
An O(nlogn) Edge-Based Algorithm for Obstacle-Avoiding 
Rectilinear Steiner Tree Construction 

Jieyi Long, Hai Zhou, and Seda Ogrenci Memik 
Department of Electrical Engineering and Computer Science 

Northwestern University, Evanston, IL 60208 

{jlo198, haizhou, seda} @ ece.northwestern.edu

ABSTRACT 
Obstacle-avoiding Steiner tree construction is a fundamental 
problem in VLSI physical design. In this paper, we provide a 
new approach for rectilinear Steiner tree construction in the 
presence of obstacles. We propose a novel algorithm, which 
generates sparse obstacle-avoiding spanning graphs efficiently. 
We design a fast algorithm for the minimum terminal spanning 
tree construction, which is the bottleneck step of several existing 
approaches in terms of running time. We adopt an edge-based 
heuristic, which enables us to perform both local and global 
refinement, leading to Steiner trees with small lengths. The time 
complexity of our algorithm is O(nlogn). Hence, our technique 
is the most efficient one to the best of our knowledge. 
Experimental results on various benchmarks show that our 
algorithm achieves 25.8 times speedup on average, while the 
average length of the resulting obstacle-avoiding rectilinear 
Steiner trees is only 1.58% larger than the best existing solution.  

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids [Placement and 
Routing] 

General Terms 
Algorithms, Design, Performance, Theory. 

Keywords 
Physical Design, Routing, Spanning Graph, Minimum Terminal 
Spanning Tree, Steiner Tree. 

1. Introduction 
Steiner routing is considered to be a fundamental problem and 
has been well studied over the years [1-4]. Most of the existing 
works on this problem assume an obstacle-free routing plane. 
However, modern integrated circuits often contain many 
obstacles such as IP cores, macro blocks, and pre-routed nets 
within the routing region. Consequentially, Obstacle-Avoiding 
Rectilinear Steiner Minimal Tree (OARSMT) construction 
arises as a more practical problem and has attracted increasing 
attention among VLSI physical design community recently [5-9]. 

Given a set of pins and a set of rectilinear obstacles, an 
OARSMT is a rectilinear tree connecting all the pins through a 
set of additional points (Steiner points) without running over the 
obstacles, while achieving the minimal possible total wire length. 
As a special case, the RSMT problem on an obstacle-free plane 
has been proven to be NP-complete [4]. Therefore, any exact 
algorithm for OARSMT construction is expected to have 
exponential worst case running time. On the other hand, the 
Steiner tree algorithm will be invoked millions of times during 
the floorplanning and placement phases [3, 10]. Hence, an 
efficient heuristic with good solution quality is highly desired. 

In this paper, we provide a novel algorithm, which produces 
Obstacle-Avoiding Rectilinear Steiner Trees (OARST, not 
necessarily Steiner minimal trees) with short wire lengths. The 
time complexity is bounded by O(nlogn). To the best of our 
knowledge, it is the most efficient existing algorithm in terms of 
asymptotic running time. 

Several OARSMT heuristics have been proposed in the 
literature. They mainly fall into two categories [5-9]. The first 
class of OARST algorithms initially generate the Steiner tree 
without considering the obstacles and then “legalize” the edges 
that intersect with the obstacles. Yang et al. proposed a four-step 
algorithm for overlapping edge removal [6]. This kind of 
approach fails to exploit global blockage information, thus may 
produce low quality solutions as long routing detours may be 
introduced in overlapping edge removal step. 
The second class of algorithms would first generate a 
connection graph that captures the global blockage information. 
Then, the Steiner tree construction is performed on this graph. 
The connection graph itself has the property of obstacle-
avoidance. Hence, the later generated Steiner tree will naturally 
inherit the obstacle-avoidance feature. Since the connection 
graph usually carries the global geometrical information that can 
be exploited in the Steiner tree construction step, heuristics 
following this framework usually produce Steiner trees with 
shorter wire lengths. Early work adopting this strategy includes 
the escape-graph based heuristic proposed by Ganley et al. [5]. 
Escape-graph is conceptually similar to the Hannan grid [2]. 
Ganley et al. proved that there is at least one OARSMT 
embedded in the escape-graph. Thus, the computational 
geometry problem can be transformed into a graph-theoretical 
problem. They proposed an exact solution for three and four pin 
nets and heuristics for the nets with more pins. 
Three algorithms proposed recently also fall into this category 
[7-9]. The connection graph used by Feng et al. [7] is the so 
called obstacle-avoiding constrained Delaunay triangulation, 
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while in Shen et al.’s [8] and Lin et al.’s [9] approaches, 
spanning graphs are used. The later steps are common to all: a 
minimum terminal spanning tree over this connection graph is 
generated and then refined to become a Steiner tree using 
heuristics. Feng et al.’s algorithm has O(nlogn) worst case 
running time. However, sometimes the Steiner tree produced by 
their algorithm can have a large wire length, especially when the 
ratio between the number of obstacles and the number of pins is 
large. Shen et al.’s and Lin et al.’s algorithms can produce 
Steiner trees with better quality, but their algorithms are more 
expensive. Analysis shows that the worst case time complexity 
of Shen et al.’s and Lin et al.’s algorithms are O(n2logn) and 
O(n3), respectively. 
Our OARST construction algorithm shares Shen et al.’s and Lin 
et al.’s common structure. Despite the similarity of the 
frameworks, our algorithm is different from theirs in three 
aspects: First, we propose a novel algorithm which generates a 
sparse obstacle-avoiding spanning graph in O(nlogn) time. 
Secondly, we designed an O(nlogn) algorithm for minimum 
terminal spanning tree construction, which dominates the 
running time in their approaches. Finally, our edge-based 
heuristic employed for Steiner tree refinement can handle both 
global and local refinements, while to the best of our knowledge, 
all the existing OARST construction techniques make local 
refinements only. The time complexity of the refinement step is 
also O(nlogn). Experimental results indicate the efficiency and 
effectiveness of our algorithm. Compared to Lin et al.’s 
heuristic, our algorithm achieves 33.1 times speedup on average, 
while the lengths of the resulting OARSTs are only 0.61% 
larger on average. 
The rest of the paper is organized as follows. In Section 2, the 
formal formulation of the problem is presented, followed by the 
detailed discussion on the three-step-algorithm for OARST 
construction in Section 3. Our experimental results are provided 
in Section 4. We conclude with a summary of our contributions 
and findings in Section 5. 

2. PROBLEM FORMULATION 
The input to our algorithm consists of a set of pin vertices and a 
set of rectilinear obstacles. A rectilinear obstacle is an obstacle 
whose boundaries are either vertical or horizontal. A pin cannot 
reside inside any obstacle, but it could be located on the 
boundary of an obstacle. In addition, the obstacles are not 
allowed to overlap with each other. Nonetheless, they can be 
line-touched with one another. Notice that a rectilinear obstacle 
can be dissected into several rectangular blocks, as depicted in 
Figure 1. Hence, without loss of generality, we assume all 
obstacles are rectangular. A rectangular obstacle can be 
represented by its four corner vertices. Assuming that there are 
m pin vertices and k 
rectangular obstacles, the 
actual input to the 
algorithm are n = m + 4k 
vertices. In the rest of the 
paper, we will use this 
number as the estimation 
of the algorithm input size. 
The output of our 
algorithm contains an OARST connecting all the pin vertices. 
Some additional vertices, namely, Steiner points, may be added 
to the tree as internal nodes. A tree edge is not allowed to 
intersect with any obstacle. However, it can be point-touched at 
the corner or line-touched on the boundary with an obstacle. 

The length of the tree refers to the total length of all the edges of 
the tree. We formulate the OARSMT construction problem as 
follows:  
Problem 1 (OARSMT): Given a set of pin vertices and a set of 
rectangular obstacles, construct an obstacle-avoiding rectilinear 
Steiner tree such that the length of tree is minimized. 

3. Obstacle-Avoiding Rectilinear Steiner 
Tree Construction 
In this section, we will present our heuristic for OARST 
construction consisting of the following three steps: 
1. Obstacle-Avoiding Spanning Graph (OASG, defined in 
Section 3.1) generation: In this step, an OASG connecting all 
the pin vertices and all the corner vertices of the rectangular 
obstacles is generated efficiently.  
2. Minimum Terminal Spanning Tree (MTST, defined in 
Section 3.2) construction: In this step, an MTST connecting all 
the pin vertices will be constructed by selecting edges from the 
OASG generated in the previous step. 
3. Obstacle-Avoiding Rectilinear Steiner Tree construction: In 
this step, the MTST generated in the prior step will be used as 
an initial solution for further refinement. Steiner points will be 
introduced by an edge-based heuristic. 

3.1 OASG Generation 
We define the concept of OASG as follows:  
Definition 1. Given a set of pin vertices and a set of rectangular 
obstacles, an undirected graph G connecting all the pin vertices 
and corner vertices is called an obstacle-avoiding spanning 
graph if none of its edges intersects with the obstacles. 
Zhou et al. considered the problem of constructing the spanning 
graph on an obstacle-free plane [3]. Given a vertex u, they 
defined the octal partition of the plane with respect to u as the 
partition induced by the two rectilinear lines and the two 45 
degree lines through u, as shown in Figure 2. They proposed to 
connect each vertex to its closest neighbor in each octant. They 
also showed that on an obstacle-free plane, the resulting 
spanning graph has only O(n) edges and contains the minimum 
spanning tree for the pin vertices. However, when there are 
obstacles, it can be proven that this does not guarantee the 
inclusion of the minimum spanning tree. Lin et al. proposed 
another technique for spanning graph generation, which 
contains more “essential” edges and has certain optimal 
properties. However, Lin’s spanning graph may contain up to 
O(n2) edges, which increases the time complexity of the later 
steps to a large extent, as compared to a sparse spanning graph 
with O(n) edges.  
Due to the concern on time complexity, we used the sparse 
spanning graph concept in our algorithm, although it may lead 
to sacrifice of quality of the initial solution. On the other hand, 

Figure 1. A rectilinear obstacle 
and its dissection. 

Figure 2. Octal and quadrant partition of 
the plane with respect to u. 
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since we employ a powerful edge-based heuristic capable of 
handling both local and global refinement in the third step, a 
poor initial solution may not necessarily lead to a Steiner tree 
with large length. As indicated by the experimental results 
presented in Section 4, our trade off results in short algorithm 
running time and good solution quality. 
We propose a sweeping line algorithm to construct the OASG in 
O(nlogn) time. Noticeably, Shen et al. have claimed an O(nlogn) 
OASG construction algorithm [8]. These two OASG algorithms, 
though having the same time complexity and similar outcome, 
do not share a common structure. Moreover, Shen et al. did not 
give full description or complete complexity analysis for their 
algorithm. Particularly, the procedure for the 45 degree 
sweeping is omitted.  
Different from Zhou et al’s original idea, here we consider 
quadrant partition (depicted in Figure 2) only. Figure 3 
provides the pseudo code of the OASG edge connection 
algorithm for Quad1. The rest of the quadrants are symmetric so 
we can easily extend the discussion to handle them.  
For Quad1, we first sort all the vertices (both pins and corners) 
according to non-decreasing x + y.  During the sweeping, we 
maintain an active vertex set Av. It consists of the vertices whose 
nearest neighbors in Quad1 are still to be discovered.  
We connect the currently scanned vertex v to a vertex u in Av 
that has v in its Quad1 if the Manhattan connection between v 
and u does not run through any rectangular obstacle. Obviously, 
if the Manhattan connection between v and u cannot avoid a 
rectangular obstacle, the connection must intersect with either 
the left or lower edge of that obstacle. We thus maintain two 
active edge sets Aev and Aeh to record the blockage information. 
Aev (Aeh) contain the left vertical (lower horizontal) edges of the 
rectangular obstacles that are intersecting with the current 
sweeping line. When the lower (left) endpoint of the left (lower) 
edge e of a rectangular obstacle is scanned, e will be added to 
the active vertical (horizontal) edge set Aev (Aeh). On the other 
hand, when we encounter the upper (right) endpoint of the left 
(lower) edge e of a rectangular obstacle, e will be removed from 
the active vertical (horizontal) edge set Aev (Aeh).  

To check whether the Manhattan connection between v and u 
intersects with any edge in the active edge sets, we utilize the 
following lemma: 
Lemma 1. The Manhattan connection between the currently 
scanned vertex v(xv, yy) and an active vertex u(xu, yu) with v in 
its Quad1 intersects with a horizontal obstacle edge eh if and 
only if 1) yu ≤ ycl ≤ yv where (xcl, ycl) is the coordinate of left end 
vertex of eh, and 2) eh is in the active horizontal edge set Aeh. 
Proof. Figure 4 portraits the relative positions of the sweeping 
line, the currently scanned vertex v, a vertex u in the active set 
Av, Quad1 of u, and the horizontal edges in the active set Aeh. 
Notice that since the nearest neighboring vertex of u in its Quad1 
is yet to be discovered, there should not be any vertex (either 
pin or corner vertex) located within triangle ∆upq. Therefore, 
the left end point of an active horizontal edge eh (i.e., an edge in 
Aeh) should be on the left of line pu or below line qu. On the 
other hand, the right end point of an active horizontal edge must 
be on the right side of the sweeping line. Thus, the Manhattan 
connection between u and v intersects with eh if and only if yu ≤ 
ycl ≤ yv.  
We yet need to show that a connection does not intersect with 
an “inactive” edge. We still use Figure 4 for illustration. 
Denoting the left and right end point of an inactive horizontal 
edge eh by cl and cr, clearly, this edge can block the connection 
between u and v only when xcl < xu, xcr > xv, and yu ≤ ycl ≤ yv. 
However, this implies cr is located within ∆upq, which is 
contradicting with our assumption that the closest neighboring 
vertex of u in Quad1 is yet to be detected. Therefore, when 
making a connection, we do not need to check the inactive 
edges at all.  
We used the balanced binary search tree data structure to store 
the active horizontal edges with the ycl values as their keys. 
Hence, at every attempt to connect a spanning graph edge, only 
O(logn) query time is needed. The vertical active edges can also 
be processed in a similar manner.  
Now let us consider the data structure for the active vertex set Av. 
On an obstacle-free routing plane, it can be shown that no vertex 
in the active vertex set can be in Quad1 of another vertex in the 
same set [3]. This property enables the balanced binary search 
tree based implementation of the active vertex set, leading to a 
O(nlogn) spanning graph generation algorithm. When there are 
obstacles, as depicted in Figure 5(a), the active vertex set may 
no longer have this property. However, a careful investigation 
still reveals a special structure of the active vertex set that can 
be exploited to guarantee O(nlogn) running time. In Figure 5(b), 
we shade Quad1 of each active vertex until hitting the sweeping 
line or the edges of the obstacles. The shaded area will be called 
the active area. We have the following observation: 

ALGORITHM OASG-Quad1(P, C)
INPUT:  P  // the set of pin vertices 
             C //  the set of corner vertices 
OUTPUT: OASG-Quad1 // connection of the obstacle- 
                            //avoiding spanning graph in Quad1  
BEGIN 
     Aev = Aeh = Av = Φ;  
     Sort all the vertices in P∪C according to x + y; 
    FOR EACH vertex v in the order BEGIN 
          FOR EACH vertex u in Av such that v  
             is in their Quad1 BEGIN 
             IF no obstacle in Aeh or Aev blocks the 
                 connection between u and v BEGIN 
                       Add edge (u, v) to OASG; 
                  Remove u from Av; 
             END 
        END 
          IF v is a corner vertex BEGIN 
             Add/Remove the obstacle edges to/from the  
                 the active edge sets; 
          END 
       Add v to Av; 
    END 
END 

Figure 3. Pseudo code for of the OASG edge connection. 

Figure 4. Ilustration of the blockage checking. 
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Lemma 2. The active area is composed of several disjoint 
regions, each having a segment on the sweeping line. These on-
sweeping-line segments do not overlap with each other. 
The disjoint regions will be called the active regions. We group 
the active vertices into active groups. Two active vertices are 
allocated in the same active groups if they are located in the 
same active region. Lemma 2 implies that the active regions, 
and thereby the active groups, have an order that is kept on only 
one dimension. On the other hand, similar to the situation on an 
obstacle-free plane, no vertex can be in Quad1 of another vertex 
in the same active group, as there should not be any obstacle 
within each active region. Therefore, we can implement the 
active vertex set Av based on a hierarchical balanced binary 
search tree, i.e., the active regions can be maintained by a 
balanced binary search tree while the active group in each 
region is maintained also by one balanced binary search tree, 
linked from that region. This data structure will guarantee 
O(logn) insertion, deletion, and query time. As the number of 
attempts to connect OASG edges is bounded by O(n), the time 
complexity of OASG generation will be O(nlogn). 

3.2 MTST Construction 
After generating the OASG, the next task is to obtain the 
minimum terminal spanning tree connecting all the pin vertices. 
Note that the spanning graph generated in the first step does not 
intersect with the obstacles, thus, the minimum terminal 
spanning tree over this graph will naturally inherit the obstacle-
avoidance feature. The problem of finding the minimum 
terminal spanning tree over an OASG can be generalized after 
introducing the following concepts: 
Definition 2. Given a non-negative weighted graph G with a 
subset of its vertices identified as terminal vertices, we call a 
loop-free path on G a terminal path if 1) its two end vertices are 
both terminals and 2) its does not contain other terminals except 
for the two end vertices. 
Definition 3. Given a non-negative weighted graph G with a 
subset of its vertices identified as terminals, a graph G’ 
composed of some terminal paths is called a minimum terminal 
spanning tree of G if 1) it connects all the terminals, and 2) it 
has the smallest possible length, where the length of G’ is 
defined as the sum of the lengths of all the terminal paths on G’. 
The terminal paths consisting G’ will be referred to as the MTST 
paths. 
Note that some edges of G may be included in the MTST more 
than once. For instance, in Figure 6 (b), edge ad is included in 
the MTST twice. When we calculate the length of the MTST, 
we should count the length of ad twice. Also note that when the 

vertices of a graph are all terminals, the MTST will be identical 
to the minimum spanning tree of this graph. 
Problem 2 (MTST). Given a non-negative weighted graph G, 
construct the minimum terminal spanning tree of G. 
Obviously, finding the MTST for an OASG is a special case of 
Problem 2, as the pin vertices can be viewed as terminal vertices. 
On the other hand, since G contains non-terminal vertices that 
may or may not be present on the minimum terminal spanning 
tree, the traditional algorithms for minimum spanning tree 
construction such as Kruskal’s or Prim’s algorithm cannot be 
applied. Lin et al. and Shen et al. both used a direct approach to 
construct the MTST for a given OASG. They first construct a 
complete graph for all the pin vertices, where the edge weight is 
equal to the shortest path length of its two end vertices on the 
OASG. The shortest path lengths for the pin pairs can be 
computed by Dijkstra’s or Floyd-Washall algorithm. Then, they 
may either apply Kruskal’s or Prim’s algorithm to obtain the 
minimum spanning tree on the complete graph. At last, they 
map this minimum spanning tree back to the OASG to get the 
MTST. Although this approach can compute the desired MTST, 
it is expensive. Especially in Lin’s algorithm, since the OASG 
may contain O(n2) edges, MTST generation takes O(n3) time in 
the worst case. In fact, this step is the bottleneck in Lin et al.’s 
and Shen et al.’s algorithms in terms of running time. 
In this section, we propose a novel algorithm for solving 
Problem 2. The running time of this algorithm is O(nlogn).  

Definition 4. Given a non-negative weighted graph G, a 
directed sub-graph of G is called a terminal forest on G if 1) 
each tree in the forest contains exactly one terminal vertex and 
is rooted at this terminal, and 2) each vertex (can be either 
terminal or non-terminal vertex) belongs to one tree. A tree in 
the forest is called a terminal tree. The root terminal of a vertex 
v refers to the root of the terminal tree that v belongs to. 
Definition 5. Given a non-negative weighted graph G and a 
terminal forest F on it, F is called a shortest path terminal forest 
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if 1) each tree in F is a shortest path tree, and 2) for any vertex v, 
its root terminal is the nearest one among all the terminals on G.  
Figure 7 gives an example of a non-negative weighted graph, 
where the black dots p1~p4 are terminal vertices and hollow dots 
c1~c10 are non-terminal vertices. A terminal forest on the graph 
is shown by the directed bold lines. Notice that, this terminal 
forest is also the shortest path terminal forest. 
Definition 6. Given a non-negative weighted G and a terminal 
forest F on it, an edge e(u, v) is called a bridge edge if its two 
end vertices belong to different terminal trees. Also, we call an 
edge e(u, v) an on-forest edge if e(u, v) belongs to one of the 
terminal trees. For an edge whose two end vertices belong to the 
same tree but not on the tree, we will call it an intra-tree edge. 
In Figure 7, edges (c4, c5), (c8, p3) and (p3, p4) are examples of 
bridge edges. Edges (p1, c1) and (c7, c10) are examples of on-
forest edges. Edges (c2, c3) and (c8, c9) are examples of intra-tree 
edges. 
The following lemma indicates that to construct the minimum 
terminal spanning tree, we only need to consider the bridge 
edges and the on-forest edges.  
Lemma 3. Given a non-negative weighted graph G, there is at 
least one MTST containing only bridge edges and on-forest 
edges.  

Proof. Suppose intra-tree edge e(a, b) in Figure 8 is part of the 
MTST path pathMTST(s, t). Since e(a, b) is an intra-tree edge, a 
and b should have a common root terminal r. We first remove 
path (s, b) from the MTST, and the MTST are divided into two 
components. Without lost of generality, we assume r is in the 
same component as s. We then add the shortest path between r 
and b (which consists of only on-forest edges) to the MTST. By 
definition, r is the closest terminal to b among all the terminals 
on G. Therefore, the length of the MTST does not increase. 
Notice this operation eliminates intra-tree edge (a, b) without 
introducing any new intra-tree edge into the MTST. Therefore, 
starting from any MTST, we can repeat the above process to 
obtain an MTST consisting of only bridge edges and on-forest 
edges.  
Given a non-negative weighted graph G and its sub-graph Gfb 
that consists of all the on-forest edges and bridge edges, we 
have the following extended cycle-property: 
Lemma 4 (Extended Cycle-Property). If a terminal path on 
Gfb is the longest terminal path on a cycle on Gfb, then there is at 
least one minimum terminal spanning tree of G that does not 
contain this terminal path. 
Lemma 4 indicates that after obtaining the shortest path terminal 
forest, Kruskal’s algorithm could be extended to construct the 
minimum terminal spanning tree. On the other hand, the 
similarity between the shortest path terminal forest problem and 
the single source shortest paths problem inspired us to 
generalize Dijkstra’s algorithm to solve it. 

Figure 9 provides the pseudo code of the extended-Dijkstra’s 
algorithm. It is similar to Dijkstra’s algorithm with one 
exception: in the initialization step, we set the dist parameter of 
a vertex u to 0 if it is a terminal vertex; otherwise, we set it to 
+∞. Using the concept of Dijkstra’s algorithm, we essentially 
view the terminal vertices as multiple sources. During the 
shortest path terminal forest construction, the disjoint set data 
structure is utilized to record the root of each pin tree.  

Lemma 5. The extended-Dijkstra algorithm generates the 
shortest path terminal forest for any non-negative weighted 
graph. 
Now we can present the extended-Kruskal’s algorithm for 
minimum terminal spanning tree construction. The pseudo code 
is given in Figure 10. It works the same way as the original 
Kruskal’s algorithm. Exploiting the fact that there is a one-to-
one correspondence between the bridge edges and the terminal 
paths of Gfb, we operate with the bridge edges instead of 
handling the terminal paths directly. To examine whether an 
edge is a bridge edge, we can simply check whether its two end 
vertices have different root terminals. Root terminals for the 
vertices have been computed in the last step of the extended-
Dijkstra’s algorithm using the Find-Set routine. The bridge 
edges are sorted according to the lengths of their corresponding 
terminal paths. For a bridge edge e(u, v), the length of its 
corresponding terminal path is equal to u.dist + e.length + v.dist, 
where u.dist and v.dist record the distances of u and v to their 
root terminals, respective, and have been computed previously 
by the extended-Dijkstra algorithm. Along with the MTST, we 
also construct its merging tree, which will be used for the 
Steiner tree refining heuristic later. For the concept of the 
merging tree, please refer to [3].  
Analysis of the running time of the extended-Dijkstra’s 
algorithm is similar to the original Dijkstra’s algorithm. As the 
edge number in the OASG is bounded by O(n), the extend-
Dijkstra’s algorithm takes O(nlogn) time. The same argument 

ALGORITHM Extended-Dijkstra(G) 
INPUT:  G  // a non-negative weighted graph 
OUTPUT: SPTF // the shortest path terminal forest 
BEGIN 
     // Initialization 
    Heap Hv = Φ; 
    FOR EACH vertex u of G BEGIN 
           Set u.dist to 0 if u is a terminal vertex, +∞ otherwise; 
         Hv.insert(u, u.dist); // use u.dist as the key 
         u.parent = u; 
         Make-Set(u); 
    END       
     
    // Shortest path terminal forest construction 
    WHILE Hv is not empty BEGIN 
            u = Hv.extractMin(); 
         Set-Union(u, u.parent); 
         FOR EACH edge e(u, v) of G BEGIN 
                 IF v.dist > u.dist + e.length BEGIN 
                  v.dist = u.dist + e.length; 
                  v.parent = u; 
                  Hv.decreaseKey(v); 
              END 
         END 
    END 
     FOR EACH vertex u of G BEGIN 
         u.root = Find-Set(u); 
    END 
END

Figure 9. Pseudo code of the extended-Dijkstra algorithm. 
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Figure 8. Illustration of the proof of Lemma 3. 



applies to the extended-Kruskal’s algorithm. Therefore, the time 
complexity of MTST generation is O(nlogn). 
Theorem 1. The extended-Dijkstra-Kruskal algorithm solves 
the MTST problem in O(nlogn) time. 
Note that when the vertices of the given non-negative weighted 
graph are all terminals, the extended-Dijkstra-Kruskal algorithm 
degenerates to Kruskal’s algorithm. Therefore, when solving 
this special case, no extra work is actually needed. 
The spanning graphs used by Shen et al., Lin et al, and us, 
though having different definitions, are all instances of the non-
negative weighted graph. Thus, regarding the fact that the 
MTST generation step is the bottleneck of both Shen et al.’s and 
Lin et al.’s schemes, our extended-Dijkstra-Kruskal algorithm 
can be incorporated to speed them up.  

3.3 OARST Construction 
Having generated a MTST as the initial solution, the next step is 
to transform it into a Steiner tree by adding some Steiner points. 
All the existing approaches for OARST construction only make 
local adjustments to the initial solution, meaning that the 
backbone of the resulting Steiner tree is restricted to the 
topology of the minimum terminal spanning tree. Hence, the 
improvement over the initial solution may be small [3].  
Borah et al. proposed an edge-substitution heuristic, a simple 
yet effective approach for Steiner tree refinement (on a obstacle-
free plane) [1]. Zhou et al. observed that the geometrical 
proximity information embedded in the spanning graph could be 
leveraged to simplify the heuristic [3]. In their algorithm, for 
each edge in the initial tree, all vertices that are neighbors of 
either of the end points on the spanning graph are considered to 
form vertex-edge pairs with the edge. The gain of each vertex-
edge pair would be calculated to determine whether the edge-
substitution should be made. In this section, we enhance the 
Borah-Zhou edge-based refinement to handle the obstacles.  
Figure 11 illustrates the enhanced edge-substitution technique. 
As defined earlier, an MTST path is a terminal path on the 

MTST. Furthermore, sub-edges of an MTST path refers to the 
OASG edges on this MTST path. For each sub-edge of each 
MTST path, we consider the vertex-edge pair formed by the 
sub-edge and each of its OASG neighboring vertices. An OASG 
vertex is called a neighboring vertex of a sub-edge if it is 
connected to either of the end points of the sub-edge. In Figure 
11, suppose u is a neighboring vertex of esub(a, b), we calculate 
the gain of vertex-edge pair (u, esub) in the following manner: 
we first find out the closest on-MTST vertex (can be either 
corner or pin vertex) of u (vertex v in Figure 11).  Suppose esub 
and v are parts of MTST paths pathMTST and path’MTST, 
respectively. We will next find out the longest MTST path 
pathlongest between pathMTST and path’MTST (pathMTST and 
path’MTST excluded). Let us denote the Steiner point of vertices a, 
b and u by s. If we make the edge substitution, i.e., we connect 
new edges (s, a), (s, b), (s, u) and path (u, v), we will need to 
delete esub and pathlongest to maintain the tree topology. As the 
length of esub is equal to the sum of the lengths of (s, a) and (s, 
b), the gain of the vertex-edge pair can be computed by: 

gain(u, esub) = len(pathlongest) – len(path(u, v)) – len((s, u)). 
As the following lemma implies, len((s, u)) is nothing but the 
Manhattan distance between the Steiner point s and vertex u.  

Lemma 6. Assuming vertex u is a neighboring vertex of an 
MTST sub-edge esub(a, b), and s is the Steiner point of a, b, and 
u, Manhattan connections from s to a, b, and u do not intersect 
with any obstacle. 
Proof: We have two cases: first, if u and b reside in two non-
neighboring quadrants (eg. Quad1 and Quad3), the problem 
becomes trivial since a is overlapping with s; secondly, as 
shown in Figure 12, if u and b reside in two neighboring 
quadrants (eg. Quad1 and 
Quad2) of a, there should 
not be any obstacle in the 
shaded area since u and b 
are the closest neighboring 
vertices of a in these two 
quadants. Therefore, 
Manhattan connection from 
s to a, b, and u can be 
made as the dashed bold 
lines in Figure 12.  
The value len(path(u, v)) can be computed efficiently using a 
simple variant of the extended-Dijkstra algorithm proposed in 
Section 3.2. This time we can instead view all the on-MTST 
vertices as the sources. The only modification we need to make 
is to set the dist parameters of the vertices to be zero if they are 
on the MTST, and +∞ otherwise. We compute the nearest on-

Figure 12. Steiner connection of a 
vertex-edge pair. 
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Figure 11. Illustration of the edge-substitution heuristic.
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ALGORITHM Extended-Kruskal(G, SPTF) 
INPUT:  G // a non-negative weighted graph 
             SPTF // the shortest path terminal forest 
OUTPUT: MTST // the minimum terminal spanning tree 
                Tmerg // the merging tree of the MTST 
BEGIN 
     // Initialization 
    Heap Hbe = Φ; 
    Merging Tree Tmerg = Φ; 
    FOR EACH edge e(u, v) of G BEGIN 
           IF u.root ≠ v.root BEGIN     
             Hbe.insert(e, u.dist + e.length + v.dist); 
        END 
    END       
     
    // MTST and merging tree construction 
    WHILE Hbe is not empty BEGIN 
           e(u, v) = Hbe.extractMin(); 
         s1 = Find-Set(u);  
         s2 = Find-Set(v); 
         IF s1 ≠ s2 BEGIN 
                 Connect MTST edge eMTST(u.root, v.root); 
              s = Set-Union(s1, s2); 
              s.edge = eMTST; 
              Tmerg.merge(s, s1, s2); 
         END 
    END 
END 

Figure 10. Pseudo code of the extended-Kruskal algorithm.



MTST vertex for each vertex right after we have constructed the 
MTST and store these vertex pairs for later use.  
The last problem is to compute the longest MTST path for a 
given MTST path pair (pathMTST, path’MTST). In order to find this 
longest edge efficiently, we created along with the OARMTST 
its merging binary tree in the extended-Kruskal’s algorithm 
similar to Zhou et al’s approach [3]. The leaf nodes of the 
merging tree represent the pin vertices and the internal nodes 
represent the MTST paths. It can be proven that the common 
ancestor of two leaf nodes represents the longest MTST path 
between the two pin vertices. Tarjan’s off-line least common 
ancestor algorithm can be used to find out the longest edges 
efficiently [11]. Noticing we have only the path pair (pathMTST, 
path’MTST) in hand, to exploit the binary merging tree, we need 
to transform this edge pair to a pin vertex pair ((pQuery, p’Query) in 
Figure 11). Obviously, a simple depth first search (DFS) fulfills 
our purpose. However, performing the DFS for all the edge pairs 
incurs O(n2) time overhead, since there are O(n) edge pairs and 
each DFS takes O(n) time. Observing that there are lots of 
overlaps among these DFSs, we can combine them into one 
Euler trail of the tree to eliminate the redundancy.  

Figure 13 shows an example of the Euler trail on an MTST. We 
assign directions to the MTST paths to help clarify the 
illustration. Note that each path will be visited twice. When we 
travel through a path pathMTST for the second time, we check all 
the path pairs involving pathMTST. Suppose (pathMTST, path’MTST) 
is such a pair. If path’MTST has been visited twice already, the 
vertex pair for (pathMTST, path’MTST) will be the starting vertices 
of these two paths. If path’MTST has just been visited only once, 
the vertex pair for (pathMTST, path’MTST) will consist of the 
ending vertex of path’MTST and the starting vertex of pathMTST. If 
path’MTST has not been visited yet, we perform no action.  

Lemma 7. The Euler trail procedure produces the pin vertex 
pairs for merging tree least common ancestor query in O(n) time. 
Proof. To prove the correctness, we only need to note that when 
we visit pathMTST for the second time, a path that has been gone 
through just once if and only if it is an ancestor of pathMTST in 
the directed MTST. Notice that there are at most O(n) path pairs 
and each path pair is to be checked twice. Besides, during the 
Euler traversal, each MTST path will be visited twice. Therefore, 
the time complexity of this procedure is O(n).  
The edge substitution operations will then be made in a non-
decreasing order of their gains.  An edge substitution can only 
be made if none of pathMTST, path’MTST and pathlongest has been 
modified. The pseudo code for the edge-based Steiner tree 
refinement heuristic is provided in Figure 14.  
The edge-based refinement involves computing the closest on-
MTST vertex for each vertex, sorting the vertex-edge pairs 

according to their gain, transforming the edge pairs into vertex 
pairs, and performing merging tree least common ancestor query. 
Computing the closest on-MTST vertices using the variant of 
extended-Dijkstra’s algorithm requires O(nlogn) time. Sorting 
takes O(nlogn) time also as there are at most O(n) vertex-edge 
pairs. The time to transform the edge pairs into vertex pairs has 
been analyzed earlier, and it is O(n). Tarjan’s off-line least 
common ancestor query algorithm takes O(nα(n)) time, where 
α(n) is the inverse of Ackermann’s function which grows 
extremely slowly. Hence, the time complexity of the refinement 
step is still O(nlogn). 

3.4 Time Complexity Analysis 
We have shown in Section 3.1, 3.2, and 3.3 that the time 
complexity of OASG generation, MTST construction and edge-
based refinement are all O(nlogn). 
Theorem 2. Given m pin vertices and k rectangular obstacles on 
a plane, our algorithm generates an obstacle-avoiding rectilinear 
Steiner tree in O(nlogn) time, where n = m + 4k. 

4. EXPERIMENTAL RESULTS 
In this section, we provide the experimental results on several 
commonly used test cases [7, 9]. We also randomly generated 
some large test cases for further comparison. 
We have implemented our algorithm in C++ language and 
compiled it using gcc 3.4.6. Regarding the difficulty of realizing 
the hierarchical binary search tree, in our actual implementation, 
we store the active vertices in a normal binary search tree. Thus, 
the running time complexity of our program is higher. However, 
as shown later, the empirical running time of our 
implementation has been quite small. Our experiments were 
conducted on a Redhat Linux sever with two 2.1GHz Dual Core 
AMD OpteronTM processors and 2GB memory.  
We compared our results with Feng et al.’s, Shen et al.’s, and 
Lin et al.’s. We executed Shen et al.’s and Lin et al.’s 
algorithms on our platform. Feng et al.’s results are quoted from 
their paper, where their algorithm was tested on a Sun V800 fire 
workstation with a 755MHz CPU and 4GB memory [7]. 
Comparison among the four algorithms is provided in Table 1, 
where IND01~IND05, RC01~RC12 are test cases used in 
previous works [7-9], and RL01~RL05 are five randomly 
generated large test cases by us. Column “∆w%” provides the 
relative improvement of our OARSTs over Lin et al.’s and is 
calculated by 

ALGORITHM Edge-Substitution(MTST, Tmerg) 
INPUT:  MTST // the minimum terminal spanning tree 
             Tmerg   // merging tree of the MTST 
OUTPUT: OARST // a obstacle-avoiding rectilinear Steiner tree 
BEGIN 
     Compute the gains for all the vertex-edge pairs; 
    Sort the vertex-edge pairs according to their gains 
         in non-decreasing order;  
    FOR EACH vertex-edge pair (u, esub) in the order BEGIN 
           IF none of pathMTST, path’MTST and pathlongest  
             has been modified BEGIN          
             Make the edge substitution, i.e., connect (s, a), (s, b),  
                  (s, u) and path (u, v), delete esub and pathlongest; 
        END 
    END       
END 

Figure 14. Pseudo code for the edge-based Steiner tree 
refinement heuristic. 

Figure 13. An example of the Euler trail of a directed 
MTST. 
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∆w% =  – (lengthours – lengthLin et al.’s) / lengthLin et al.’s x 100%. 
Column “speedup” compares the execution time of our 
algorithm and Lin et al.’s. It is calculated by 

speedup = (execution time)Lin et al.’s / (execution time)ours. 
First, we observe that compared to Feng et al.’s algorithm, our 
algorithm performs consistently better in terms of OARST 
quality. Especially for the benchmarks with large k/m ratio 
(RC06, RC07, RC08, RC09, RC12), our algorithm produces 
OARSTs with substantially smaller length. For instance, for 
RC12, length of our OARST is less than half of Feng et al.’s.  
Secondly, compared to Shen et al.’s and Lin et al.’s algorithms, 
our algorithm terminates in much shorter time, especially for the 
large benchmarks (RC12, RL01~RL06). For all the test cases, 
on average, our algorithm runs 33.1 times faster than Lin’s 
algorithm. On the other hand, in terms of OARST quality, our 
algorithm performs comparable to Shen et al.’s and Lin et al.’s. 
On average, our OARSTs are only 0.61 % longer than those of 
Lin et al.’s.   
We also observed that our algorithm produces better OARSTs 
when the ratio k/m is less than one. For example, for test case 
RC02, RC03, RC04, RC05, RC10 and RC11, our OARST has 
smaller length than those of Shen et al’s and Lin et al.’s. 
Furthermore, experimental results for the six large benchmarks 
RL01~RL06 reveal that as k/m approaches zero our algorithm 
performs better in terms of solution quality. In the limiting case 
(RL06), k/m equal to zero, the problem becomes constructing an 
SMT on an obstacle-free plane. Existing works have shown that 
global refinement techniques such as edge-based heuristic 
perform better than the local refinement techniques in this 
limiting case. Our results are consistent with this observation. 

5. CONCLUSIONS 
In this paper, we have presented an efficient three-step 
algorithm for obstacle-avoiding rectilinear Steiner tree 
construction. We devise a novel algorithm to efficiently 
generate the OASG and the MTST. We also adapt an edge-

based global refinement technique into our scheme. 
Experimental results indicate that our approach is an efficient 
yet effective approach for OARST construction. Compared to 
Lin et al.’s heuristic, our algorithm achieves 33.1 times speedup 
on average, while the length of the resulting OARSTs is only 
0.61% larger on average. 
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Table 1. Comparison of the experimental results among different techniques. 

   Tree Weight Runnig Time (sec) 
Benchmark m k Feng et al. Shen et al. Lin et al. Ours ∆w% Feng et al. Shen et al. Lin et al. Ours speedup

IND01 10 32 — 646 632 649 -2.69% — 0.01 0.01 0.01 1.0 x
IND02 10 43 — 10,100 9,600 10,100 -5.21% — 0.01 0.01 0.01 1.0 x 
IND03 10 50 — 623 613 623 -1.63% — 0.01 0.01 0.01 1.0 x 
IND04 25 79 — 1,121 1,121 1,131 -0.89% — 0.02 0.02 0.02 1.0 x 
IND05 33 71 — 1,392 1,364 1,379 -1.10% — 0.02 0.02 0.02 1.0 x 
RC01 10 10 30,410 27,730 26,900 27,540 -2.38% 0.01 0.01 0.01 0.01 1.0 x
RC02 30 10 45,640 42,840 42,210 42,030 0.43% 0.01 0.02 0.01 0.01 1.0 x 
RC03 50 10 58,570 56,440 55,750 56,070 -0.57% 0.01 0.02 0.01 0.01 1.0 x 
RC04 70 10 63,340 60,840 60,350 59,550 1.33% 0.01 0.02 0.02 0.02 1.0 x 
RC05 100 10 83,150 76,970 76,330 76,320 0.01% 0.01 0.03 0.02 0.02 1.0 x 
RC06 100 500 149,750 86,403 83,365 87,432 -4.88% 0.06 0.22 0.16 0.14 1.1 x 
RC07 200 500 181,470 117,427 113,260 117,855 -4.06% 0.06 0.37 0.30 0.15 2.0 x 
RC08 200 800 202,741 123,366 118,747 124,852 -5.14% 0.10 0.52 0.45 0.27 1.7 x 
RC09 200 1,000 214,850 119,744 116,168 120,554 -3.78% 0.13 0.71 0.63 0.36 1.8 x 
RC10 500 100 198,010 171,450 170,690 168,859 1.07% 0.03 0.33 0.62 0.08 7.8 x 
RC11 1,000 100 250,570 238,111 236,615 235,795 0.35% 0.04 1.10 1.27 0.15 8.5 x 
RC12 1,000 10,000 1,723,990 843,529 789,097 852,401 -8.02% 2.82 63.82 79.59 5.93 13.4 x 
RL01 5,000 5,000 — 503,032 492,856 504,887 -2.44% — 136.41 161.06 5.18 31.1 x 
RL02 10,000 500 — 648,898 648,508 641,445 1.09% — 143.03 218.73 2.28 95.9 x 
RL03 10,000 100 — 652,323 652,241 644,616 1.17% — 127.82 204.61 2.04 100.3 x
RL04 10,000 10 — 710,005 709,904 701,088 1.24% — 124.84 256.81 1.85 138.8 x
RL05 10,000 0 — 741,978 741,697 731,790 1.34% — 127.69 284.26 1.84 154.5 x

Average — — — — — — -1.58% — — — — 25.8 x


