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Two million amputee patients in the US rely on prosthetic devices for
assistance or rehabilitation. Compared with skin-mounted devices,
muscle implantable devices offer better signal quality, lower noise
inference, less wires and skin irritation. In prior works, a near-infrared
powered neural recoding system was demonstrated with optical light
TX/RX [1]. An Ultrasound powered neural recorder with AM
backscatter was presented [2]. Stimulus systems powered by on/off-
chip RF coil via inductive link were also developed [3-5]. However,
prior implantable systems only perform neural recording with neural
signals transferred to external devices for further classification. As in
Fig. 1, the transmission of raw neural signals consumes high power
and suffers from high bit errors. In addition, external devices may not
meet the millisecond classification latency needed for real-time
prosthetic control. Hence, a fully integrated solution with embedded
classifiers for EMG-based gesture classification offers significant
benefits of reduced transmission efforts, low latency, and low error
rate. However, a neural network (NN) classifier under wireless power
poses challenges of robustly sending weights into the device under
noisy conditions. This work, for the first time, presents a fully
integrated implantable wireless powered SoC with an embedded NN
classifier. The contributions of this work include (1) a wireless
powered SoC with NN classifiers and on-chip coil is presented
paving the way to embed Al techniques into implantable devices; (2)
To reduce the NN weight for sending into the chip at startup,
Huffman coding and low-rank singular value decomposition (SVD)
techniques are implemented reducing data volume by 29%; (3) New
activity detection for NN computing and adaptive power control under
unstable wireless power are developed improving power efficiency
of the system by 45%; (4) A unique data encoding strategy is also
utilized to reduce the bit error rate by orders of magnitudes.

Fig. 2 shows the chip architecture. A 4-turn on-chip coil on the RDL
layer receives wireless power via an inductive link at 125 MHz. The
input data signals, e.g. instructions or neural network weights are
ASK modulated into the RF power signal. A CMOS full bridge
rectifier works with a 100 nF SMD capacitor to establish a resonance
for generating rectified DC voltage. Three LDOs run under 2.5V to
generate 0.75 V, 1V, and 1.8 V for on-chip digital ASICs, analog
circuits, and 10 circuits, respectively. High PSRR reference
generators are used for references of analog modules. 6-channel
differential LNAs with variable gain from 24 dB to 54 dB are used for
the EMG amplification. 48 time-domain features are extracted for use
by NN classification and also stored in a feature SRAM bank for data
logging and off-chip training. Five special techniques are developed
in the “Al-compute” core for embedded classification, including (1)
Huffman coding, and (2) SVD, both for weight reduction, (3) special
coding for low error rate UART receiver, (4) adaptive control under
wireless power, (5) new activity detection for bypassing classifier. All
input features propagate through a 3-layer fully connected neural
network to generate final gesture labels transmitted using LED light
for communication, similar to [1]. The use of LED light brings benefits
of low power and tolerance of interference under wireless power
compared with backscattering techniques.

Fig. 3 shows the signal processing flow of the chip. After analog
amplification and data conversion, 48 8-bit time-domain features are
extracted, including mean, variance, slope sign changes, zero
crossing, and 4 level histograms per channel. After each sampling
window of 100ms, the input features are passed through a three-
layer neural network with 48/32/16 neurons at each layer to generate
the output label of users’ gesture intention for control of the
prosthesis within targeted 5ms. Two special low power techniques
are implemented shown in Fig. 3. A “new activity detection” circuit
(NAD) is used for “event” based operation. As patients spend most
time idle or in a static position, a power-hungry neural network can
be suspended if very similar features are detected by checking 24
histogram features with the cached feature from the last sampling
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window. If the difference is below a
preset threshold, the previous label
is sent out without new
classification, leading to 45%
overall power saving. Adaptive
power control is also used to adjust
the chip power under wireless
conditions. A power detector
measures the output voltage from
the rectifier and guides the analog
circuits into one of the four power
modes from 58% to 100% of power
by adjusting LNAs and LDOs
setting at a trade-off between power and LNA’s performance.

To cope with the challenges of wirelessly download of NN weights to
the chip, advanced data compression techniques are implemented
as in Fig. 4. An SVD scheme is used to decompose a high
dimensional matrix into a low dimensional matrix for data
transmission. The received matrix is recovered on the chip through
a matrix reconstruction unit. Huffman coding is also adopted to
reduce total weight transmission. More frequent data patterns are
coded with shorter representations stored in a Lookup Table (LUT).
The final weights are recovered from a Huffman decoder on the chip.
As shown in Fig.4, a 30% reduction in data transmission is achieved
by using these compression schemes. To control the wireless chip,
specially coded instruction commands are used. The 18-bit
instruction code reduces the chance of wrong instruction being
triggered by four orders of magnitude from the simulation. A special
UART protocol was also used to improve the noise resiliency by
resetting the receiving sequence after every falling edge. Hence, the
tolerance of mismatch on clock frequency between transmitter and
receiver is improved from ~0.5% to 40%, significantly reducing error
probability. The drop in data rate has a negligible impact because no
high-volume data transmission is needed at normal operation. The
implemented chip can classify gestures from pre-recorded EMG
signals with 82% overall accuracy with five gestures.

Figure 5 shows the measurement results from a 65nm test chip. 25
kHz ASK modulated data signals with 125MHz wireless power were
sent from the external antenna to the on-chip coil via inductive link.
A 500-mV power envelope signal was forming at the output of the
rectifier. The power envelope detector generates the corresponding
signal triggering the digital UART module to latch the data. The
output labels are generated each 100ms window and detected by the
external photodetector as shown in the measured waveforms, which
also include measured amplified EMG signal. The chip power
breakdown shows that the digital core consumes most of the power
at 135 uW (with a peak power of 330uW), and the rest of I0/LDO
and LNAs consume 10 and 18 uW, respectively. The wireless
measurement setup is also shown in Fig.5. Fig. 6 compares this work
with prior wireless chips or biomedical chips with an integrated
classifier. This work is the first work that fully integrates analog front-
end, digital classifier, and wireless power with an on-chip coil. To
address issues of “Al-Compute” in the implantable device under
wireless conditions, the applied data compression and coding
techniques effectively reduced data transmission by 30%, decreased
power by 45% through activity detection, and reduced analog power
by 42% by adaptive power control under wireless conditions.

Acknowledgements:

This work was supported in part by NSF grant CNS-1816870.
References:

[1] J. Lim et al., "26.9 A 0.19x0.17mm2 Wireless Neural Recording IC for
Motor Prediction with Near-Infrared-Based Power and Data Telemetry"
ISSCC, 2020.

[2] M. M. Ghanbari et al., "17.5 A 0.8mm3 Ultrasonic Implantable Wireless
Neural Recording System With Linear AM Backscattering," ISSCC, 2019.

[3] Y. Jia et al., "A mm-sized free-floating wirelessly powered implantable
optical stimulating system-on-a-chip" ISSCC, 2018.

[4] S. Lee et al., "22.7 A Programmable Wireless EEG Monitoring SoC with
Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy
Control," ISSCC, 2019.

[5] M. El Ansary et al., "28.8 Multi-Modal Peripheral Nerve Active Probe and
Microstimulator with On-Chip Dual-Coil Power/Data Transmission and 64
2nd-Order Opamp-Less AX ADCs," ISSCC, 2021.

[6] J. Liu et al., "4.5 BioAIP: A Reconfigurable Biomedical Al Processor with
Adaptive Learning for Versatile Intelligent Health Monitoring," ISSCC, 2021.

— Feature

LNA X3 SRAM

DCFE ASIC
CORE

wwes'T
VS 3SiaMm

LNA X3

=
=
=2
=2
=3
=
=]
=1
[=]
o
o
[=]
=]
o

LDOs/Rectifier/Backscatter
4-Turn RF Coil
__boosnofnacosopogn

Die micrograph.




IEEE CICC 2022

Benefits of Muscle Implantable Device
« Controlled Signal Conditioning
® Less Artifact from Electrode Movement

Implantable Device~
w/ wireless power

Prosthetic Control based
on EMG Classification

Prior Work: Neural Recorder

o Large Signal Amplitude, Lower Noise
o Less wearing and skin irritation

X ¢ Epidermis
R

DATA

LINK $— Dermis

10mms

Tissue
Muscle

Modulation

High-performance PC

RXand
Digital
Filtering

Feature
Extraction

Classification

Output Label

o Large Latency

This Work: Integrated Al On-chip under
* Only result labels are i 2 i

of data

* High Volume Transmission of Raw Data

for Real-time Control

Wireless Power  Challenges:

o Low latency: 50X reduction of computing time
* Less error rate: 20,000X improved BER

Device Startup

Subcutaneous
iss:

o High Volume NN Weight Downloading at

* Error Rate Control for Wireless Comm.

Fully Integrated Wireless-power SoC with Al

o Unstable Power Condition
Contributions:
o First Wireless-powered SoC with

Low Cost
mcy

NN Classifier

Transmission of NN Weight
Special Coding for Low BER

Output
Label

2
2
3

o« o

Activation Detection Based Low
Operation

)

NN dlassifier

Data Compression and Coding for Wireless

Wireless-power Adaptive Operation

Power NN

Fig. 1. Wireless EMG gesture classification system overview (top);
Conventional gesture classification flow versus the fully integrated

gesture classification flow in thi

s work (bottom).
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Fig. 3. Neural network architecture and signal processing flow (top).
New activity detection (NAD) flow (middle). Power level detection

and adaptation flow (bottom).
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Fig. 2. Block diagram of the wireless gesture classification SoC.
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