is 0.83V which places the PMOS transistor in the 
linear region, and the NMOS in the saturation region. Using 
the alpha-power law [8], the output voltage of the inverter is 
related to the sizing of M1 and M2 by 

( ) ( )αα
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where KM1 and KM2 are technology-specific constants. Note 
that using the inverter in Figure 4(a) alone to generate the 
ZTC voltage is unstable since any current flow from this 
source will result in fluctuations in the reference voltage. By 
using a chain of inverters whose supply rail is the ZTC 
voltage generated from the circuit as shown in Figure 4(b), the 
drain current of transistors becomes temperature-insensitive, 
thereby making the delay of the skew buffer independent of 
temperature variations as well. 
In order to create a desired amount of delay for each buffer, a 
mixture of sizing and cascading of inverters is used. Larger L 
increases the delay, but inverters with L that is too large may 
not be able to generate full voltage swing at the output in a 
given clock cycle, possibly leading to functional errors 
especially after a chain of several inverters. Hence, 5Lmin is 
used as the upper limit to avoid such errors for clock 
frequency of 3.0GHz in the 90nm technology, as determined 
from HSPICE simulation. To create more delay in a buffer, 
one can cascade more inverters as long as the correct logic 
level is preserved (i.e. even number of inverters). L of the 
cascaded inverters is varied between Lmin and 5Lmin except for 
the first and the last inverter, while W is kept at minimum size 
for all. Minimum size is used for the last inverter to recover 
fast transition time and full voltage swing of the signal before 
it reaches the register. Futhermore, the use of minimum size 
for the first inverter synchronizes and minimizes the load 
driven by the last inverter in the ATA skew buffer which will 

Figure 4. (a) Schematic of the ZTC voltage reference circuit (b) 
Design of the fixed skew buffer using the ZTC voltage reference.
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be discussed in the subsequent section. Besides the first and 
the last inverters, there is a degree of freedom for the number 
of inverters and their channel lengths.  

B.  Automatic Temperature Adjustable (ATA) Skew Buffer 
The temperature-sensitivity of skew buffers can also be 
adjusted by a mixture of sizing and cascading of inverters. 
From (1) through (4), the temperature sensitivity of the gate 
delay (i.e. the temperature coefficient k in (5)) is related to 
gate sizing by 
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As indicated by (10), increasing L amplifies the temperature 
sensitivity, which results in a longer delay as well. 
Furthermore, when several inverters are cascaded together, 
increasing L of an inverter also increases its gate capacitance, 
which increases the delay and the temperature sensitivity of 
the previous inverter  (increase in C in (10)). The increase in 
the absolute value of the delay is not a problem in the clock 
distribution network as long as the relative arrival times of the 
clock signals are well controlled. 
Figure 5 shows the design of the ATA skew buffer, connected 
to the fixed skew buffers described in the preceding section. 
The ATA skew buffer consists of a chain of cascaded 
inverters. The supply rail of the last inverter is connected to 
the ZTC voltage instead of Vdd (1.3V) because its output is 
connected to the gate of the fixed skew buffer, which need to 
be biased to the ZTC voltage. The first inverter in the next 
ATA skew buffer then converts the voltage swing back to 
1.3V. Minimum W is used for all the inverters in the chain 
since increased width reduces the temperature sensitivity. As 
for L, a range between Lmin and 5Lmin is used for all the 
inverters in the chain except for the first and the last inverter 
(Lmin is used for the first and the last inverter for the same 
reasons explained in the preceding section). 

V. SYSTEMATIC DESIGN FRAMEWORK FOR THE CLOCK TREE  
So far, we have established the models governing the 
relationship between temperature and delay. Furthermore, we 
demonstrated that we can design delay elements to achieve 
the delay adjustment. Now, we need a systematic approach to 
determine the physical specifications of the buffer elements in 
SACTA in order to be able to design the clock tree for a given 

circuit. In this section, we present a network flow based 
method to determine the skew buffer configurations.  

A.  Linking Circuit-Level Aspects with the Design Framework  
Various physical aspects of the skew buffers have a direct 
impact on the formulation of the optimization framework. The 
first significant phenomenon is that the base delay of a ATA 
skew buffer is proportional to its temperature sensitivity 
coefficient. In fact, according to (1~2), for a skew buffer 
consisting of m inverters,  
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which means k is proportional to τ(θmax).  Hence, we can relate 
the temperature sensitivity coefficient and the base delay by  
                                   ( )maxθλτ=k                                    (11)            

Therefore, our optimization scheme cannot assume these 
parameters as independent. As a result, this relationship must 
be accounted for in the form of a constraint in our 
optimization framework (see Constraint (18)). 
Another observation is that the base delays of both types of 
skew buffers cannot be made arbitrarily small. As discussed in 
Section IV, both types of skew buffers contain at least a head 
and a tail minimum sized inverters. Therefore, their minimal 
achievable base delays will be bounded by the sum of the 
delays of these two inverters. These constraints can be 
expressed with the following: 
                           s ≥  smin,  f  ≥  fmin                                       (12) 
Our optimization objective will be a linear combination of the 
skew buffer base delays. Various properties of SACTA can be 
represented with this generalized function. Particularly, the 
overhead of SACTA, i.e., the number of inverters used to 
implement the skew buffers can be represented with this 
function. According to the discussion in Section IV, for both 
types of buffers, the only way to obtain large base delays is to 
size up L. However, there is an upper bound on this sizing 
(5Lmin). Hence, to achieve a given base delay value, there is a 
minimal number of inverters required. Therefore, a large 
value of fi or si corresponds to a higher number of inverters. 
Thus, we can use the summation of the base delays of all 
buffers as a metric for our optimization framework. 
This objective function can be used to represent other design 
metrics as well. For example, the base delay is related to 
power. A skew buffer with longer base delay consumes larger 
amount of power, since sizing up L increases the active area, 
resulting in larger dynamic power consumption. The base 
delay values fi and si can also be related to the susceptibility of 
the skew buffers towards process variation. The magnitude of 
fi and si are positively related with the length L of the 

Figure 5. Design of the ATA skew buffer. 
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transistors in the skew buffers. Larger values of L indicate less 
sensitivity towards lithography induced variations.  

B.  Clock Tree Optimization Framework 
We formulate the problem of determining the physical delay 
parameters si and fi as a generalized min-cost flow problem.  
Problem 2. Base delay calculation for skew buffers: Given 
a pipeline driven by a clock with period time Tcp, determine 
the base delays of the skew buffers, such that their sum is 
minimum, while satisfying the setup and hold time constraints. 
This can be formulated as a linear programming problem: 
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i sfMinimize                                 (13) 

        s.t.             fi – si – fi+1   ≤ Tcp – Di,i+1                             (14) 

                                         fi – si – fi+1  ≥ – di,i+1                                    (15) 
           fi – si + ki ∆θM – fi+1 ≤ Tcp – Di,i+1 + Γi,i+1 ∆θM           (16) 
              fi – si + ki ∆θM  – fi+1 ≥ – di,i+1+ γi,i+1 ∆θM                (17) 
                                   ki – λ si = 0                                        (18) 
                          si ≥ smin,  fi, fi+1 ≥ fmin                                   (19) 
                              i = 1, 2, …, n-1                                      (20) 
Here fi, si, Di,i+1, di,i+1 are the delay values at θmax. ∆θM denotes 
θmax – θmin, the gap between the worst-case temperature and 
minimum temperature. Γi,i+1  and γi,i+1 denote the temperature 
sensitivity coefficient of the longest and shortest 
combinational paths of the ith pipeline stage. Constraints 
(14~17) are derived from (6) and (7). They guarantee that the 
line (xi – xi+1)(θi,i+1) will conform strictly to the timing 
constraints (as depicted in Figure 2). 
Next, we will show that this constraint set has a special 
structure, which enables us to use a generalized min-cost flow 
based algorithm to solve it optimally in polynomial time. 
Simple transformations on the constraints will help reveal this 
special structure. First, substituting (18) into (16~17) yields 
       fi – si (1–λ ∆θM) – fi+1 ≤ Tcp – Di,i+1 + Γi,i+1 ∆θM            (21) 
         fi – si (1–λ ∆θM) – fi+1 ≥ – di,i+1+γi,i+1 ∆θM                   (22) 
Defining new variables fi∆ = fi – fmin, si

∆ = si – smin,  ui =  fi – si 
– fi+1+ di,i+1, and vi = fi – si (1– λ ∆θM) – fi+1 + di,i+1 – γi,i+1 ∆θM, 
constraints (14~15) and (21~22) can be rewritten as   

               –  fi∆ + si
∆ + fi+1

∆ + ui = di,i+1 + smin                     (23) 
–fi∆+(1–λ∆θM)si

∆+fi+1
∆+vi=di,i+1–γi,i+1∆θM+(1–λ∆θM)smin    (24) 

                     0 ≤ ui ≤ Tcp – Di,i+1 + di,i+1                              (25) 
        0 ≤ vi ≤ Tcp–Di,i+1+ di,i+1+ (Γi,i+1 – γi,i+1)∆θM                (26)    
Constraints (23) and (24) give us    
    – (λ ∆θM) si

∆ – ui + vi = – γi,i+1 ∆θM  – (λ ∆θM) smin          (27)   
Equivalently, constraint (24) can be replaced by constraint 
(27). The above transformation yields a new formulation: 
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  s.t.         –  fi∆ + si
∆ + fi+1

∆ + ui = di,i+1 + smin                    (29) 
      – (λ ∆θM) si

∆ – ui + vi = – γi,i+1 ∆θM  – (λ ∆θM) smin       (30)      
                        0 ≤ ui ≤ Tcp - Di,i+1 + di,i+1                           (31) 
           0 ≤ vi ≤ Tcp – Di,i+1 + di,i+1+ (Γi,i+1  –  γi,i+1)∆θM       (32) 
                                si

∆, fi∆ , fi+1
∆ ≥ 0                                   (33) 

                                 i = 1, 2, …, n-1                                 (34) 
Note that the cost functions (13) and (28) only differ by a 
constant. Therefore the new optimization problem (28~34) is 
equivalent to the original one. This formulation is a 
generalized min-cost flow formulation. Variables si

∆ and fi∆ 
can be any real number between 0 and +∞. They can be 
viewed as flows on directed edges, each having a capacity of 
+∞. Also, according to the objective function given in 
Expression (28), each of these edges should be associated 
with cost 1. Likewise, each ui (or vi) can be modeled as a flow 
on a directed edge with cost 0 and having capacity of Tcp–
Di,i+1 + di,i+1 (or Tcp – Di,i+1+ di,i+1+ (Γi,i+1 – γi,i+1)∆θM). Equation 
(29) (or (30)), which has the form of flow conservation 
condition, can be modeled as four (or three) directed edges 
intersecting at a node with the balance expressed as  
        pi = di,i+1 + smin  (or qi = – γi,i+1 ∆θM  – (λ ∆θM) smin)   (35) 
This is also depicted in Figure 6. Note that in constraint (30), 
the coefficient of si

∆ is not 1. However, this kind of constraints 
can still be handled using generalized min-cost flow 
algorithms [15]. 
Based on the graph representation of the constraints (29~33), 
we can model constraints (29~34) as shown in Figure 7. In 
Figure 7, p1, p2, …, pn-1 and q1, q2, …, qn-1 (the white vertices) 
are the nodes representing the constraints (29~30) for all i = 1, 
2, …, n-1. Note that we add a gray node w whose balance is 
expressed as 

Figure 7. Graph based depiction of the constraints (29~34). 
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Figure 6. Graph based depiction of the constraints (29~33). 

   0, Tcp-Di,i+1+di,i+1 , ui 

  cost, capacity, flow 

1, +∞, fi
∆ 1, +∞, fi+1

∆ 
  pi 

qi 

  p q 

1, +∞, si 

     0, Tcp–Di,i+1+di,i+1+(Γi,i+1– γi,i+1)∆θM , vi 

80



                 ( ) ( )[ ]∑
−

=
++ ∆−+∆−−

1

1
1,1, 1

n

i
minMMiiii sd θλθγ  

ensuring the sum of the balances of all the vertices is zero. It 
is easy to prove that the constraints (29~34) have a feasible 
solution if and only if there is a feasible flow on this graph. 
Problem 2 is then reduced to the problem of finding a feasible 
flow that minimizes cost function (28). There are several 
efficient generalized min-cost flow algorithms in the literature 
that guarantee polynomial running time [16].  
The generalized min-cost flow based algorithm determines the 
base delay value for each skew buffer while minimizing the 
total number of inverters used to construct the skew buffers.  
An inverter chain for each skew buffer is then constructed 
according to the base delay value for that buffer. In each chain, 
we set the length of all inverters in the chain except the last 
one to be 5Lmin, and finally, we scale the length of the last 
inverter to the proper value to provide the required base delay.  

VI. EXPERIMENTAL RESULTS 
In this section we first describe our experimental flow. Next, 
we present our results demonstrating the effectiveness of our 
proposed self-adjusting clock tree architecture. 

A. Experimental Setup 
Figure 8 illustrates our experimental flow. We use Synopsys 
Design Compiler to synthesize the benchmarks onto the 
TSMC 180-nm technology library. Design Compiler reports 
the longest and shortest paths for each pipeline stage in the 
benchmarks. The delay values are then scaled for 90-nm 
technology. Also, based on our validated Delay-θ model at 90 
nm, the temperature sensitivity of the longest/shortest paths, 
i.e. the Γ and γ values for each pipeline stage can be 
determined. Then, we feed the Di, i+1, d i, i+1, Γ i, i+1 and γ i, i+1 
values, as well as the given Tcp into our clock tree 
optimization framework. The other two parameters for the 
optimization algorithm, i.e., the boundaries of the operating 
temperature range, are set to 25°C and 125°C. The 
optimization subroutine determines the appropriate buffer 

parameters, which are further used as the guidelines for 
finalizing the skew buffer design. 
We have used a benchmark set consisting of systolic array 
circuits. This set includes a polynomial expression evaluator 
[11], the Reed-Solomon decoder [13], and a fast digital-serial 
multiplier for finite field [12]. These circuits share a common 
structure. A set of Processing Elements (PEs) are connected in 
series. In order to improve system throughput, the circuits are 
pipelined by inserting registers between the PEs. In our 
experiments, we divide each benchmark into five pipeline 
stages. To better evaluate our technique, we allow both 
balanced and unbalanced pipeline partitions. The pipeline 
partitions are summarized in Table I. The columns s1-s5 
denote the number of PEs in each pipeline stage. For example, 
the unbalanced-partitioned benchmark PolyEval, contains 1, 3, 
1, 3, and 2 PEs, in pipeline stages s1 through s5, respectively. 

B. Experimental Results 
Our first set of results, depicted in Figure 9, presents the 
maximum operating temperature with guaranteed timing 
correctness for all the pipelines under spatially uniform 
temperature distribution. The required clock periods for the 
pipelines are given in Table II. PB (PU) denotes balanced 
(unbalanced) pipeline of benchmark PolyEval; RB (RU) 
represents balanced (unbalanced) pipeline of benchmark 
RSDecoder; and FB (FU) stands for balanced (unbalanced) 
pipeline of benchmark FiniteFiledMult.      
First, we evaluate SACTA’s resilience against temperature 
variations. We compare two cases: SACTA versus utilizing 
static clock skew scheduling in the pipeline designs. For each 
pipeline, we keep increasing its operating temperature until 
the timing constraint is violated. This temperature is recorded 
as the maximum tolerable temperature for that pipeline under 
the given clock period constraint.  

Figure 8. Experimental flow. 
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TABLE I. PIPELINE PARTITION OF THE BENCHMARKS. 

Balanced Unbalanced              Partition 
Circuit 

  s1 s2 s3 s4 s5 s1 s2 s3 s4 s5 
PolyEval 2 2 2 2 2 1 3 1 3 2 

RSDecoder 2 2 2 2 2 2 3 1 1 3 
FiniteFieldMult 2 2 2 2 2 1 3 1 2 3 

TABLE II. CLOCK PERIOD FOR THE PIPELINES. 

 PB PU RB RU FB FU 
Tcp/ps 221 318 1331 1983 210 301 

Figure 9. Maximum permissible temperature. 
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We observe that using SACTA, the maximum tolerable 
temperature can be dramatically increased. All pipelines can 
function correctly until chip temperature attains the designed 
maximal value, 125°C. As a comparison, both 
balanced/unbalanced FiniteFieldMult pipelines without 
SACTA fail below 80°C, indicating an over 45°C increase in 
maximal tolerable temperature. Approximately the same 
improvement is observed for the benchmark PolyEval. 
Next, we experiment with different thermal profiles. Table III 
presents our results, where “√” signifies that circuit functions 
correctly, and “X” indicates timing constraits are violated. 
Obviously examining all possible thermal profiles is 
impractical. Here, we only consider some representative 
profiles. The first (second) one represents a monotonically 
decreasing (increasing) profile across the pipeline stages. The 
third (fourth) profile exhibits a profile that is first increasing 
(decreasing) and then decreasing (increasing). Finally, the last 
two profiles represent monotonically decreasing and 
increasing profiles respectively, however, the maximum 
temperatures are above 125°C, the expected worst case 
operating temperature. The clock period times for the 
pipelines are set according to Table II. We observe that for the 
thermal profiles with peak temperature less than 125°C, no 
timing violation occurs with SACTA. Even for some profiles 
with higher maximal temperature, pipelines with SACTA can 
still work correctly. The pipelines without SACTA fail in 
most cases. 
Our experimental results also indicate that SACTA can 
enhance system performance. In this experiment, the chip is 
assumed to uniformly execute at the worst case operating 
temperature 125°C. For the pipelines without SACTA, as 
mentioned in Section III.B, the best we can do to prevent 
thermal induced timing violation is to set the skew of the ith 
pipeline stage to – di,i+1(θmin). For the pipelines with SACTA, 
we determine fi and si using the clock tree optimization 
algorithm. We then keep increasing the clock frequency until 
a timing violation occurs. Figure 10 plots the relative 
performance gain. For each pipeline, the maximal achivable 

frequency without SACTA is normalized to 1. By employing 
SACTA, the maximum achievable clock frequency can be 
increased. For PolyEval and FiniteFieldMult, the relative 
improvements range from 7% to 9%. 
Table IV reports the hardware overhead of SACTA, i.e., the 
number of inverters on the clock tree. We also report the 
number of standard cells in the original pipeline circuit 
generated by Design Compiler as a comparison. It is clear that 
the hardware overhead of SACTA is quite small. 

VII.  CONCLUSIONS 
We have proposed SACTA, a self-adjusting clock tree 
architecture and a dynamic clock scheduling scheme to 
improve performance and reliability of pipelined circuits. We 
designed temperature adjustable skew buffers to create useful 
temperature dependent clock skews. We developed a two-step 
technique for design of a power optimized clock tree. 
Experimental results show that our scheme can dramatically 
improve the temperature tolerance. The increase in maximal 
tolerable temperature is by as much as 45°C.  
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TABLE III. EXPERIMENTAL RESULTS WITH DIFFERENT THERMAL PROFILES. 

Thermal Profiles/°C Pipelines w/o SACTA Pipelines w/ SACTA 

s1 s2 s3 s4 s5 PB PU RB RU FB FU PB PU RB RU FB FU
125 115 110 107 105 X X X X X X √ √ √ √ √ √ 
105 107 110 115 125 X X X X X X √ √ √ √ √ √ 
100 105 110 105 100 X X √ √ X X √ √ √ √ √ √ 
110 105 100 105 110 X X √ √ X X √ √ √ √ √ √ 
135 125 120 117 115 X X X X X X X √ X √ X √ 
115 117 120 125 135 X X X X X X X √ X X X X 

TABLE IV. OVERHEAD OF SACTA. 
 PB PU RB RU FB FU 

On-Tree Inv Num 67 51 67 50 67 53 
Pipeline Cell Num 2082 2082 1572 1572 498 498 
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Figure 10. Relative performance improvement. 
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