
A Self-Adjusting Clock Tree Architecture to Cope
with Temperature Variations

Jieyi Long, Ja Chun Ku†, Seda Ogrenci Memik, and Yehea Ismail
Department of EECS, Northwestern University, Evanston, IL 60208, U.S.A.

{jlo198, seda, ismail}@ece.northwestern.edu, j-ku@northwestern.edu

Abstract-Ensuring resilience against environmental variations is
becoming one of the great challenges of chip design. In this
paper, we propose a self adjusting clock tree architecture,
SACTA, to improve chip performance and reliability in the
presence of on-chip temperature variations. SACTA performs
temperature dependent dynamic clock skew scheduling to
prevent timing violations in a pipelined circuit. We present an
automatic temperature adjustable skew buffer design, which
enables the adaptive feature of SACTA. Furthermore, we
propose an efficient and general optimization framework to
determine the configuration of these special delay elements.
Experimental results show that a pipeline supported by SACTA
is able to prevent thermal induced timing violations within a
significantly larger range of operating temperatures (enhancing
the violation-free range by as much as 45°C).

I. INTRODUCTION
Steady miniaturization and large-scale integration lead to
increasing power densities. As a result, on-chip temperatures
are rising steadily as technology is scaling down. Making
matters worse, power management techniques such as clock
gating, voltage islands, and power gating may lead to drastic
temporal and spatial variations of chip temperatures. In
addition, a chip may be deployed in diverse environments
where the level of cooling support as well as the nominal
temperature could not be accurately predicted at the design
time. Finally, power consumption of a chip can be highly
input dependent, leading to variations in chip temperature
throughout the execution of an application.
Temperature variation affects timing since interconnect
resistance and cell delay are dependent on temperature. Both
temporal and spatial temperature variations may cause
significant changes in switching speed of gates and result in
timing violations. This phenomenon further amplifies the
challenges of chip design considering thermal effects. The
idea of designing circuits with guaranteed performance
bounds while exhibiting resilience against environmental
variations arises as an attractive option.
In this paper, we introduce SACTA, a Self-Adjusting Clock
Tree Architecture to address this problem. SACTA guarantees
correct timing behavior in pipelined circuits within a large
range of thermal conditions through a self-adjusting,
temperature-sensitive skew distribution mechanism. SACTA
exploits clock skews to maintain the performance in the
presence of delay variations within pipeline stages.

Adaptability is achieved by utilizing a set of special skew
buffers. These elements are designed to exhibit carefully
tuned temperature dependent delay behavior in
synchronization with the temperature levels prevalent in the
logic of the pipeline. Thereby, they generate a self-adjusting
skew tailored to the temperature dependent timing behavior of
each pipeline stage. We also developed a systematic design
method to determine the physical specifications of these skew
buffers (i.e. parameters that define their delay behavior) for a
given pipelined circuit and a range of operating temperatures.
Our approach aims to provide a solution that can effectively
avoid thermal induced delay violations considering the impact
of temperature on both the clock tree and the datapath. We
have evaluated the effectiveness of SACTA using a set of
synchronous pipelined circuits. SACTA is able to prevent
thermal induced timing violations within a significantly larger
range of operating temperatures (enhancing the violation-free
range by as much as 45°C). SACTA effectively enhances
reliability while introducing negligible circuit level overhead.
The remainder of this paper is organized as follows. Section II
provides an overview of related work. In Section III, our
model of temperature dependent delay variation is presented,
followed by the detailed discussion of the self-adjusting clock
tree architecture. Design of our automatic temperature
adjustable (ATA) skew buffers is described in Section IV. We
introduce our clock tree design framework in Section V. Our
experimental evaluation is presented in Section VI. We
conclude with a summary of our findings in Section VII.

II. RELATED WORK
The increasing impact of temperature variation on circuit
timing has motivated several techniques. Some effort has been
devoted to developing temperature-insensitive zero/bounded
skew clock trees. Dual-supply-voltage clock tree [1] utilizes
the fact that CMOS gate delay is insensitive to temperature at
a specific supply voltage level VZTC. VZTC is technology
dependent and is at around 0.83V for 90nm. By supplying the
on-tree buffers with this voltage, the clock tree is made to
have zero skew for any given thermal profile. Although this
technique can effectively eliminate delay fluctuations on the
clock tree, considering the clock tree alone is insufficient. In a
circuit where a zero-skew tree is used, to achieve maximal
performance, Tcp is roughly set to the delay of the critical path.
Since the delay of the critical path has positive dependence on
temperature, as temperature increases, the delay of the critical
path may exceed Tcp at a certain point. A zero-skew design
will fail beyond this temperature. Also, it might at first appear

This work was supported by the National Science Foundation CAREER
Award CNS-0546305 and NSF grant CCF-0541337.
†Now with Samsung Electronics Co., Ltd., Korea.

1-4244-1382-6/07/$25.00 ©2007 IEEE 75

as a viable approach to supply the entire design with VZTC to
achieve a system with absolute temperature independence.
However, technology trends, particularly the relationship
between supply level and the necessary threshold voltage
levels for transistors, indicate that supply levels are unlikely to
scaled beyond a certain level [2]. �
An alternative is to use clock skew to enhance immunity to
temperature variation. An integer linear programming
formulation for clock skew scheduling in the presence of
process and environment variations has been proposed [3].
However, improvement in reliability was achieved at the
expense of performance, making this approach less attractive
to high performance circuit designers.
Lee et al. proposed a circuit-level timing error detection/
correction scheme [4]. The idea is to create clock skews
dynamically such that those pipeline stages that require longer
execution times due to environmental fluctuations are
assigned longer intervals. However, compared to our scheme,
this requires significantly more hardware resources (such as
shadow registers and a central control unit for error
monitoring and skew creation) and is able to provide only a
discrete set of skew values (versus the continous scale
generated by our scheme).
Finally, a large body of work addressed static clock skew
scheduling [5-7]. These techniques do not attempt to solve the
problem of delay variability, hence, our problem is
fundamentally different.

III. THE SELF-ADJUSTING CLOCK TREE ARCHITECTURE
Consider a local pipeline stage between two registers Ri and
Ri+1. The following two constraints should be met to preserve
correct circuit functionality [7]:
 xi + Di,i+1 ≤ xi+1 + Tcp and xi + di,i+1 ≥ xi+1
Here xi and xi+1 are defined as the clock signal delays from the
clock source to Ri and Ri+1. The difference between the arrival
times of the clock signal at two successive registers is defined
as the clock skew. It could be expressed as (xi – xi+1). Di,i+1=
Tc-q+ Tlogic(max)+Tsetup, di,i+1=Tc-q+Tlogic(min)+Thold signify the
largest and shortest expected latencies for the pipeline stage
located between these registers.
A clock skew schedule for a given pipeline is a set of delay
values {xi} satisfying these constraints. Existing techniques
only address static clock skew schedule. However, these
constraints are in fact temperature dependent. Therefore, a
given static clock skew schedule satisfying the constraints for
some temperature profiles may fail for others, even if for
these profiles, a static clock skew schedule does exist. This
has motivated us to develop a dynamic clock skew scheduling
scheme and the self-adjusting clock tree architecture.
On circuit layout, the logic gates and the registers in the same
pipeline stage are normally placed in close proximity, since
this will help shorten the critical path. Due to this spatial
correlation, the temperature of the combinational logic and the
associated pipeline registers are approximately the same. We
use θi,i+1 to denote this local temperature for the pipeline
stage between registers Ri and Ri+1. Then, the maximum and

minimum stage latencies Di,i+1 and di,i+1 can be expressed as
functions of the local temperature as Di,i+1(θi,i+1) and
di,i+1(θi,i+1).
Our goal is to design a self-adjusting clock tree that is able to
adapt to different thermal profiles. In other words, for a given
thermal profile, if there exists a static clock skew schedule to
guarantee correct operation, our clock tree should be able to
configure itself to provide this clock skew. To solve this
problem we need to first understand the relationship between
temperature and delay for circuit elements. In the following
we present the temperature dependent delay model we have
utilized to describe the behavior of logic.

A. Temperature Dependent Delay Model and Its Validation
Circuit delay of a CMOS gate can be written as

d

dd

I
CV

∝τ (1)

where C is the load capacitance driven by the gate, Vdd is the
supply voltage (voltage swing), and Id is the drain current of
the transistors. The drain current stays mostly in the saturation
region in deep submicron technologies due to velocity
saturation [8]. Using the alpha-power law [8], the drain
current in the saturation region is expressed as

 () ()()αθθµ thgsd VV
L
WI −∝ (2)

θ denotes the gate temperature, µ is the carrier mobility, W
and L are the channel width and length, respectively, Vgs is the
gate-to-source voltage, Vth is the threshold voltage, and α is
the velocity saturation index whose value is between 1 and 2
(closer to 1 in deep submicron technologies) [8]. Note that µ
decreases as the temperature is raised, but its temperature
dependence weakens to a linear relationship in the saturation
region due to velocity saturation [9]. The temperature
dependence of µ in the saturation region can be written as
 ()00 θθηµµ −−= (3)

where µ0 is the mobility at the nominal temperature θ0, which
is typically 25ºC, and η is the temperature coefficient. Vth also
decreases linearly as the temperature is raised, and is given by
 ()00 θθκ −−= thth VV (4)

where Vth0 is the threshold voltage at the nominal temperature,
and κ is the temperature coefficient. Substituting (3) and (4)
into (2) and (1), and taking a first order approximation, the
temperature dependence of a CMOS gate delay can be
simplified to a linear function of temperature [9]:
 ()00 θθττ −+= k , (5)

where τ0 is the delay at the nominal temperature.
This linear model was validated against HSPICE using a
chain of several different gates such as NAND, NOR, and
XOR in the 90nm PTM technology [10]. The result is shown
in Figure 1. It can be seen that there is an excellent agreement
between the linear model and HSPICE.
Note that this linear temperature dependence of the delay is
equally applicable to the combinational logic and the skew

76

buffers. In the local datapath of pipeline stages, the RC delay
of the signal is dominated by the gate capacitances. We can
safely ignore the share of the interconnect delay. As a result,
we can assume the same temperature dependence for the
combinational logic and the skew buffers.

B. Temperature Dependent Dynamic Clock Skew Scheduling
Our methodology to design the self-adjusting clock tree
utilizes the linear model described in the previous section.
Given this model, we formulate our problem as follows:
Problem 1. Thermal-aware dynamic clock skew
scheduling: Given a pipeline driven by a clock with period
time Tcp and the temperatures of the pipeline stages {θi,i+1 | θmin
≤ θi,i+1 ≤ θmax}, if the set of inequalities
 – di,i+1(θi,i+1) ≤ xi – xi+1 ≤ Tcp – Di,i+1(θi,i+1) (6)
have a static solution {xi}expect, then, the self-adjusting clock
tree should be able to adjust the actual arrival time {xi} to
{xi}expect in order to avoid circuit malfunction.
Figure 2 illustrates the timing constraints as functions of
temperature. According to the analysis in Section IV.A, both
di,i+1(θi,i+1) and Di,i+1(θi,i+1) are linear functions of θi,i+1.
Therefore, the timing constraints can be represented with two
lines as shown in Figure 2(a). Furthermore, the temperature
range, where correct operation must be guaranteed, can be
represented with two vertical lines. If static clock skew
scheduling is used, the best we can do to cope with
temperature variation is to set (xi – xi+1) equal to –di,i+1(θmin).
However, as shown in Figure 2(a), timing violations can still
occur even below the maximum operating temperature θmax. If
we can couple the value of (xi – xi+1) with θi,i+1, with a linear
function, then Constraint (6) may never be violated as long as
the local temperature θi,i+1 remains between θmin and θmax. An
example of such a linear function is depicted in Figure 2(b).
Now our problem becomes designing a clock tree that can
supply dynamically changing skew values to pipeline registers,
where the relationship between the skew value and the
temperature in the region of interest should be in the form of a
linear function. Note that we have established a linear
relationship between the delay of a logic gate and temperature.
We will take advantage of this result and employ special skew
buffers in our clock tree architecture, which will render the
temperature dependent behavior we desire.

C. Self-Adjusting Clock Tree Architecture
Figure 3 depicts a pipeline with our proposed Self-Adjusting
Clock Tree Architecture (SACTA). The white triangles
represent the Automatic Temperature Adjustable (ATA) skew
buffers. The relationship between their delay and temperature
is expressed as si – ki∆θ. si is the delay of the skew buffer at
the worst case temperature θmax. We refer to this delay value
as the base delay of the ATA skew buffer. ki is the
temperature sensitivity coefficient. Here, ∆θ is defined as θmax
– θ, i.e., the difference between θmax and actual operating
temperature in the vicinity of the skew buffer. The gray
triangles represent the temperature-insensitive skew buffers
(which will be refered to as fixed buffers) with base delay fi.
In this architecture, the skew of the ith pipeline stage will be
 xi – xi+1 = fi – fi+1 – si +ki (θmax– θ) (7)
In order to ensure that this function is linearly dependent on
the local temperature θi,i+1 of the pipeline stage i, all we need
to do is to place the ith ATA skew buffer close to the logic of
the ith pipeline stage on the circuit layout. Spatial correlation
will enable the coupling between the temperature variable θ in
Equation (7) and the local temperature θi,i+1 of pipeline stage i.
It can be easily seen that the purpose of the ATA buffers is to

40 60 80 100 120
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16
HSPICE
Lin ear model

Figure 1. Validation of the linear model for the temperature
dependence of gate delay against HSPICE.

Ri Ri+1 RnR1

s1-k1∆θ si-ki∆θ si+1-ki+1∆θ

f1 fi fi+1 fn

 Figure 3. SACTA: Self-Adjusting Clock Tree Architecture.

… …

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

delay

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

θmin θfail

temperature

static skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

dynamic skew
assignment

θmax

Tcp – Di,i+1(θi,i+1)

– di,i+1(θi,i+1)

(xi – xi＋1)(θi,i+1)
θmin

(b)

(a)

Figure 2. (a) Failing Temperature θfail; Timing violations may
occur if θfail is exceeded. (b) Utilizing temperature-sensitive skew

to improve system immunity against temperature variation.

77

generate the temperature-dependent coupling between
pipeline latencies and the skew needed to ensure timing
correctness. However, by employing ATA buffers alone we
can only create negative skew between consecutive registers.
Positive skew might also be needed. The purpose of the fixed
buffers is to provide such positive skews.

D. Applications of SACTA and Its Limitations
With different temperature profiles the skew distribution of
SACTA will clearly be different. As a result the total skew
created within the pipeline (i.e., the sum of all skews across
the stages) will be variable with temperature. This means, that
there is not a single fixed total skew value between any two
registers. In fact, this is the special property of SACTA that
enables us to achieve adaptability. At the boundary case, this
can be interpreted as having a variable non-zero skew
between the input registers and the output registers.
For a one-dimensional linear pipeline this does not pose any
limitations. On the other hand, if the pipeline is expected to
communicate synchronously with another entity, then this
might become an issue. In such a case, one possibility is to
isolate the last pipeline stage from SACTA, thereby confining
the end-to-end skew. In systems such as the Globally
Asynchronous Locally Synchronous (GALS) system, this
would not be needed. SACTA can be safely applied to the
entire pipeline. Since for GALS inter-module communication
is asynchronous, zero off-module clock skew is not required.
For those pipeline stages lying on the feedback loops, the
ATA skew buffers of SACTA cannot completely cover the
associated combinational logic along this loop. However, if
those uncovered pipeline stages do not lie on the critical path,
then this will not be crucial.
In the remainder of our discussions, each synchronous
pipeline will be modeled as a one-dimensional pipeline
corresponding to a submodule. This model is representative
for a large number of synchronized circuits, such as various
ASICs for signal processing and applications [11-13].

IV. SKEW BUFFER DESIGN
In this section, the designs of the fixed skew buffer and the
ATA skew buffer are presented.

A. Temperature-Insensitive (Fixed) Skew Buffer
Temperature insensitive skew buffers can be designed by
biasing the gate to the ZTC (Zero-Temperature-Coefficient)
point. The ZTC point is a gate bias where the effect of change
in the threshold voltage cancels out that of the mobility,
making the drain current independent of temperature [14].
Thus, fixed skew buffers can be designed by using inverters
whose gate-to-source voltage corresponds to the ZTC point.
In order to bias the gate to the ZTC point, a voltage reference
circuit that generates the ZTC voltage is needed. Figure 4(a)
shows the voltage reference circuit using a transisor (M4)
whose drain is connected to its gate and a current source. The
connection between the drain and the gate ensure its operation
to take place in the saturation region. The current equation in
the saturation region in (2) can be rearranged as

th

d
gs V

KW
LIV += α

µ
 (8)

where K is a constant that is specific to a given technology.
Hence, the current source can be used to provide the
necessary amount of Id to bias M4 to the ZTC point. The
current source shown in Figure 4(a) consists of an inverter
whose input and output are tied together and M3. By careful
sizing of M1 and M2, the output of the inverter can be
controlled to generate the ZTC voltage which, in turn,
produces the required Id for ZTC point through M3. Our
HSPICE simulation showed that the ZTC voltage in the 90nm
technology is 0.83V which places the PMOS transistor in the
linear region, and the NMOS in the saturation region. Using
the alpha-power law [8], the output voltage of the inverter is
related to the sizing of M1 and M2 by

() ()αα

thnoutM
M

M
outthpoutM

M

M VVK
L
WVVVK

L
W −=− 2

2

221
1

1 (9)

where KM1 and KM2 are technology-specific constants. Note
that using the inverter in Figure 4(a) alone to generate the
ZTC voltage is unstable since any current flow from this
source will result in fluctuations in the reference voltage. By
using a chain of inverters whose supply rail is the ZTC
voltage generated from the circuit as shown in Figure 4(b), the
drain current of transistors becomes temperature-insensitive,
thereby making the delay of the skew buffer independent of
temperature variations as well.
In order to create a desired amount of delay for each buffer, a
mixture of sizing and cascading of inverters is used. Larger L
increases the delay, but inverters with L that is too large may
not be able to generate full voltage swing at the output in a
given clock cycle, possibly leading to functional errors
especially after a chain of several inverters. Hence, 5Lmin is
used as the upper limit to avoid such errors for clock
frequency of 3.0GHz in the 90nm technology, as determined
from HSPICE simulation. To create more delay in a buffer,
one can cascade more inverters as long as the correct logic
level is preserved (i.e. even number of inverters). L of the
cascaded inverters is varied between Lmin and 5Lmin except for
the first and the last inverter, while W is kept at minimum size
for all. Minimum size is used for the last inverter to recover
fast transition time and full voltage swing of the signal before
it reaches the register. Futhermore, the use of minimum size
for the first inverter synchronizes and minimizes the load
driven by the last inverter in the ATA skew buffer which will

Figure 4. (a) Schematic of the ZTC voltage reference circuit (b)
Design of the fixed skew buffer using the ZTC voltage reference.

(a) (b)

M4 VZTC

+

-

IZTC

M1

M2

M3

Vdd

Vdd

IZTC

M4 VZTC

+

-

IZTC

M4 VZTC

+

-

IZTC

M1

M2

M3

Vdd

Vdd

IZTC

M1

M2

M3

Vdd

Vdd

IZTC

M1

M2

M3

Vdd

Vdd

IZTC

VZTC

Fixed Skew Buffer

min-sizemin-size

ZTC
Voltage

Ref
Wmin & [Lmin, 5Lmin]

Vdd

VZTC

Fixed Skew Buffer

min-sizemin-size

ZTC
Voltage

Ref
Wmin & [Lmin, 5Lmin]

Vdd

78

be discussed in the subsequent section. Besides the first and
the last inverters, there is a degree of freedom for the number
of inverters and their channel lengths.

B. Automatic Temperature Adjustable (ATA) Skew Buffer
The temperature-sensitivity of skew buffers can also be
adjusted by a mixture of sizing and cascading of inverters.
From (1) through (4), the temperature sensitivity of the gate
delay (i.e. the temperature coefficient k in (5)) is related to
gate sizing by

()() () ()()[]
() ()()

0
0

22

1

θθ

α

αα

θθ θθµ
θθακµθη

θ
τ

=

−

= −

−−−
∝

∂
∂

=
thgs

thgsthgsdd

VVW

VVVVLCV
k (10)

As indicated by (10), increasing L amplifies the temperature
sensitivity, which results in a longer delay as well.
Furthermore, when several inverters are cascaded together,
increasing L of an inverter also increases its gate capacitance,
which increases the delay and the temperature sensitivity of
the previous inverter (increase in C in (10)). The increase in
the absolute value of the delay is not a problem in the clock
distribution network as long as the relative arrival times of the
clock signals are well controlled.
Figure 5 shows the design of the ATA skew buffer, connected
to the fixed skew buffers described in the preceding section.
The ATA skew buffer consists of a chain of cascaded
inverters. The supply rail of the last inverter is connected to
the ZTC voltage instead of Vdd (1.3V) because its output is
connected to the gate of the fixed skew buffer, which need to
be biased to the ZTC voltage. The first inverter in the next
ATA skew buffer then converts the voltage swing back to
1.3V. Minimum W is used for all the inverters in the chain
since increased width reduces the temperature sensitivity. As
for L, a range between Lmin and 5Lmin is used for all the
inverters in the chain except for the first and the last inverter
(Lmin is used for the first and the last inverter for the same
reasons explained in the preceding section).

V. SYSTEMATIC DESIGN FRAMEWORK FOR THE CLOCK TREE
So far, we have established the models governing the
relationship between temperature and delay. Furthermore, we
demonstrated that we can design delay elements to achieve
the delay adjustment. Now, we need a systematic approach to
determine the physical specifications of the buffer elements in
SACTA in order to be able to design the clock tree for a given

circuit. In this section, we present a network flow based
method to determine the skew buffer configurations.

A. Linking Circuit-Level Aspects with the Design Framework
Various physical aspects of the skew buffers have a direct
impact on the formulation of the optimization framework. The
first significant phenomenon is that the base delay of a ATA
skew buffer is proportional to its temperature sensitivity
coefficient. In fact, according to (1~2), for a skew buffer
consisting of m inverters,

() ()()
() ()()

() ()()

() ()()
() ()() ()max

maxmax

1

maxmax

maxmax

1

0

0

00

θτ
θθµ
θθµ

θ

θθµ
θθµ

θθθµ

θ
τ

θ
τ

θθ

α

α

θθ

α

α

α

θθθθ

=

=

=

= ==

−
−

∂
∂=

−
−

∂
∂

−
∝

∂
∂=

∂
∂=

∑

∑

thgs

thgs

m

i thgs

thgs

thgs
i

i

ddi

m

i

i

VV
VV

VV
VV

VV
L
W

VC

k

which means k is proportional to τ(θmax). Hence, we can relate
the temperature sensitivity coefficient and the base delay by
 ()maxθλτ=k (11)

Therefore, our optimization scheme cannot assume these
parameters as independent. As a result, this relationship must
be accounted for in the form of a constraint in our
optimization framework (see Constraint (18)).
Another observation is that the base delays of both types of
skew buffers cannot be made arbitrarily small. As discussed in
Section IV, both types of skew buffers contain at least a head
and a tail minimum sized inverters. Therefore, their minimal
achievable base delays will be bounded by the sum of the
delays of these two inverters. These constraints can be
expressed with the following:
 s ≥ smin, f ≥ fmin (12)
Our optimization objective will be a linear combination of the
skew buffer base delays. Various properties of SACTA can be
represented with this generalized function. Particularly, the
overhead of SACTA, i.e., the number of inverters used to
implement the skew buffers can be represented with this
function. According to the discussion in Section IV, for both
types of buffers, the only way to obtain large base delays is to
size up L. However, there is an upper bound on this sizing
(5Lmin). Hence, to achieve a given base delay value, there is a
minimal number of inverters required. Therefore, a large
value of fi or si corresponds to a higher number of inverters.
Thus, we can use the summation of the base delays of all
buffers as a metric for our optimization framework.
This objective function can be used to represent other design
metrics as well. For example, the base delay is related to
power. A skew buffer with longer base delay consumes larger
amount of power, since sizing up L increases the active area,
resulting in larger dynamic power consumption. The base
delay values fi and si can also be related to the susceptibility of
the skew buffers towards process variation. The magnitude of
fi and si are positively related with the length L of the

Figure 5. Design of the ATA skew buffer.

Fixed Skew Buffers

Automatic Temperature Adjustable Skew Buffer

min-size min-size

Wmin & [Lmin, 5Lmin]

Vdd ZTC
Voltage

Ref

VZTC

Fixed Skew Buffers

Automatic Temperature Adjustable Skew Buffer

min-size min-size

Wmin & [Lmin, 5Lmin]

Vdd ZTC
Voltage

Ref

VZTC

79

transistors in the skew buffers. Larger values of L indicate less
sensitivity towards lithography induced variations.

B. Clock Tree Optimization Framework
We formulate the problem of determining the physical delay
parameters si and fi as a generalized min-cost flow problem.
Problem 2. Base delay calculation for skew buffers: Given
a pipeline driven by a clock with period time Tcp, determine
the base delays of the skew buffers, such that their sum is
minimum, while satisfying the setup and hold time constraints.
This can be formulated as a linear programming problem:

 ∑∑
−

==
+

1

11

n

i
i

n

i
i sfMinimize (13)

 s.t. fi – si – fi+1 ≤ Tcp – Di,i+1 (14)

 fi – si – fi+1 ≥ – di,i+1 (15)
 fi – si + ki ∆θM – fi+1 ≤ Tcp – Di,i+1 + Γi,i+1 ∆θM (16)
 fi – si + ki ∆θM – fi+1 ≥ – di,i+1+ γi,i+1 ∆θM (17)
 ki – λ si = 0 (18)
 si ≥ smin, fi, fi+1 ≥ fmin (19)
 i = 1, 2, …, n-1 (20)
Here fi, si, Di,i+1, di,i+1 are the delay values at θmax. ∆θM denotes
θmax – θmin, the gap between the worst-case temperature and
minimum temperature. Γi,i+1 and γi,i+1 denote the temperature
sensitivity coefficient of the longest and shortest
combinational paths of the ith pipeline stage. Constraints
(14~17) are derived from (6) and (7). They guarantee that the
line (xi – xi+1)(θi,i+1) will conform strictly to the timing
constraints (as depicted in Figure 2).
Next, we will show that this constraint set has a special
structure, which enables us to use a generalized min-cost flow
based algorithm to solve it optimally in polynomial time.
Simple transformations on the constraints will help reveal this
special structure. First, substituting (18) into (16~17) yields
 fi – si (1–λ ∆θM) – fi+1 ≤ Tcp – Di,i+1 + Γi,i+1 ∆θM (21)
 fi – si (1–λ ∆θM) – fi+1 ≥ – di,i+1+γi,i+1 ∆θM (22)
Defining new variables fi∆ = fi – fmin, si

∆ = si – smin, ui = fi – si
– fi+1+ di,i+1, and vi = fi – si (1– λ ∆θM) – fi+1 + di,i+1 – γi,i+1 ∆θM,
constraints (14~15) and (21~22) can be rewritten as

 – fi∆ + si
∆ + fi+1

∆ + ui = di,i+1 + smin (23)
–fi∆+(1–λ∆θM)si

∆+fi+1
∆+vi=di,i+1–γi,i+1∆θM+(1–λ∆θM)smin (24)

 0 ≤ ui ≤ Tcp – Di,i+1 + di,i+1 (25)
 0 ≤ vi ≤ Tcp–Di,i+1+ di,i+1+ (Γi,i+1 – γi,i+1)∆θM (26)
Constraints (23) and (24) give us
 – (λ ∆θM) si

∆ – ui + vi = – γi,i+1 ∆θM – (λ ∆θM) smin (27)
Equivalently, constraint (24) can be replaced by constraint
(27). The above transformation yields a new formulation:

 ∑∑
−

==
+

1

11

n

i

∆
i

n

i

∆
i sfMinimize (28)

 s.t. – fi∆ + si
∆ + fi+1

∆ + ui = di,i+1 + smin (29)
 – (λ ∆θM) si

∆ – ui + vi = – γi,i+1 ∆θM – (λ ∆θM) smin (30)
 0 ≤ ui ≤ Tcp - Di,i+1 + di,i+1 (31)
 0 ≤ vi ≤ Tcp – Di,i+1 + di,i+1+ (Γi,i+1 – γi,i+1)∆θM (32)
 si

∆, fi∆ , fi+1
∆ ≥ 0 (33)

 i = 1, 2, …, n-1 (34)
Note that the cost functions (13) and (28) only differ by a
constant. Therefore the new optimization problem (28~34) is
equivalent to the original one. This formulation is a
generalized min-cost flow formulation. Variables si

∆ and fi∆
can be any real number between 0 and +∞. They can be
viewed as flows on directed edges, each having a capacity of
+∞. Also, according to the objective function given in
Expression (28), each of these edges should be associated
with cost 1. Likewise, each ui (or vi) can be modeled as a flow
on a directed edge with cost 0 and having capacity of Tcp–
Di,i+1 + di,i+1 (or Tcp – Di,i+1+ di,i+1+ (Γi,i+1 – γi,i+1)∆θM). Equation
(29) (or (30)), which has the form of flow conservation
condition, can be modeled as four (or three) directed edges
intersecting at a node with the balance expressed as
 pi = di,i+1 + smin (or qi = – γi,i+1 ∆θM – (λ ∆θM) smin) (35)
This is also depicted in Figure 6. Note that in constraint (30),
the coefficient of si

∆ is not 1. However, this kind of constraints
can still be handled using generalized min-cost flow
algorithms [15].
Based on the graph representation of the constraints (29~33),
we can model constraints (29~34) as shown in Figure 7. In
Figure 7, p1, p2, …, pn-1 and q1, q2, …, qn-1 (the white vertices)
are the nodes representing the constraints (29~30) for all i = 1,
2, …, n-1. Note that we add a gray node w whose balance is
expressed as

Figure 7. Graph based depiction of the constraints (29~34).

p1 p2 p3 pn-1

q1 q2 q3 qn-1

w

p1 p2 p3 pn-1

q1 q2 q3 qn-1

w

Figure 6. Graph based depiction of the constraints (29~33).

 0, Tcp-Di,i+1+di,i+1 , ui

 cost, capacity, flow

1, +∞, fi
∆ 1, +∞, fi+1

∆
 pi

qi

 p q

1, +∞, si

 0, Tcp–Di,i+1+di,i+1+(Γi,i+1– γi,i+1)∆θM , vi

80

 () ()[]∑
−

=
++ ∆−+∆−−

1

1
1,1, 1

n

i
minMMiiii sd θλθγ

ensuring the sum of the balances of all the vertices is zero. It
is easy to prove that the constraints (29~34) have a feasible
solution if and only if there is a feasible flow on this graph.
Problem 2 is then reduced to the problem of finding a feasible
flow that minimizes cost function (28). There are several
efficient generalized min-cost flow algorithms in the literature
that guarantee polynomial running time [16].
The generalized min-cost flow based algorithm determines the
base delay value for each skew buffer while minimizing the
total number of inverters used to construct the skew buffers.
An inverter chain for each skew buffer is then constructed
according to the base delay value for that buffer. In each chain,
we set the length of all inverters in the chain except the last
one to be 5Lmin, and finally, we scale the length of the last
inverter to the proper value to provide the required base delay.

VI. EXPERIMENTAL RESULTS
In this section we first describe our experimental flow. Next,
we present our results demonstrating the effectiveness of our
proposed self-adjusting clock tree architecture.

A. Experimental Setup
Figure 8 illustrates our experimental flow. We use Synopsys
Design Compiler to synthesize the benchmarks onto the
TSMC 180-nm technology library. Design Compiler reports
the longest and shortest paths for each pipeline stage in the
benchmarks. The delay values are then scaled for 90-nm
technology. Also, based on our validated Delay-θ model at 90
nm, the temperature sensitivity of the longest/shortest paths,
i.e. the Γ and γ values for each pipeline stage can be
determined. Then, we feed the Di, i+1, d i, i+1, Γ i, i+1 and γ i, i+1
values, as well as the given Tcp into our clock tree
optimization framework. The other two parameters for the
optimization algorithm, i.e., the boundaries of the operating
temperature range, are set to 25°C and 125°C. The
optimization subroutine determines the appropriate buffer

parameters, which are further used as the guidelines for
finalizing the skew buffer design.
We have used a benchmark set consisting of systolic array
circuits. This set includes a polynomial expression evaluator
[11], the Reed-Solomon decoder [13], and a fast digital-serial
multiplier for finite field [12]. These circuits share a common
structure. A set of Processing Elements (PEs) are connected in
series. In order to improve system throughput, the circuits are
pipelined by inserting registers between the PEs. In our
experiments, we divide each benchmark into five pipeline
stages. To better evaluate our technique, we allow both
balanced and unbalanced pipeline partitions. The pipeline
partitions are summarized in Table I. The columns s1-s5
denote the number of PEs in each pipeline stage. For example,
the unbalanced-partitioned benchmark PolyEval, contains 1, 3,
1, 3, and 2 PEs, in pipeline stages s1 through s5, respectively.

B. Experimental Results
Our first set of results, depicted in Figure 9, presents the
maximum operating temperature with guaranteed timing
correctness for all the pipelines under spatially uniform
temperature distribution. The required clock periods for the
pipelines are given in Table II. PB (PU) denotes balanced
(unbalanced) pipeline of benchmark PolyEval; RB (RU)
represents balanced (unbalanced) pipeline of benchmark
RSDecoder; and FB (FU) stands for balanced (unbalanced)
pipeline of benchmark FiniteFiledMult.
First, we evaluate SACTA’s resilience against temperature
variations. We compare two cases: SACTA versus utilizing
static clock skew scheduling in the pipeline designs. For each
pipeline, we keep increasing its operating temperature until
the timing constraint is violated. This temperature is recorded
as the maximum tolerable temperature for that pipeline under
the given clock period constraint.

Figure 8. Experimental flow.

V H D L
D escrip tion

T echnology
Lib

D i,i+1 and di,i+1

Scale to 90 nm

Γ i,i+1 and γ i,i+1

C lk Tree
O ptim ization

S AC T A S pecifications

D elay-θ M odel

T cp, θm ax, θm in

S ynopsys
D C

V H D L
D escrip tion

T echnology
Lib

D i,i+1 and di,i+1

Scale to 90 nm

Γ i,i+1 and γ i,i+1

C lk Tree
O ptim ization

S AC T A S pecifications

D elay-θ M odel

T cp, θm ax, θm in

S ynopsys
D C

TABLE I. PIPELINE PARTITION OF THE BENCHMARKS.

Balanced Unbalanced Partition
Circuit

 s1 s2 s3 s4 s5 s1 s2 s3 s4 s5
PolyEval 2 2 2 2 2 1 3 1 3 2

RSDecoder 2 2 2 2 2 2 3 1 1 3
FiniteFieldMult 2 2 2 2 2 1 3 1 2 3

TABLE II. CLOCK PERIOD FOR THE PIPELINES.

 PB PU RB RU FB FU
Tcp/ps 221 318 1331 1983 210 301

Figure 9. Maximum permissible temperature.

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

P B P U R B R U F B F U

M a x T e m peratu re w / S A C T A M a x T e m peratu re w /o S A C T A

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

P B P U R B R U F B F U

M a x T e m peratu re w / S A C T AM a x T e m peratu re w / S A C T A M a x T e m peratu re w /o S A C T AM a x T e m peratu re w /o S A C T AT/˚C

81

We observe that using SACTA, the maximum tolerable
temperature can be dramatically increased. All pipelines can
function correctly until chip temperature attains the designed
maximal value, 125°C. As a comparison, both
balanced/unbalanced FiniteFieldMult pipelines without
SACTA fail below 80°C, indicating an over 45°C increase in
maximal tolerable temperature. Approximately the same
improvement is observed for the benchmark PolyEval.
Next, we experiment with different thermal profiles. Table III
presents our results, where “√” signifies that circuit functions
correctly, and “X” indicates timing constraits are violated.
Obviously examining all possible thermal profiles is
impractical. Here, we only consider some representative
profiles. The first (second) one represents a monotonically
decreasing (increasing) profile across the pipeline stages. The
third (fourth) profile exhibits a profile that is first increasing
(decreasing) and then decreasing (increasing). Finally, the last
two profiles represent monotonically decreasing and
increasing profiles respectively, however, the maximum
temperatures are above 125°C, the expected worst case
operating temperature. The clock period times for the
pipelines are set according to Table II. We observe that for the
thermal profiles with peak temperature less than 125°C, no
timing violation occurs with SACTA. Even for some profiles
with higher maximal temperature, pipelines with SACTA can
still work correctly. The pipelines without SACTA fail in
most cases.
Our experimental results also indicate that SACTA can
enhance system performance. In this experiment, the chip is
assumed to uniformly execute at the worst case operating
temperature 125°C. For the pipelines without SACTA, as
mentioned in Section III.B, the best we can do to prevent
thermal induced timing violation is to set the skew of the ith
pipeline stage to – di,i+1(θmin). For the pipelines with SACTA,
we determine fi and si using the clock tree optimization
algorithm. We then keep increasing the clock frequency until
a timing violation occurs. Figure 10 plots the relative
performance gain. For each pipeline, the maximal achivable

frequency without SACTA is normalized to 1. By employing
SACTA, the maximum achievable clock frequency can be
increased. For PolyEval and FiniteFieldMult, the relative
improvements range from 7% to 9%.
Table IV reports the hardware overhead of SACTA, i.e., the
number of inverters on the clock tree. We also report the
number of standard cells in the original pipeline circuit
generated by Design Compiler as a comparison. It is clear that
the hardware overhead of SACTA is quite small.

VII. CONCLUSIONS
We have proposed SACTA, a self-adjusting clock tree
architecture and a dynamic clock scheduling scheme to
improve performance and reliability of pipelined circuits. We
designed temperature adjustable skew buffers to create useful
temperature dependent clock skews. We developed a two-step
technique for design of a power optimized clock tree.
Experimental results show that our scheme can dramatically
improve the temperature tolerance. The increase in maximal
tolerable temperature is by as much as 45°C.

REFERENCES
1. Bota, S.A., et al. Within Die Thermal Gradient Impact on Clock Skew: A

New Type of Delay-Fault Mechanism. in Int. Test Conf. 2004.
2. Horowitz, M., et al. Scaling, Power and the Future of CMOS. in Int.

Electron Devices Meeting. 2005.
3. Nawale, V., et al. Optimal Useful Clock Skew Scheduling in the Presence

of Variations Using Robust ILP Formulations. in Int. Conf. on Computer
Aided Design. 2006.

4. Lee, S., et al. Reducing Pipeline Energy Demands with Local DVS and
Dynamic Retiming. in Int. Symp. on Low Power Electronics and Design.
2004.

5. Fishburn, J.P., Clock Skew Optimization. IEEE Trans. on Computers,
1990. 39(7): p. 945-951.

6. Deoka, R.B., et al. A Graph-Theoretic Approach to Clock Skew
Optimization. in Int. Symp. on Circuits and Systems. 1994.

7. Friedman, E.G., Clock Distribution Networks in Synchronous Digital
Integrated Circuits. Proc. of the IEEE, 2001. 89(5): p. 665-692.

8. Sakurai, T., et al., Alpha-Power Law MOSFET Model and Its Application
to CMOS Inverter Delay and Other Formulas. IEEE Journal of Solid-
State Circuits, 1990. 25: p. 584-593.

9. Ku, J., et al., Thermal-Aware Methodology for Repeater Insertion in
Low-Power VLSI Circuits. IEEE Trans. Very Large Scale Integration
Systems, 2007. 15(8).

10. Cao, Y., et al. New Paradigm of Predictive MOSFET and Interconnect
Modeling for Early Circuit Design. in Custom Integrated Circuit Conf.
2000.

11. Mathias, P.C., et al., Systolic Evaluation of Polynomial Expressions.
IEEE Trans. on Computers, 1990. 39(5): p. 653-665.

12. Kim, C., et al. A Fast Digit-Serial Systolic Multiplier for Finite Field
GF(2m). in Asia and South Pacific Design Automation Conf. 2005.

13. Iwamura, K., et al., A Design of Reed-Solomon Decoder with Systolic-
Array Structure. IEEE Trans. on Computers, 1995. 44(1): p. 118-122.

14. Filanovsky, I.M., et al., Compensation of Mobility and Threshold Voltage
Temperature Effects with Application in CMOS Circuits. IEEE Trans. on
Circuit and Systems I, 2001. 48(7): p. 876-884.

15. Ahuja, R.K., et al., Network Flows: Theory, Algorithms, and Applications.
1993: Prentice Hall, New Jersey.

16. Wayne, K.D. A Polynomial Combinatorial Algorithm for Generalized
Minimum Cost Flow. in Symp. on Theory of Computing. 1999.

TABLE III. EXPERIMENTAL RESULTS WITH DIFFERENT THERMAL PROFILES.

Thermal Profiles/°C Pipelines w/o SACTA Pipelines w/ SACTA

s1 s2 s3 s4 s5 PB PU RB RU FB FU PB PU RB RU FB FU
125 115 110 107 105 X X X X X X √ √ √ √ √ √
105 107 110 115 125 X X X X X X √ √ √ √ √ √
100 105 110 105 100 X X √ √ X X √ √ √ √ √ √
110 105 100 105 110 X X √ √ X X √ √ √ √ √ √
135 125 120 117 115 X X X X X X X √ X √ X √
115 117 120 125 135 X X X X X X X √ X X X X

TABLE IV. OVERHEAD OF SACTA.
 PB PU RB RU FB FU

On-Tree Inv Num 67 51 67 50 67 53
Pipeline Cell Num 2082 2082 1572 1572 498 498

0.85

0.9

0.95

1

1.05

1.1

1.15

P B P U R B R U F B F U

N ormalized M ax Freq w/ S AC T A Normalized M ax Freq w/o S AC T A

0.85

0.9

0.95

1

1.05

1.1

1.15

P B P U R B R U F B F U

N ormalized M ax Freq w/ S AC T AN ormalized M ax Freq w/ S AC T A Normalized M ax Freq w/o S AC T ANormalized M ax Freq w/o S AC T A

Figure 10. Relative performance improvement.

82

