
An O(nlogn) Edge-Based Algorithm for Obstacle-Avoiding
Rectilinear Steiner Tree Construction

Jieyi Long, Hai Zhou, and Seda Ogrenci Memik
Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL 60208

{jlo198, haizhou, seda} @ ece.northwestern.edu

ABSTRACT
Obstacle-avoiding Steiner tree construction is a fundamental
problem in VLSI physical design. In this paper, we provide a
new approach for rectilinear Steiner tree construction in the
presence of obstacles. We propose a novel algorithm, which
generates sparse obstacle-avoiding spanning graphs efficiently.
We design a fast algorithm for the minimum terminal spanning
tree construction, which is the bottleneck step of several existing
approaches in terms of running time. We adopt an edge-based
heuristic, which enables us to perform both local and global
refinement, leading to Steiner trees with small lengths. The time
complexity of our algorithm is O(nlogn). Hence, our technique
is the most efficient one to the best of our knowledge.
Experimental results on various benchmarks show that our
algorithm achieves 25.8 times speedup on average, while the
average length of the resulting obstacle-avoiding rectilinear
Steiner trees is only 1.58% larger than the best existing solution.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids [Placement and
Routing]

General Terms
Algorithms, Design, Performance, Theory.

Keywords
Physical Design, Routing, Spanning Graph, Minimum Terminal
Spanning Tree, Steiner Tree.

1. Introduction
Steiner routing is considered to be a fundamental problem and
has been well studied over the years [1-4]. Most of the existing
works on this problem assume an obstacle-free routing plane.
However, modern integrated circuits often contain many
obstacles such as IP cores, macro blocks, and pre-routed nets
within the routing region. Consequentially, Obstacle-Avoiding
Rectilinear Steiner Minimal Tree (OARSMT) construction
arises as a more practical problem and has attracted increasing
attention among VLSI physical design community recently [5-9].

Given a set of pins and a set of rectilinear obstacles, an
OARSMT is a rectilinear tree connecting all the pins through a
set of additional points (Steiner points) without running over the
obstacles, while achieving the minimal possible total wire length.
As a special case, the RSMT problem on an obstacle-free plane
has been proven to be NP-complete [4]. Therefore, any exact
algorithm for OARSMT construction is expected to have
exponential worst case running time. On the other hand, the
Steiner tree algorithm will be invoked millions of times during
the floorplanning and placement phases [3, 10]. Hence, an
efficient heuristic with good solution quality is highly desired.

In this paper, we provide a novel algorithm, which produces
Obstacle-Avoiding Rectilinear Steiner Trees (OARST, not
necessarily Steiner minimal trees) with short wire lengths. The
time complexity is bounded by O(nlogn). To the best of our
knowledge, it is the most efficient existing algorithm in terms of
asymptotic running time.

Several OARSMT heuristics have been proposed in the
literature. They mainly fall into two categories [5-9]. The first
class of OARST algorithms initially generate the Steiner tree
without considering the obstacles and then “legalize” the edges
that intersect with the obstacles. Yang et al. proposed a four-step
algorithm for overlapping edge removal [6]. This kind of
approach fails to exploit global blockage information, thus may
produce low quality solutions as long routing detours may be
introduced in overlapping edge removal step.
The second class of algorithms would first generate a
connection graph that captures the global blockage information.
Then, the Steiner tree construction is performed on this graph.
The connection graph itself has the property of obstacle-
avoidance. Hence, the later generated Steiner tree will naturally
inherit the obstacle-avoidance feature. Since the connection
graph usually carries the global geometrical information that can
be exploited in the Steiner tree construction step, heuristics
following this framework usually produce Steiner trees with
shorter wire lengths. Early work adopting this strategy includes
the escape-graph based heuristic proposed by Ganley et al. [5].
Escape-graph is conceptually similar to the Hannan grid [2].
Ganley et al. proved that there is at least one OARSMT
embedded in the escape-graph. Thus, the computational
geometry problem can be transformed into a graph-theoretical
problem. They proposed an exact solution for three and four pin
nets and heuristics for the nets with more pins.
Three algorithms proposed recently also fall into this category
[7-9]. The connection graph used by Feng et al. [7] is the so
called obstacle-avoiding constrained Delaunay triangulation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’08, April 13-16, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-048-7/08/04...$5.00.

while in Shen et al.’s [8] and Lin et al.’s [9] approaches,
spanning graphs are used. The later steps are common to all: a
minimum terminal spanning tree over this connection graph is
generated and then refined to become a Steiner tree using
heuristics. Feng et al.’s algorithm has O(nlogn) worst case
running time. However, sometimes the Steiner tree produced by
their algorithm can have a large wire length, especially when the
ratio between the number of obstacles and the number of pins is
large. Shen et al.’s and Lin et al.’s algorithms can produce
Steiner trees with better quality, but their algorithms are more
expensive. Analysis shows that the worst case time complexity
of Shen et al.’s and Lin et al.’s algorithms are O(n2logn) and
O(n3), respectively.
Our OARST construction algorithm shares Shen et al.’s and Lin
et al.’s common structure. Despite the similarity of the
frameworks, our algorithm is different from theirs in three
aspects: First, we propose a novel algorithm which generates a
sparse obstacle-avoiding spanning graph in O(nlogn) time.
Secondly, we designed an O(nlogn) algorithm for minimum
terminal spanning tree construction, which dominates the
running time in their approaches. Finally, our edge-based
heuristic employed for Steiner tree refinement can handle both
global and local refinements, while to the best of our knowledge,
all the existing OARST construction techniques make local
refinements only. The time complexity of the refinement step is
also O(nlogn). Experimental results indicate the efficiency and
effectiveness of our algorithm. Compared to Lin et al.’s
heuristic, our algorithm achieves 25.8 times speedup on average,
while the lengths of the resulting OARSTs are only 1.58%
larger on average.
The rest of the paper is organized as follows. In Section 2, the
formal formulation of the problem is presented, followed by the
detailed discussion on the three-step-algorithm for OARST
construction in Section 3. Our experimental results are provided
in Section 4. We conclude with a summary of our contributions
and findings in Section 5.

2. PROBLEM FORMULATION
The input to our algorithm consists of a set of pin vertices and a
set of rectilinear obstacles. A rectilinear obstacle is an obstacle
whose boundaries are either vertical or horizontal. A pin cannot
reside inside any obstacle, but it could be located on the
boundary of an obstacle. In addition, the obstacles are not
allowed to overlap with each other. Nonetheless, they can be
line-touched with one another. Notice that a rectilinear obstacle
can be dissected into several rectangular blocks, as depicted in
Figure 1. Hence, without loss of generality, we assume all
obstacles are rectangular. A rectangular obstacle can be
represented by its four corner vertices. Assuming that there are
m pin vertices and k
rectangular obstacles, the
actual input to the
algorithm are n = m + 4k
vertices. In the rest of the
paper, we will use this
number as the estimation
of the algorithm input size.
The output of our
algorithm contains an OARST connecting all the pin vertices.
Some additional vertices, namely, Steiner points, may be added
to the tree as internal nodes. A tree edge is not allowed to
intersect with any obstacle. However, it can be point-touched at
the corner or line-touched on the boundary with an obstacle.

The length of the tree refers to the total length of all the edges of
the tree. We formulate the OARSMT construction problem as
follows:

Problem 1 (OARSMT): Given a set of pin vertices and a set of
rectangular obstacles, construct an obstacle-avoiding rectilinear
Steiner tree such that the length of tree is minimized.

3. Obstacle-Avoiding Rectilinear Steiner
Tree Construction
In this section, we will present our heuristic for OARST
construction consisting of the following three steps:
1. Obstacle-Avoiding Spanning Graph (OASG, defined in
Section 3.1) generation: In this step, an OASG connecting all
the pin vertices and all the corner vertices of the rectangular
obstacles is generated efficiently.
2. Minimum Terminal Spanning Tree (MTST, defined in
Section 3.2) construction: In this step, an MTST connecting all
the pin vertices will be constructed by selecting edges from the
OASG generated in the previous step.
3. Obstacle-Avoiding Rectilinear Steiner Tree construction: In
this step, the MTST generated in the prior step will be used as
an initial solution for further refinement. Steiner points will be
introduced by an edge-based heuristic.

3.1 OASG Generation
We define the concept of OASG as follows:

Definition 1. Given a set of pin vertices and a set of rectangular
obstacles, an undirected graph G connecting all the pin vertices
and corner vertices is called an obstacle-avoiding spanning
graph if none of its edges intersects with the obstacles.
Zhou et al. considered the problem of constructing the spanning
graph on an obstacle-free plane [3]. Given a vertex u, they
defined the octal partition of the plane with respect to u as the
partition induced by the two rectilinear lines and the two 45
degree lines through u, as shown in Figure 2. They proposed to
connect each vertex to its closest neighbor in each octant. They
also showed that on an obstacle-free plane, the resulting
spanning graph has only O(n) edges and contains the minimum
spanning tree for the pin vertices. However, when there are
obstacles, it can be proven that this does not guarantee the
inclusion of the minimum spanning tree. Lin et al. proposed
another technique for spanning graph generation, which
contains more “essential” edges and has certain optimal
properties. However, Lin’s spanning graph may contain up to
O(n2) edges, which increases the time complexity of the later
steps to a large extent, as compared to a sparse spanning graph
with O(n) edges.
Due to the concern on time complexity, we used the sparse
spanning graph concept in our algorithm, although it may lead
to sacrifice of quality of the initial solution. On the other hand,

Figure 1. A rectilinear obstacle
and its dissection.

Figure 2. Octal and quadrant partition of
the plane with respect to u.

u

Oct1

Oct2

Oct6 Oct3

Oct4Oct5

Oct7

Oct8

u

Quad1

Quad2Quad3

Quad4

u

Oct1

Oct2

Oct6 Oct3

Oct4Oct5

Oct7

Oct8

u

Oct1

Oct2

Oct6 Oct3

Oct4Oct5

Oct7

Oct8

u

Quad1

Quad2Quad3

Quad4

u

Quad1

Quad2Quad3

Quad4

since we employ a powerful edge-based heuristic capable of
handling both local and global refinement in the third step, a
poor initial solution may not necessarily lead to a Steiner tree
with large length. As indicated by the experimental results
presented in Section 4, our trade off results in short algorithm
running time and good solution quality.
We propose a sweeping line algorithm to construct the OASG in
O(nlogn) time. Noticeably, Shen et al. have claimed an O(nlogn)
OASG construction algorithm [8]. These two OASG algorithms,
though having the same time complexity and similar outcome,
do not share a common structure. Moreover, Shen et al. did not
give full description or complete complexity analysis for their
algorithm. Particularly, the procedure for the 45 degree
sweeping is omitted.
Different from Zhou et al’s original idea, here we consider
quadrant partition (depicted in Figure 2) only. Figure 3
provides the pseudo code of the OASG edge connection
algorithm for Quad1. The rest of the quadrants are symmetric so
we can easily extend the discussion to handle them.
For Quad1, we first sort all the vertices (both pins and corners)
according to non-decreasing x + y. During the sweeping, we
maintain an active vertex set Av. It consists of the vertices whose
nearest neighbors in Quad1 are still to be discovered.
We connect the currently scanned vertex v to a vertex u in Av
that has v in its Quad1 if the Manhattan connection between v
and u does not run through any rectangular obstacle. Obviously,
if the Manhattan connection between v and u cannot avoid a
rectangular obstacle, the connection must intersect with either
the left or lower edge of that obstacle. We thus maintain two
active edge sets Aev and Aeh to record the blockage information.
Aev (Aeh) contain the left vertical (lower horizontal) edges of the
rectangular obstacles that are intersecting with the current
sweeping line. When the lower (left) endpoint of the left (lower)
edge e of a rectangular obstacle is scanned, e will be added to
the active vertical (horizontal) edge set Aev (Aeh). On the other
hand, when we encounter the upper (right) endpoint of the left
(lower) edge e of a rectangular obstacle, e will be removed from
the active vertical (horizontal) edge set Aev (Aeh).

To check whether the Manhattan connection between v and u
intersects with any edge in the active edge sets, we utilize the
following lemma:

Lemma 1. The Manhattan connection between the currently
scanned vertex v(xv, yy) and an active vertex u(xu, yu) with v in
its Quad1 intersects with a horizontal obstacle edge eh if and
only if 1) yu ≤ ycl ≤ yv where (xcl, ycl) is the coordinate of left end
vertex of eh, and 2) eh is in the active horizontal edge set Aeh.

Proof. Figure 4 portraits the relative positions of the sweeping
line, the currently scanned vertex v, a vertex u in the active set
Av, Quad1 of u, and the horizontal edges in the active set Aeh.
Notice that since the nearest neighboring vertex of u in its Quad1
is yet to be discovered, there should not be any vertex (either
pin or corner vertex) located within triangle ∆upq. Therefore,
the left end point of an active horizontal edge eh (i.e., an edge in
Aeh) should be on the left of line pu or below line qu. On the
other hand, the right end point of an active horizontal edge must
be on the right side of the sweeping line. Thus, the Manhattan
connection between u and v intersects with eh if and only if yu ≤
ycl ≤ yv.
We yet need to show that a connection does not intersect with
an “inactive” edge. We still use Figure 4 for illustration.
Denoting the left and right end point of an inactive horizontal
edge eh by cl and cr, clearly, this edge can block the connection
between u and v only when xcl < xu, xcr > xv, and yu ≤ ycl ≤ yv.
However, this implies cr is located within ∆upq, which is
contradicting with our assumption that the closest neighboring
vertex of u in Quad1 is yet to be detected. Therefore, when
making a connection, we do not need to check the inactive
edges at all. 
We used the balanced binary search tree data structure to store
the active horizontal edges with the ycl values as their keys.
Hence, at every attempt to connect a spanning graph edge, only
O(logn) query time is needed. The vertical active edges can also
be processed in a similar manner.
Now let us consider the data structure for the active vertex set Av.
On an obstacle-free routing plane, it can be shown that no vertex
in the active vertex set can be in Quad1 of another vertex in the
same set [3]. This property enables the balanced binary search
tree based implementation of the active vertex set, leading to a
O(nlogn) spanning graph generation algorithm. When there are
obstacles, as depicted in Figure 5(a), the active vertex set may
no longer have this property. However, a careful investigation
still reveals a special structure of the active vertex set that can
be exploited to guarantee O(nlogn) running time. In Figure 5(b),
we shade Quad1 of each active vertex until hitting the sweeping
line or the edges of the obstacles. The shaded area will be called
the active area. We have the following observation:

ALGORITHM OASG-Quad1(P, C)
INPUT: P // the set of pin vertices
 C // the set of corner vertices
OUTPUT: OASG-Quad1 // connection of the obstacle-
 //avoiding spanning graph in Quad1
BEGIN
 Aev = Aeh = Av = Φ;
 Sort all the vertices in P∪C according to x + y;
 FOR EACH vertex v in the order BEGIN
 FOR EACH vertex u in Av such that v
 is in their Quad1 BEGIN
 IF no obstacle in Aeh or Aev blocks the
 connection between u and v BEGIN
 Add edge (u, v) to OASG;
 Remove u from Av;
 END
 END
 IF v is a corner vertex BEGIN
 Add/Remove the obstacle edges to/from
 the active edge sets;
 END
 Add v to Av;
 END
END

Figure 3. Pseudo code for of the OASG edge connection.

Figure 4. Ilustration of the blockage checking.

u

v

q

p
c1c0

c2 c3

c4 c5

Sweeping line

Quad1 of u

c6 c7
u

v

q

p
c1c0

c2 c3

c4 c5

Sweeping line

Quad1 of u

c6 c7

Lemma 2. The active area is composed of several disjoint
regions, each having a segment on the sweeping line. These on-
sweeping-line segments do not overlap with each other.
The disjoint regions will be called the active regions. We group
the active vertices into active groups. Two active vertices are
allocated in the same active groups if they are located in the
same active region. Lemma 2 implies that the active regions,
and thereby the active groups, have an order that is kept on only
one dimension. On the other hand, similar to the situation on an
obstacle-free plane, no vertex can be in Quad1 of another vertex
in the same active group, as there should not be any obstacle
within each active region. Therefore, we can implement the
active vertex set Av based on a hierarchical balanced binary
search tree, i.e., the active regions can be maintained by a
balanced binary search tree while the active group in each
region is maintained also by one balanced binary search tree,
linked from that region. This data structure will guarantee
O(logn) insertion, deletion, and query time. As the number of
attempts to connect OASG edges is bounded by O(n), the time
complexity of OASG generation will be O(nlogn).

3.2 MTST Construction
After generating the OASG, the next task is to obtain the
minimum terminal spanning tree connecting all the pin vertices.
Note that the spanning graph generated in the first step does not
intersect with the obstacles, thus, the minimum terminal
spanning tree over this graph will naturally inherit the obstacle-
avoidance feature. The problem of finding the minimum
terminal spanning tree over an OASG can be generalized after
introducing the following concepts:

Definition 2. Given a non-negative weighted graph G with a
subset of its vertices identified as terminal vertices, we call a
loop-free path on G a terminal path if 1) its two end vertices are
both terminals and 2) its does not contain other terminals except
for the two end vertices.

Definition 3. Given a non-negative weighted graph G with a
subset of its vertices identified as terminals, a graph G’
composed of some terminal paths is called a minimum terminal
spanning tree of G if 1) it connects all the terminals, and 2) it
has the smallest possible length, where the length of G’ is
defined as the sum of the lengths of all the terminal paths on G’.
The terminal paths consisting G’ will be referred to as the MTST
paths.
Note that some edges of G may be included in the MTST more
than once. For instance, in Figure 6 (b), edge ad is included in
the MTST twice. When we calculate the length of the MTST,
we should count the length of ad twice. Also note that when the

vertices of a graph are all terminals, the MTST will be identical
to the minimum spanning tree of this graph.

Problem 2 (MTST). Given a non-negative weighted graph G,
construct the minimum terminal spanning tree of G.
Obviously, finding the MTST for an OASG is a special case of
Problem 2, as the pin vertices can be viewed as terminal vertices.
On the other hand, since G contains non-terminal vertices that
may or may not be present on the minimum terminal spanning
tree, the traditional algorithms for minimum spanning tree
construction such as Kruskal’s or Prim’s algorithm cannot be
applied. Lin et al. and Shen et al. both used a direct approach to
construct the MTST for a given OASG. They first construct a
complete graph for all the pin vertices, where the edge weight is
equal to the shortest path length of its two end vertices on the
OASG. The shortest path lengths for the pin pairs can be
computed by Dijkstra’s or Floyd-Washall algorithm. Then, they
may either apply Kruskal’s or Prim’s algorithm to obtain the
minimum spanning tree on the complete graph. At last, they
map this minimum spanning tree back to the OASG to get the
MTST. Although this approach can compute the desired MTST,
it is expensive. Especially in Lin’s algorithm, since the OASG
may contain O(n2) edges, MTST generation takes O(n3) time in
the worst case. In fact, this step is the bottleneck in Lin et al.’s
and Shen et al.’s algorithms in terms of running time.
In this section, we propose a novel algorithm for solving
Problem 2. The running time of this algorithm is O(nlogn).

Definition 4. Given a non-negative weighted graph G, a
directed sub-graph of G is called a terminal forest on G if 1)
each tree in the forest contains exactly one terminal vertex and
is rooted at this terminal, and 2) each vertex (can be either
terminal or non-terminal vertex) belongs to one tree. A tree in
the forest is called a terminal tree. The root terminal of a vertex
v refers to the root of the terminal tree that v belongs to.

Definition 5. Given a non-negative weighted graph G and a
terminal forest F on it, F is called a shortest path terminal forest

1

2 3

5
8

9

a

b

c

d
6

e
1

2 3

5

9

a

b

c

d

8

6

e
1

2 3

5
8

9

a

b

c

d
6

e
1

2 3

5

9

a

b

c

d

8

6

e

(a) (b)
Figure 6. (a) A non-negative weighted graph G where the
terminals are represented by black dots (b) the MTST of
G is shown in bold lines. Notice that edge ad is included

twice in the MTST.

p1
p2

p3

p4
p5c2

p6 p7

p8
p9c1

p3

p2

p1

p6 p7

p8
p9

p4
p5c2

c1

p1
p2

p3

p4
p5c2

p6 p7

p8
p9c1

p1
p2

p3

p4
p5c2

p6 p7

p8
p9c1

p3

p2

p1

p6 p7

p8
p9

p4
p5c2

c1

p3

p2

p1

p6 p7

p8
p9

p4
p5c2

c1

Figure 5. (a) The active vertices p1~p9 and c1~c2 (b) the
active area composed of several disjoint active regions.

(a) (b)

1

p1

p2

p3

p4
c1

c2

c3

c4

c5

c6

c7

c8

c9

c102

2

1 6

4

8 3 1

3
3

5

7

1

1

1

2
4

5
3

2

1

4

51

p1

p2

p3

p4
c1

c2

c3

c4

c5

c6

c7

c8

c9

c102

2

1 6

4

8 3 1

3
3

5

7

1

1

1

2
4

5
3

2

1

4

5

Figure 7. A non-negative weighted graph with terminal
vertices p1~p4 and non-terminal vertices c1~c10. Its

shortest path pin forest, which consists of four pin trees,
is shown by the bold directed lines.

if 1) each tree in F is a shortest path tree, and 2) for any vertex v,
its root terminal is the nearest one among all the terminals on G.
Figure 7 gives an example of a non-negative weighted graph,
where the black dots p1~p4 are terminal vertices and hollow dots
c1~c10 are non-terminal vertices. A terminal forest on the graph
is shown by the directed bold lines. Notice that, this terminal
forest is also the shortest path terminal forest.

Definition 6. Given a non-negative weighted G and a terminal
forest F on it, an edge e(u, v) is called a bridge edge if its two
end vertices belong to different terminal trees. Also, we call an
edge e(u, v) an on-forest edge if e(u, v) belongs to one of the
terminal trees. For an edge whose two end vertices belong to the
same tree but not on the tree, we will call it an intra-tree edge.
In Figure 7, edges (c4, c5), (c8, p3) and (p3, p4) are examples of
bridge edges. Edges (p1, c1) and (c7, c10) are examples of on-
forest edges. Edges (c2, c3) and (c8, c9) are examples of intra-tree
edges.
The following lemma indicates that to construct the minimum
terminal spanning tree, we only need to consider the bridge
edges and the on-forest edges.

Lemma 3. Given a non-negative weighted graph G, there is at
least one MTST containing only bridge edges and on-forest
edges.

Proof. Suppose intra-tree edge e(a, b) in Figure 8 is part of the
MTST path pathMTST(s, t). Since e(a, b) is an intra-tree edge, a
and b should have a common root terminal r. We first remove
path (s, b) from the MTST, and the MTST are divided into two
components. Without lost of generality, we assume r is in the
same component as s. We then add the shortest path between r
and b (which consists of only on-forest edges) to the MTST. By
definition, r is the closest terminal to b among all the terminals
on G. Therefore, the length of the MTST does not increase.
Notice this operation eliminates intra-tree edge (a, b) without
introducing any new intra-tree edge into the MTST. Therefore,
starting from any MTST, we can repeat the above process to
obtain an MTST consisting of only bridge edges and on-forest
edges. 
Given a non-negative weighted graph G and its sub-graph Gfb
that consists of all the on-forest edges and bridge edges, we
have the following extended cycle-property:
Lemma 4 (Extended Cycle-Property). If a terminal path on
Gfb is the longest terminal path on a cycle on Gfb, then there is at
least one minimum terminal spanning tree of G that does not
contain this terminal path.
Lemma 4 indicates that after obtaining the shortest path terminal
forest, Kruskal’s algorithm could be extended to construct the
minimum terminal spanning tree. On the other hand, the
similarity between the shortest path terminal forest problem and
the single source shortest paths problem inspired us to
generalize Dijkstra’s algorithm to solve it.

Figure 9 provides the pseudo code of the extended-Dijkstra’s
algorithm. It is similar to Dijkstra’s algorithm with one
exception: in the initialization step, we set the dist parameter of
a vertex u to 0 if it is a terminal vertex; otherwise, we set it to
+∞. Using the concept of Dijkstra’s algorithm, we essentially
view the terminal vertices as multiple sources. During the
shortest path terminal forest construction, the disjoint set data
structure is utilized to record the root of each pin tree.

Lemma 5. The extended-Dijkstra algorithm generates the
shortest path terminal forest for any non-negative weighted
graph.
Now we can present the extended-Kruskal’s algorithm for
minimum terminal spanning tree construction. The pseudo code
is given in Figure 10. It works the same way as the original
Kruskal’s algorithm. Exploiting the fact that there is a one-to-
one correspondence between the bridge edges and the terminal
paths of Gfb, we operate with the bridge edges instead of
handling the terminal paths directly. To examine whether an
edge is a bridge edge, we can simply check whether its two end
vertices have different root terminals. Root terminals for the
vertices have been computed in the last step of the extended-
Dijkstra’s algorithm using the Find-Set routine. The bridge
edges are sorted according to the lengths of their corresponding
terminal paths. For a bridge edge e(u, v), the length of its
corresponding terminal path is equal to u.dist + e.length + v.dist,
where u.dist and v.dist record the distances of u and v to their
root terminals, respective, and have been computed previously
by the extended-Dijkstra algorithm. Along with the MTST, we
also construct its merging tree, which will be used for the
Steiner tree refining heuristic later. For the concept of the
merging tree, please refer to [3].
Analysis of the running time of the extended-Dijkstra’s
algorithm is similar to the original Dijkstra’s algorithm. As the
edge number in the OASG is bounded by O(n), the extend-
Dijkstra’s algorithm takes O(nlogn) time. The same argument

ALGORITHM Extended-Dijkstra(G)
INPUT: G // a non-negative weighted graph
OUTPUT: SPTF // the shortest path terminal forest
BEGIN
 // Initialization
 Heap Hv = Φ;
 FOR EACH vertex u of G BEGIN
 Set u.dist to 0 if u is a terminal vertex, +∞ otherwise;
 Hv.insert(u, u.dist); // use u.dist as the key
 u.parent = u;
 Make-Set(u);
 END

 // Shortest path terminal forest construction
 WHILE Hv is not empty BEGIN
 u = Hv.extractMin();
 Set-Union(u, u.parent);
 FOR EACH edge e(u, v) of G BEGIN
 IF v.dist > u.dist + e.length BEGIN
 v.dist = u.dist + e.length;
 v.parent = u;
 Hv.decreaseKey(v);
 END
 END
 END
 FOR EACH vertex u of G BEGIN
 u.root = Find-Set(u);
 END
END

Figure 9. Pseudo code of the extended-Dijkstra algorithm.

a b

ts

r

a b

ts

r

a b

ts

r

a b

ts

r

a b

ts

r

a b

ts

r

Figure 8. Illustration of the proof of Lemma 3.

applies to the extended-Kruskal’s algorithm. Therefore, the time
complexity of MTST generation is O(nlogn).

Theorem 1. The extended-Dijkstra-Kruskal algorithm solves
the MTST problem in O(nlogn) time.
Note that when the vertices of the given non-negative weighted
graph are all terminals, the extended-Dijkstra-Kruskal algorithm
degenerates to Kruskal’s algorithm. Therefore, when solving
this special case, no extra work is actually needed.
The spanning graphs used by Shen et al., Lin et al, and us,
though having different definitions, are all instances of the non-
negative weighted graph. Thus, regarding the fact that the
MTST generation step is the bottleneck of both Shen et al.’s and
Lin et al.’s schemes, our extended-Dijkstra-Kruskal algorithm
can be incorporated to speed them up.

3.3 OARST Construction
Having generated a MTST as the initial solution, the next step is
to transform it into a Steiner tree by adding some Steiner points.
All the existing approaches for OARST construction only make
local adjustments to the initial solution, meaning that the
backbone of the resulting Steiner tree is restricted to the
topology of the minimum terminal spanning tree. Hence, the
improvement over the initial solution may be small [3].
Borah et al. proposed an edge-substitution heuristic, a simple
yet effective approach for Steiner tree refinement (on a obstacle-
free plane) [1]. Zhou et al. observed that the geometrical
proximity information embedded in the spanning graph could be
leveraged to simplify the heuristic [3]. In their algorithm, for
each edge in the initial tree, all vertices that are neighbors of
either of the end points on the spanning graph are considered to
form vertex-edge pairs with the edge. The gain of each vertex-
edge pair would be calculated to determine whether the edge-
substitution should be made. In this section, we enhance the
Borah-Zhou edge-based refinement to handle the obstacles.
Figure 11 illustrates the enhanced edge-substitution technique.
As defined earlier, an MTST path is a terminal path on the

MTST. Furthermore, sub-edges of an MTST path refers to the
OASG edges on this MTST path. For each sub-edge of each
MTST path, we consider the vertex-edge pair formed by the
sub-edge and each of its OASG neighboring vertices. An OASG
vertex is called a neighboring vertex of a sub-edge if it is
connected to either of the end points of the sub-edge. In Figure
11, suppose u is a neighboring vertex of esub(a, b), we calculate
the gain of vertex-edge pair (u, esub) in the following manner:
we first find out the closest on-MTST vertex (can be either
corner or pin vertex) of u (vertex v in Figure 11). Suppose esub
and v are parts of MTST paths pathMTST and path’MTST,
respectively. We will next find out the longest MTST path
pathlongest between pathMTST and path’MTST (pathMTST and
path’MTST excluded). Let us denote the Steiner point of vertices a,
b and u by s. If we make the edge substitution, i.e., we connect
new edges (s, a), (s, b), (s, u) and path (u, v), we will need to
delete esub and pathlongest to maintain the tree topology. As the
length of esub is equal to the sum of the lengths of (s, a) and (s,
b), the gain of the vertex-edge pair can be computed by:

gain(u, esub) = len(pathlongest) – len(path(u, v)) – len((s, u)).
As the following lemma implies, len((s, u)) is nothing but the
Manhattan distance between the Steiner point s and vertex u.

Lemma 6. Assuming vertex u is a neighboring vertex of an
MTST sub-edge esub(a, b), and s is the Steiner point of a, b, and
u, Manhattan connections from s to a, b, and u do not intersect
with any obstacle.
Proof: We have two cases: first, if u and b reside in two non-
neighboring quadrants (eg. Quad1 and Quad3), the problem
becomes trivial since a is overlapping with s; secondly, as
shown in Figure 12, if u and b reside in two neighboring
quadrants (eg. Quad1 and
Quad2) of a, there should
not be any obstacle in the
shaded area since u and b
are the closest neighboring
vertices of a in these two
quadants. Therefore,
Manhattan connection from
s to a, b, and u can be
made as the dashed bold
lines in Figure 12. 
The value len(path(u, v)) can be computed efficiently using a
simple variant of the extended-Dijkstra algorithm proposed in
Section 3.2. This time we can instead view all the on-MTST
vertices as the sources. The only modification we need to make
is to set the dist parameters of the vertices to be zero if they are
on the MTST, and +∞ otherwise. We compute the nearest on-

Figure 12. Steiner connection of a
vertex-edge pair.

u

a

b

s

Quad1

Quad2Quad3

Quad4 u

a

b

s

Quad1

Quad2Quad3

Quad4

Figure 11. Illustration of the edge-substitution heuristic.

esub

pQuery

p’Query

u

s

v

a
b

pathlongest

pathMTST

path’MTST

esub

pQuery

p’Query

u

s

v

a
b

pathlongest

pathMTST

path’MTST

ALGORITHM Extended-Kruskal(G, SPTF)
INPUT: G // a non-negative weighted graph
 SPTF // the shortest path terminal forest
OUTPUT: MTST // the minimum terminal spanning tree
 Tmerg // the merging tree of the MTST
BEGIN
 // Initialization
 Heap Hbe = Φ;
 Merging Tree Tmerg = Φ;
 FOR EACH edge e(u, v) of G BEGIN
 IF u.root ≠ v.root BEGIN
 Hbe.insert(e, u.dist + e.length + v.dist);
 END
 END

 // MTST and merging tree construction
 WHILE Hbe is not empty BEGIN
 e(u, v) = Hbe.extractMin();
 s1 = Find-Set(u);
 s2 = Find-Set(v);
 IF s1 ≠ s2 BEGIN
 Connect MTST edge eMTST(u.root, v.root);
 s = Set-Union(s1, s2);
 s.edge = eMTST;
 Tmerg.merge(s, s1, s2);
 END
 END
END

Figure 10. Pseudo code of the extended-Kruskal algorithm.

MTST vertex for each vertex right after we have constructed the
MTST and store these vertex pairs for later use.
The last problem is to compute the longest MTST path for a
given MTST path pair (pathMTST, path’MTST). In order to find this
longest edge efficiently, we created along with the OARMTST
its merging binary tree in the extended-Kruskal’s algorithm
similar to Zhou et al’s approach [3]. The leaf nodes of the
merging tree represent the pin vertices and the internal nodes
represent the MTST paths. It can be proven that the common
ancestor of two leaf nodes represents the longest MTST path
between the two pin vertices. Tarjan’s off-line least common
ancestor algorithm can be used to find out the longest edges
efficiently [11]. Noticing we have only the path pair (pathMTST,
path’MTST) in hand, to exploit the binary merging tree, we need
to transform this edge pair to a pin vertex pair ((pQuery, p’Query) in
Figure 11). Obviously, a simple depth first search (DFS) fulfills
our purpose. However, performing the DFS for all the edge pairs
incurs O(n2) time overhead, since there are O(n) edge pairs and
each DFS takes O(n) time. Observing that there are lots of
overlaps among these DFSs, we can combine them into one
Euler trail of the tree to eliminate the redundancy.

Figure 13 shows an example of the Euler trail on an MTST. We
assign directions to the MTST paths to help clarify the
illustration. Note that each path will be visited twice. When we
travel through a path pathMTST for the second time, we check all
the path pairs involving pathMTST. Suppose (pathMTST, path’MTST)
is such a pair. If path’MTST has been visited twice already, the
vertex pair for (pathMTST, path’MTST) will be the starting vertices
of these two paths. If path’MTST has just been visited only once,
the vertex pair for (pathMTST, path’MTST) will consist of the
ending vertex of path’MTST and the starting vertex of pathMTST. If
path’MTST has not been visited yet, we perform no action.

Lemma 7. The Euler trail procedure produces the pin vertex
pairs for merging tree least common ancestor query in O(n) time.

Proof. To prove the correctness, we only need to note that when
we visit pathMTST for the second time, a path that has been gone
through just once if and only if it is an ancestor of pathMTST in
the directed MTST. Notice that there are at most O(n) path pairs
and each path pair is to be checked twice. Besides, during the
Euler traversal, each MTST path will be visited twice. Therefore,
the time complexity of this procedure is O(n). 
The edge substitution operations will then be made in a non-
decreasing order of their gains. An edge substitution can only
be made if none of pathMTST, path’MTST and pathlongest has been
modified. The pseudo code for the edge-based Steiner tree
refinement heuristic is provided in Figure 14.
The edge-based refinement involves computing the closest on-
MTST vertex for each vertex, sorting the vertex-edge pairs

according to their gain, transforming the edge pairs into vertex
pairs, and performing merging tree least common ancestor query.
Computing the closest on-MTST vertices using the variant of
extended-Dijkstra’s algorithm requires O(nlogn) time. Sorting
takes O(nlogn) time also as there are at most O(n) vertex-edge
pairs. The time to transform the edge pairs into vertex pairs has
been analyzed earlier, and it is O(n). Tarjan’s off-line least
common ancestor query algorithm takes O(nα(n)) time, where
α(n) is the inverse of Ackermann’s function which grows
extremely slowly. Hence, the time complexity of the refinement
step is still O(nlogn).

3.4 Time Complexity Analysis
We have shown in Section 3.1, 3.2, and 3.3 that the time
complexity of OASG generation, MTST construction and edge-
based refinement are all O(nlogn).

Theorem 2. Given m pin vertices and k rectangular obstacles on
a plane, our algorithm generates an obstacle-avoiding rectilinear
Steiner tree in O(nlogn) time, where n = m + 4k.

4. EXPERIMENTAL RESULTS
In this section, we provide the experimental results on several
commonly used test cases [7, 9]. We also randomly generated
some large test cases for further comparison.
We have implemented our algorithm in C++ language and
compiled it using gcc 3.4.6. Regarding the difficulty of realizing
the hierarchical binary search tree, in our actual implementation,
we store the active vertices in a normal binary search tree. Thus,
the running time complexity of our program is higher. However,
as shown later, the empirical running time of our
implementation has been quite small. Our experiments were
conducted on a Redhat Linux sever with two 2.1GHz Dual Core
AMD OpteronTM processors and 2GB memory.
We compared our results with Feng et al.’s, Shen et al.’s, and
Lin et al.’s. We executed Shen et al.’s and Lin et al.’s
algorithms on our platform. Feng et al.’s results are quoted from
their paper, where their algorithm was tested on a Sun V800 fire
workstation with a 755MHz CPU and 4GB memory [7].
Comparison among the four algorithms is provided in Table 1,
where IND01~IND05, RC01~RC12 are test cases used in
previous works [7-9], and RL01~RL05 are five randomly
generated large test cases by us. Column “∆w%” provides the
relative improvement of our OARSTs over Lin et al.’s and is
calculated by

ALGORITHM Edge-Substitution(MTST, Tmerg)
INPUT: MTST // the minimum terminal spanning tree
 Tmerg // merging tree of the MTST
OUTPUT: OARST // a obstacle-avoiding rectilinear Steiner tree
BEGIN
 Compute the gains for all the vertex-edge pairs;
 Sort the vertex-edge pairs according to their gains
 in non-decreasing order;
 FOR EACH vertex-edge pair (u, esub) in the order BEGIN
 IF none of pathMTST, path’MTST and pathlongest
 has been modified BEGIN
 Make the edge substitution, i.e., connect (s, a), (s, b),
 (s, u) and path (u, v), delete esub and pathlongest;
 END
 END
END

Figure 14. Pseudo code for the edge-based Steiner tree
refinement heuristic.

Figure 13. An example of the Euler trail of a directed
MTST.

p9p4

p1

p2

p3

p6

p5

p7

p8

p10

p9p4

p1

p2

p3

p6

p5

p7

p8

p10

∆w% = – (lengthours – lengthLin et al.’s) / lengthLin et al.’s x 100%.
Column “speedup” compares the execution time of our
algorithm and Lin et al.’s. It is calculated by

speedup = (execution time)Lin et al.’s / (execution time)ours.
First, we observe that compared to Feng et al.’s algorithm, our
algorithm performs consistently better in terms of OARST
quality. Especially for the benchmarks with large k/m ratio
(RC06, RC07, RC08, RC09, RC12), our algorithm produces
OARSTs with substantially smaller length. For instance, for
RC12, length of our OARST is less than half of Feng et al.’s.
Secondly, compared to Shen et al.’s and Lin et al.’s algorithms,
our algorithm terminates in much shorter time, especially for the
large benchmarks (RC12, RL01~RL05). For all the test cases,
on average, our algorithm runs 25.8 times faster than Lin’s
algorithm. On the other hand, in terms of OARST quality, our
algorithm performs comparable to Shen et al.’s and Lin et al.’s.
On average, our OARSTs are only 1.58% longer than those of
Lin et al.’s.
We also observed that our algorithm produces better OARSTs
when the ratio k/m is less than one. For example, for test case
RC02, RC03, RC04, RC05, RC10 and RC11, our OARST has
smaller length than those of Shen et al’s and Lin et al.’s.
Furthermore, experimental results for the six large benchmarks
RL01~RL05 reveal that as k/m approaches zero our algorithm
performs better in terms of solution quality. In the limiting case
(RL05), k/m equal to zero, the problem becomes constructing an
SMT on an obstacle-free plane. Existing works have shown that
global refinement techniques such as edge-based heuristic
perform better than the local refinement techniques in this
limiting case. Our results are consistent with this observation.

5. CONCLUSIONS
In this paper, we have presented an efficient three-step
algorithm for obstacle-avoiding rectilinear Steiner tree
construction. We devise a novel algorithm to efficiently
generate the OASG and the MTST. We also adapt an edge-

based global refinement technique into our scheme.
Experimental results indicate that our approach is an efficient
yet effective approach for OARST construction. Compared to
Lin et al.’s heuristic, our algorithm achieves 25.8 times speedup
on average, while the length of the resulting OARSTs is only
1.58% larger on average.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF under CNS-0613967.

7. REFERENCES
1. Borah, M., R.M. Owens, and M.J. Irwin, An Edge-Based Heuristic for

Steiner Routing. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 1994. 13(12): p. 1563-1568.

2. Hannan, M., On Steiner's Problem with Rectilinear Distance. SIAM
Journal on Applied Mathematics, 1966. 14: p. 255-265.

3. Zhou, H., Efficient Steiner Tree Construction Based on Spanning
Graph. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 2004. 23(5): p. 704-710.

4. Garey, M. and D. Johnson, The Rectilinear Steiner Tree Problem is
NP-Complete. SIAM Journal on Applied Mathematics, 1977. 32: p.
826-834.

5. Ganley, J.L. and J.P. Cohoon. Routing a Multi-Terminal Critical Net:
Steiner Tree Construction in the Presence of Obstacles. in Int. Symp.
on Circuits and Systems. 1994.

6. Yang, Y., et al. Rectilinear Steiner Minimal Tree among Obstacles. in
Int. Conf. on ASIC. 2003.

7. Feng, Z., et al. An O(nlogn) Algorithm for Obstacle-Avoiding Routing
Tree Construction in the Lambda-Geometry Plane. in Int. Symp. on
Physical Design. 2006.

8. Shen, Z., C. Chu, and Y. Li. Efficient Rectilinear Steiner Tree
Construction with Rectilinear Blockages. in Int. Conf. on Computer
Design. 2005.

9. Lin, C., et al. Efficient Obstacle-Avoiding Rectilinear Steiner Tree
Construction. in Int. Symp. on Physical Design. 2007.

10.Pan, M. and C. Chu. FastRoute: A Step to Integrate Global Routing
into Placement. in Int. Conf. Computer Aided Design. 2006.

11. Cormen, T.H., et al., Introduction to Algorithms. 1989: MIT Press.

Table 1. Comparison of the experimental results among different techniques.

 Tree Weight Runnig Time (sec)
Benchmark m k Feng et al. Shen et al. Lin et al. Ours ∆w% Feng et al. Shen et al. Lin et al. Ours speedup

IND01 10 32 — 646 632 649 -2.69% — 0.01 0.01 0.01 1.0 x
IND02 10 43 — 10,100 9,700 10,100 -5.21% — 0.01 0.01 0.01 1.0 x
IND03 10 50 — 623 623 623 -1.63% — 0.01 0.01 0.01 1.0 x
IND04 25 79 — 1,121 1,121 1,131 -0.89% — 0.02 0.02 0.02 1.0 x
IND05 33 71 — 1,392 1,392 1,379 -1.10% — 0.02 0.02 0.02 1.0 x
RC01 10 10 30,410 27,730 27,790 27,540 -2.38% 0.01 0.01 0.01 0.01 1.0 x
RC02 30 10 45,640 42,840 42,240 42,030 0.43% 0.01 0.02 0.01 0.01 1.0 x
RC03 50 10 58,570 56,440 56,140 56,070 -0.57% 0.01 0.02 0.01 0.01 1.0 x
RC04 70 10 63,340 60,840 60,800 59,550 1.33% 0.01 0.02 0.02 0.02 1.0 x
RC05 100 10 83,150 76,970 76,760 76,320 0.01% 0.01 0.03 0.02 0.02 1.0 x
RC06 100 500 149,750 86,403 84,193 87,432 -4.88% 0.06 0.22 0.16 0.14 1.1 x
RC07 200 500 181,470 117,427 114,173 117,855 -4.06% 0.06 0.37 0.30 0.15 2.0 x
RC08 200 800 202,741 123,366 120,492 124,852 -5.14% 0.10 0.52 0.45 0.27 1.7 x
RC09 200 1,000 214,850 119,744 117,647 120,554 -3.78% 0.13 0.71 0.63 0.36 1.8 x
RC10 500 100 198,010 171,450 171,519 168,859 1.07% 0.03 0.33 0.62 0.08 7.8 x
RC11 1,000 100 250,570 238,111 237,794 235,795 0.35% 0.04 1.10 1.27 0.15 8.5 x
RC12 1,000 10,000 1,723,990 843,529 803,483 852,401 -8.02% 2.82 63.82 79.59 5.93 13.4 x
RL01 5,000 5,000 — 503,032 492,865 504,887 -2.44% — 136.41 161.06 5.18 31.1 x
RL02 10,000 500 — 648,898 648,508 641,445 1.09% — 143.03 218.73 2.28 95.9 x
RL03 10,000 100 — 652,323 652,241 644,616 1.17% — 127.82 204.61 2.04 100.3 x
RL04 10,000 10 — 710,005 709,904 701,088 1.24% — 124.84 256.81 1.85 138.8 x
RL05 10,000 0 — 741,978 741,697 731,790 1.34% — 127.69 284.26 1.84 154.5 x

Average — — — — — — -1.58% — — — — 25.8 x

