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Two million amputee patients in the US rely on prosthetic devices for 
assistance or rehabilitation. Compared with skin-mounted devices, 
muscle implantable devices offer better signal quality, lower noise 
inference, less wires and skin irritation. In prior works, a near-infrared 
powered neural recoding system was demonstrated with optical light 
TX/RX [1]. An Ultrasound powered neural recorder with AM 
backscatter was presented [2]. Stimulus systems powered by on/off-
chip RF coil via inductive link were also developed [3-5]. However, 
prior implantable systems only perform neural recording with neural 
signals transferred to external devices for further classification. As in 
Fig. 1, the transmission of raw neural signals consumes high power 
and suffers from high bit errors. In addition, external devices may not 
meet the millisecond classification latency needed for real-time 
prosthetic control. Hence, a fully integrated solution with embedded 
classifiers for EMG-based gesture classification offers significant 
benefits of reduced transmission efforts, low latency, and low error 
rate. However, a neural network (NN) classifier under wireless power 
poses challenges of robustly sending weights into the device under 
noisy conditions. This work, for the first time, presents a fully 
integrated implantable wireless powered SoC with an embedded NN 
classifier. The contributions of this work include (1) a wireless 
powered SoC with NN classifiers and on-chip coil is presented 
paving the way to embed AI techniques into implantable devices; (2) 
To reduce the NN weight for sending into the chip at startup,  
Huffman coding and low-rank singular value decomposition (SVD) 
techniques are implemented reducing data volume by 29%; (3) New 
activity detection for NN computing and adaptive power control under 
unstable wireless power are developed improving power efficiency 
of the system by 45%; (4) A unique data encoding strategy is also 
utilized to reduce the bit error rate by orders of magnitudes. 
Fig. 2 shows the chip architecture. A 4-turn on-chip coil on the RDL 
layer receives wireless power via an inductive link at 125 MHz. The 
input data signals, e.g. instructions or neural network weights are 
ASK modulated into the RF power signal.  A CMOS full bridge 
rectifier works with a 100 nF SMD capacitor to establish a resonance 
for generating rectified DC voltage. Three LDOs run under 2.5V to 
generate 0.75 V, 1 V, and 1.8 V for on-chip digital ASICs, analog 
circuits, and IO circuits, respectively. High PSRR reference 
generators are used for references of analog modules. 6-channel 
differential LNAs with variable gain from 24 dB to 54 dB are used for 
the EMG amplification. 48 time-domain features are extracted for use 
by NN classification and also stored in a feature SRAM bank for data 
logging and off-chip training. Five special techniques are developed 
in the “AI-compute” core for embedded classification, including (1) 
Huffman coding, and (2) SVD, both for weight reduction, (3) special 
coding for low error rate UART receiver, (4) adaptive control under 
wireless power, (5) new activity detection for bypassing classifier.  All 
input features propagate through a 3-layer fully connected neural 
network to generate final gesture labels transmitted using LED light 
for communication, similar to [1]. The use of LED light brings benefits 
of low power and tolerance of interference under wireless power 
compared with backscattering techniques.  
Fig. 3 shows the signal processing flow of the chip. After analog 
amplification and data conversion, 48 8-bit time-domain features are 
extracted, including mean, variance, slope sign changes, zero 
crossing, and 4 level histograms per channel. After each sampling 
window of 100ms, the input features are passed through a three-
layer neural network with 48/32/16 neurons at each layer to generate 
the output label of users’ gesture intention for control of the 
prosthesis within targeted 5ms. Two special low power techniques 
are implemented shown in Fig. 3.  A “new activity detection” circuit 
(NAD) is used for “event” based operation.  As patients spend most 
time idle or in a static position, a power-hungry neural network can 
be suspended if very similar features are detected by checking 24 
histogram features with the cached feature from the last sampling 

window. If the difference is below a 
preset threshold, the previous label 
is sent out without new 
classification, leading to 45% 
overall power saving. Adaptive 
power control is also used to adjust 
the chip power under wireless 
conditions. A power detector 
measures the output voltage from 
the rectifier and guides the analog 
circuits into one of the four power 
modes from 58% to 100% of power 
by adjusting LNAs and LDOs 
setting at a trade-off between power and LNA’s performance. 
To cope with the challenges of wirelessly download of NN weights to 
the chip, advanced data compression techniques are implemented 
as in Fig. 4. An SVD scheme is used to decompose a high 
dimensional matrix into a low dimensional matrix for data 
transmission. The received matrix is recovered on the chip through 
a matrix reconstruction unit. Huffman coding is also adopted to 
reduce total weight transmission. More frequent data patterns are 
coded with shorter representations stored in a Lookup Table (LUT). 
The final weights are recovered from a Huffman decoder on the chip. 
As shown in Fig.4, a 30% reduction in data transmission is achieved 
by using these compression schemes. To control the wireless chip, 
specially coded instruction commands are used. The 18-bit 
instruction code reduces the chance of wrong instruction being 
triggered by four orders of magnitude from the simulation. A special 
UART protocol was also used to improve the noise resiliency by 
resetting the receiving sequence after every falling edge.  Hence, the 
tolerance of mismatch on clock frequency between transmitter and 
receiver is improved from ~0.5% to 40%, significantly reducing error 
probability. The drop in data rate has a negligible impact because no 
high-volume data transmission is needed at normal operation. The 
implemented chip can classify gestures from pre-recorded EMG 
signals with 82% overall accuracy with five gestures. 
Figure 5 shows the measurement results from a 65nm test chip. 25 
kHz ASK modulated data signals with 125MHz wireless power were 
sent from the external antenna to the on-chip coil via inductive link. 
A 500-mV power envelope signal was forming at the output of the 
rectifier. The power envelope detector generates the corresponding 
signal triggering the digital UART module to latch the data. The 
output labels are generated each 100ms window and detected by the 
external photodetector as shown in the measured waveforms, which 
also include measured amplified EMG signal. The chip power 
breakdown shows that the digital core consumes most of the power 
at 135 uW (with a peak power of 330uW), and the rest of IO/LDO 
and LNAs consume 10 and 18 uW, respectively. The wireless 
measurement setup is also shown in Fig.5. Fig. 6 compares this work 
with prior wireless chips or biomedical chips with an integrated 
classifier. This work is the first work that fully integrates analog front-
end, digital classifier, and wireless power with an on-chip coil. To 
address issues of “AI-Compute” in the implantable device under 
wireless conditions, the applied data compression and coding 
techniques effectively reduced data transmission by 30%, decreased 
power by 45% through activity detection, and reduced analog power 
by 42% by adaptive power control under wireless conditions. 
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Fig. 1. Wireless EMG gesture classification system overview (top); 
Conventional gesture classification flow versus the fully integrated 
gesture classification flow in this work (bottom).  

Fig. 2. Block diagram of the wireless gesture classification SoC. 

 
Fig. 3. Neural network architecture and signal processing flow (top). 
New activity detection (NAD) flow (middle). Power level detection 
and adaptation flow (bottom). 

 
Fig. 4. SVD (de)compression flow (top). Huffman coding  
(de)compression flow and transmit time saving (middle, bottom 
left). Special UART scheme for freq. mismatch (bottom right). 

 
Fig. 5. Measurement results with signal waveforms and power 
breakdown. 

 
Fig. 6. Comparison table with prior works. 
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Technology (nm) 180 65 350 180 130 65 65

Area(mm²) 0.0323 0.225 1 13.67 7.02 1.74 3.4

Supply Voltage 1.5 1 1.8 12./1.8/3.3 0.5-1.6 0.75 0.7/1/1.8
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Wireless Power YES YES YES YES YES N/A YES

Wireless Data YES YES YES YES YES N/A YES
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On Chip Coil N/A Optical
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Neural 

recording

Optical 

Stimuation
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