
On Dual Convergence of the Distributed Newton Method for Network Utility
Maximization∗

Ermin Wei†, Michael Zargham‡, Asuman Ozdaglar†, and Ali Jadbabaie‡

Abstract— The existing distributed algorithms for Network
Utility Maximization (NUM) problems mostly rely on dual de-
composition and first-order (gradient or subgradient) methods,
which suffer from slow rate of convergence. Recent works
[17] and [18] proposed an alternative distributed Newton-type
second-order algorithm for solving NUM problems with self-
concordant utility functions. This algorithm is implemented
in the primal space and involves for each primal iteration
computing the dual variables using a finitely terminated iterative
scheme obtained through novel matrix splitting techniques.
These works presented a convergence rate analysis for the primal
iterations and showed that if the error level in the Newton
direction (resulting from finite termination of dual iterations)
is below a certain threshold, then the algorithm achieves local
quadratic convergence rate to an error neighborhood of the
optimal solution. This paper builds on these works and presents
a convergence rate analysis for the dual iterations that enables
us to explicitly compute at each primal iteration the number of
dual steps that can satisfy the error level. This yields for the first
time a fully distributed second order method for NUM problems
with local quadratic convergence guarantee. Simulation results
demonstrate significant convergence rate improvement of our
algorithm, even when only one dual update is implemented
per primal iteration, relative to the existing first-order methods
based on dual decomposition.

I. INTRODUCTION

There has been much recent interest in developing dis-
tributed algorithms for solving convex optimization prob-
lems over networks. This is mainly motivated by resource
allocation problems that arise in large-scale communication
networks. This paper focuses on building a fully distributed
fast converging algorithm for the rate allocation problem in
wireline networks, also referred to as the Network Utility
Maximization (NUM) problem in the literature (see [1], [3],
[9], [10], [20], [15]). NUM problems are characterized by
a fixed set of sources with predetermined routes over a
network topology. Each source in the network has a local
utility, which is a function of the rate at which it transmits
information over the network. The objective is to determine
the source rates such that collectively the sum of the utilities
is maximized, without violating link capacity constraints.
The standard approach for solving NUM problems in a

∗This research is supported by NSF Career grant DMI-0545910, AFOSR
MURI R6756-G2, ONR MURI N000140810747, ARO MURI SWARMS,
and AFOSR Complex Networks Program.
†Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology.
‡Department of Electrical and Systems Engineering and GRASP Labora-

tory, University of Pennsylvania.

distributed way relies on using dual decomposition and first-
order (subgradient) methods, which through a dual price
exchange mechanism enables each source to determine its
transmission rate using only locally available information
([8], [10], [12]). However, the drawback of these methods
is their slow rate of convergence.

In this paper, we study distributed second-order methods
for solving NUM problems. Our development builds on [17]
and [18], which proposed a Newton-type primal algorithm for
solving NUM problems in a distributed manner. Computation
of dual variables at each primal iteration is achieved using
a distributed method constructed using novel matrix splitting
techniques. This involves an iterative scheme, which needs to
be truncated for practical implementation, leading to an error
in the computation of the primal Newton direction. The works
[17] and [18] assume an error level on the Newton direction
and establish quadratic local convergence to a neighborhood
of the optimal solution (under some assumptions on the error
level). This paper provides a novel convergence rate analysis
for the dual iterative scheme that yields an explicit bound on
the number of dual iterations to be executed in order to satisfy
the given error level. Our bounds are primal-dependent, i.e.,
they are a function of the current primal iterate. We also relate
our bounds and the information exchange involved in dual
iterations to the properties of the dual-graph defined through
the given network and sources.

Our results enable us to compute the primal Newton di-
rection and the dual variables using decentralized algorithms
that involve limited scalar information exchange between
sources and links, comparable to that of first-order methods.
This yields for the first time a fully distributed second
order method for the NUM problems with local quadratic
convergence guarantee.

Other than the papers cited above, our paper is related
to [6] and [21]. In [6], the authors developed a distributed
Newton method to solve an equality constrained network
optimization problem and showed that this method achieves
local superlinear convergence rate under Lipschitz assump-
tions. [21] studied this algorithm under a uniform bound on
the number of dual iterations. The NUM formulation involves
an inequality-constrained problem, which is turned into an
equality-constrained problem using barrier functions. Hence
a Lipschitz-based analysis is not applicable. Instead we use
a primal convergence analysis based on properties of self-
concordant functions and develop a dual convergence analysis

based on the spectral properties of the matrices involved in
the splitting scheme.

The rest of the paper is organized as follows: Section II
defines the problem formulation and related transformations.
Section III presents the exact constrained Newton method
for this problem. Section IV presents a distributed method
for computing the dual variables and the inexact primal
Newton direction. Section V presents simulation results to
demonstrate convergence speed improvement of our algo-
rithm relative to the existing methods. Section VI contains
our concluding remarks. Due to space constraints, some of
the technical details in this paper are omitted. We refer the
reader to [19] for the missing details.
Basic Notation and Notions:

We write I(n) to denote the identity matrix of dimension
n×n. A real-valued convex function g : X → R, where X is
a subset of R, is self-concordant if |g′′′(x)| ≤ 2g′′(x)

3
2 for all

x in its domain.1 For real-valued functions in Rn, a convex
function g : X → R, where X is a subset of Rn, is self-
concordant if it is self-concordant along every direction in its
domain. Operations that preserve self-concordance property
include summing, scaling by a factor α ≥ 1, and composition
with affine transformation (see [2] Chapter 9 for more details).

II. NETWORK UTILITY MAXIMIZATION PROBLEM

We consider a network represented by a set L = {1, ..., L}
of (directed) links of finite nonzero capacity given by c =
[cl]l∈L and a set S = {1, ..., S} of sources, each of which
transmits information along a predetermined route.2 For each
link l, let S(l) denote the set of sources using it. For each
source i, let L(i) denote the set of links it uses. Let the
nonnegative source rate vector be denoted by s = [si]i∈S .
Let matrix R be the routing matrix of dimension L × S,
given by

Rij =

{
1 if link i is on the route of source j,
0 otherwise. (1)

For each i, we use Ui : R+ → R to denote the utility func-
tion of source i. The Network Utility Maximization (NUM)
problem involves choosing the source rates to maximize
a global system function given by the sum of all utility
functions and can be formulated as

maximize
S∑
i=1

Ui(si) (2)

subject to Rs ≤ c, s ≥ 0.

We adopt the following assumptions on the utility function.

1Self-concordant functions are defined through the following more general
definition: a real-valued convex function g : X → R, where X is a subset of
R, is self-concordant, if there exists a constant a > 0, such that |g′′′(x)| ≤
2a−

1
2 g′′(x)

3
2 for all x in its domain [13], [7]. Here we focus on the case

a = 1 for notational simplification in the analysis.
2We assume that each source flow traverses at least one link and each link

is used by at least one source.

Assumption 1: The utility functions Ui : R+ → R are
continuous, strictly concave, monotonically nondecreasing
on R+ and twice continuously differentiable on the set of
positive real numbers. The functions −Ui : R+ → R are
self-concordant on the set of positive real numbers.
The self-concordance assumption is satisfied by most utility
functions considered in the literature, linear, quadratic and
α-fair utility functions with α = 1 for instance [11], and is
adopted here to allow a self-concordant analysis in establish-
ing local quadratic convergence.

We reformulate the problem into one with only equality
constraints by introducing nonnegative slack variables [yl]l∈L,
such that

∑S
j=1Rljsj + yl = cl for l = 1, 2 . . . L, and using

logarithmic barrier functions for the nonnegativity constraints.
The new decision vector is x = ([si]

′
i∈S , [yl]

′
l∈L)′ and

problem (2) can be rewritten as

minimize −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi) (3)

subject to Ax = c,

where µ is a positive coefficient for the barrier functions and
A = [R I(L)]. We denote by f : RS+L

+ → R the objective
function, i.e., f(x) = −

∑S
i=1 Ui(xi) − µ

∑S+L
i=1 log (xi).

Throughout the paper, we assume that µ ≥ 1, which guar-
antees that f(x) is self-concordant. This is without loss
of generality since it was shown in [18] that, under self-
concordance assumptions, the problem with a general µ ≥ 0
can be addressed by solving two instances of problem (3)
with different coefficients µ ≥ 1.

III. EXACT NEWTON METHOD

We solve problem (3) using a (feasible start) equality-
constrained Newton method (see [2] Chapter 10), which
serves as a starting point in the development of a distributed
algorithm. In our iterative method, we use xk to denote the
primal vector at the kth iteration.

A. Feasible Initialization

To initialize the algorithm, we start with some feasible and
strictly positive vector x0 > 0. For example, one possible
initialization is given by x0

i = mink{ck}
S+1 for i = 1, 2 . . . S,

and x0
l+S = cl − |S(l)|mink{ck}

S+1 for l = 1, 2 . . . L.

B. Iterative Update Rule

We denote Hk = ∇2f(xk) for notational convenience.
Given an initial feasible vector x0, the algorithm generates
the iterates by xk+1 = xk + dk∆xk, where dk is a positive
stepsize, ∆xk is the (primal) Newton direction given as

∆xk = −H−1
k

(
∇f(xk) +A′wk

)
, and (4)

(AH−1
k A′)wk = −AH−1

k ∇f(xk), (5)

where wk = [wkl]l∈L is the dual vector and the wkl are
the dual variables for the link capacity constraints at primal
iteration k.

Notice that by Assumption 1 and the properties of loga-
rithmic functions, the objective function f(x) is separable,
strictly convex, twice continuously differentiable, and has
a positive definite diagonal Hessian matrix on the positive

orthant, i.e., [H−1
k]ii =

(
∂2f

(∂xk
i)2

)−1

> 0 for all k. Direct
computation of wk cannot be implemented in a decentralized
manner, due to the fact that the evaluation of the matrix
inverse (AH−1

k A′)−1 requires global information. In the next
section, we present an algorithm that can compute the dual
vector wk in a distributed manner over the network.

IV. DISTRIBUTED NEWTON METHOD

This section describes the distributed Newton method. Our
development will be based on [17] and [18], which introduced
a distributed iterative scheme to compute the dual vector
and a distributed method to determine an inexact primal
Newton direction (given a dual vector) that maintains primal
feasibility. Section IV-A summarizes this method and presents
bounds on the error level in the computation of the inexact
Newton direction. Section IV-B provides a convergence rate
analysis for the computation of the dual vector and presents
estimates on the number of iterations that can guarantee a
given error level in the Newton direction. Section IV-C shows
that these schemes can be computed using distributed and
scalar information exchange comparable to that of first-order
methods.

A. Distributed Computation of Iterates

The computation of the dual vector wk at a given primal
solution xk requires solving a linear system of equations
[cf. Eq. (5)]. The dual variables can be computed using
a distributed iterative scheme relying on novel ideas from
matrix splitting (see [4] for a comprehensive review). We
let Dk be a diagonal matrix with diagonal entries (Dk)ll =
(AH−1

k A′)ll, Bk be a symmetric matrix given by Bk =
(AH−1

k A′)−Dk, and B̄k be a diagonal matrix with diagonal
entries (B̄k)ii =

∑L
j=1(Bk)ij . Furthermore, we define a

diagonal matrix D̄k = Dk + B̄k, which is used as a scaling
matrix in the dual iterations. The dual iterations are given by

wk(t+ 1) = D̄−1
k (B̄k −Bk)wk(t)− D̄−1

k AH−1
k ∇f(xk),

(6)

with initialization wk(1) = −D̄−1
k AH−1

k ∇f(xk). It was
shown in [17] that the matrix D̄−1(B̄k − Bk) has subunit
spectral radius and the sequence {wk(t)}t converges to wk

as t→∞.
The distributed Newton method uses the same initialization

as presented in Section III-A, however, it computes the primal
Newton direction in two stages to maintain feasibility. In the
first stage, the first S components of ∆x̃k are computed via
Eq. (4) using the dual vector obtained from iteration (6).
Then in the second stage, the last L components of ∆x̃k,
corresponding to the slack variables, are solved explicitly by

the links to guarantee the condition A∆x̃k = 0 is satisfied.
The feasibility correction is given by(

∆x̃k
)
{S+1...S+L} = −R

(
∆x̃k

)
{1...S} . (7)

Starting from an initial feasible vector x0, the distributed
Newton algorithm generates the primal vectors xk as follows:

xk+1 = xk + dk∆x̃k, (8)

where sk is a positive stepsize, and ∆x̃k is the inexact Newton
direction at the kth iteration.

We refer to the exact solution of the system of equations
(4) as the exact Newton direction, denoted by ∆xk. The
inexact Newton direction ∆x̃k computed by our algorithm
is a feasible estimate of ∆xk. At a given primal vector xk,
we define the exact Newton decrement λ(xk) as

λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. (9)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′∇2f(xk)∆x̃k. (10)

Note that both λ(xk) and λ̃(xk) are nonnegative and well
defined because the matrix ∇2f(xk) is positive definite.

The stepsize choice is based on λ̃(xk), which can be
computed in a distributed way using the method in [17]. Once
the inexact Newton decrement is computed, the stepsize is
given by,

dk =

{
b

λ̃(xk)+1
if λ̃(xk) ≥ 1

4 ,

1 otherwise,
(11)

where b is some positive scalar that satisfies 5
6 < b < 1.

There are two sources of inexactness in this algorithm:
finite precision achieved in the computation of the dual
vector due to truncation of the iterative scheme (6); two-stage
computation of an approximate primal direction to maintain
feasibility. The following assumption presents bounds on the
resulting error level.

Assumption 2: Let γk denote the error in the primal New-
ton direction, i.e., ∆xk = ∆x̃k + γk. For all k, γk satisfies
|(γk)′∇2f(xk)γk| ≤ p2(∆x̃k)′∇2f(xk)∆x̃k + ε for some
positive scalars p < 1 and ε.

Note that both the primal Newton direction can be com-
puted with arbitrary precision (since the errors arise due to
finite truncation of the dual iteration (6)). Hence, the error
γk can be sufficiently small, thus satisfying the preceding
assumptions for any value of the scalars p, and ε. Results from
[18] show that if the error level in Assumption 2 is satisfied,
then the inexact Newton algorithm is well-defined and the
generated objective function value converges with quadratic
rate to an error neighborhood of the optimal value, where the
size of the neighborhood can be explicitly characterized by
the parameters of the algorithm. In the following two sections,
we develop a distributed computation procedure to guarantee

conditions in Assumption 2 is met.

B. Finite Termination for Dual Iteration

In this section, we derive a bound on the number
of dual iterations given by (6) so that the Newton di-
rection generated by our algorithm satisfies Assumption
2 for a given p and ε. For notational convenience, we

denote βki =
√

ε
(L+S)

(
|L(i)|(H−

1
2

k)ii

)−1

for source i,

βkl =
√

ε
(L+S) (H

− 1
2

k)(S+l)(S+l)

(∑
i∈S(l)(Hk)−1

ii |L(i)|
)−1

for link l and ψk = −AH−1
k ∇f(xk). Our analysis uses the

D̄k-induced norm of matrices and interested readers can see
[19] for more details.

Theorem 4.1: Let {xk} be the primal sequence generated
by the distributed Newton method (8). Let the scalar ε be
the error level given in Assumption 2. Let ρ̄k, βk and d̂k

be positive scalars defined by ρ̄k = 1 − minj∈L∪S (H−1
k)jj

maxl∈L(D̄k)ll
,

βk = minj∈L∪S β
k
j , and d̂k = minl∈L{(D̄k)ll} respectively.

For any k, assume that the dual vector wk is obtained by
implementing the dual iterations (6) Nk steps, where

Nk ≥ 1

log(ρ̄k)
log

 (1− ρ̄k)βkd̂k

√
L
∣∣∣∣∣∣D̄ 3

2

k ψ
k
∣∣∣∣∣∣
∞

 . (12)

The inexact Newton direction obtained using wk satisfies
Assumption 2.

C. Distributed Computation of the Dual Variables

We next rewrite iteration (6), and then analyze the infor-
mation exchange required among sources and links in the
network both to implement the iteration and to calculate
the number of iterations as obtained in the previous section.
Based on the information exchange structure, we develop a
fully distributed procedure to compute the dual variables.

We introduce some notations in order to express the dual
iteration concisely for this section. We suppress k such that
wk(t) = w(t) and define the price of the route for source
i, πi(t), as πi(t) =

∑
l∈L(i) wl(t); and the weighted price of

the route for source i, as Πi(t) = (H−1
k)ii

∑
l∈L(i) wl(t). The

following result from [17] enables us to develop a distributed
implementation.

Lemma 4.2: For each primal iteration k, the dual iteration
(6) can be written as

wl(t+ 1) =
1

(Hk)−1
(S+l)(S+l) +

∑
i∈S(l) Πi(0)

((∑
i∈S(l)

Πi(0)

(13)

−
∑
i∈S(l)

(Hk)−1
ii

)
wl(t)−

∑
i∈S(l)

Πi(t) +
∑
i∈S(l)

(Hk)−1
ii wl(t)

−
∑
i∈S(l)

(H−1
k)ii∇if(xk)− (H−1

k)(S+l)(S+l)∇S+lf(xk)
)
,

where Πi(0) is the weighted price of the route for source i
when w(0) = [1, 1 . . . , 1]′.

We rewrite some terms in Theorem 4.1 using local
information to analyze the structure of information ex-
change. By using the definition of matrices D̄k and A,
we have (D̄k)ll =

∑
i∈S(l) Πi(0) + (Hk)−1

(S+l)(S+l), ψ
k
l =

−
∑
i∈S(l)(H

−1
k)ii∇if(xk) − (H−1

k)(S+l)(S+l)∇S+lf(xk)

and (D̄
3
2

k ψ
k)l = (D̄k)

3
2

llψ
k
l .

We next analyze the information exchange required among
sources and links to implement (13) and compute the number
Nk as given in Theorem 4.1. We first observe the local
information available to sources and links. Each source i
knows |L(i)|, (Hk)ii and ∇if(xk); each link l knows L,
(Hk)S+l,S+l and ∇S+lf(xk). Each link l also needs to com-
pute the terms:

∑
i∈S(l)(Hk)−1

ii ,
∑
i∈S(l)(H

−1
k)ii∇if(xk),∑

i∈S(l)(Hk)−1
ii |L(i)|,

∑
i∈S(l) Πi(0), and

∑
i∈S(l) Πi(t).

The first three terms can be computed by link l if each
source sends its local information to the links along its
route once in primal iteration k. The fourth term can be
computed by link l again once for every k if the route
price πi(0) are fed back by the destination to source i,
which then sends the weighted price Πi(0) to the links along
its route. The last term can be computed with a similar
feedback mechanism for Nk times in primal iteration k.
In addition to these terms, the sources and links need to
calculate the following minima and maxima once per primal
iteration: minj∈L∪S (H−1

k)jj , maxl∈L(D̄k)ll, minj∈L∪S β
k
j ,

minl∈L(D̄k)ll and maxl∈L |(D̄
3
2

k ψ
k)l|. The objective function

values of all of the above minimizations/maximizations are
locally known to each links and/or sources, therefore we can
use maximum consensus to obtain the minima/maxima in a
distributed way.3

The preceding information exchange suggests the following
fully distributed procedure to compute dual variables (at each
primal iteration k) among the sources and the links:
Initialization.
1.a Each source i computes βki and sends its local informa-

tion (Hk)ii, |L(i)| and ∇if(xk) to the links along its
route, l ∈ L(i). Each link l computes (Hk)−1

(S+l)(S+l),
βkl , (H−1

k)(S+l)(S+l)∇S+lf(xk),
∑
i∈S(l)(Hk)−1

ii and∑
i∈S(l)(H

−1
k)ii∇if(xk).

1.b Each link l starts with price wl(0) = 1. The link prices
wl(0) are aggregated along route i to compute π(0) =∑
l∈L(i) wl(0) at the destination. This information is sent

back to source i.
1.c Each source computes the weighted price Πi(0) =

3In a maximum consensus algorithm, each node starts with some state and
updates its current state with the maximum state value in its neighborhood
(including itself). Therefore after one round of algorithm, the neighborhood
of the node with maximal value has now the maximum value, after the diam-
eter of the graph rounds of algorithm, the entire graph reaches a consensus
on the maximum state value and the algorithm terminates. Interested readers
should refer to [16], [5], [14] for further information about general consensus
algorithms.

(H−1
k)ii

∑
l∈L(i) wl(0) and sends it to the links along

its route, l ∈ L(i).
1.d Sources and links compute the values for βk =

minj∈L∪S β
k
j , minj∈L∪S (H−1

k)jj , maxl∈L(D̄k)ll,

minl∈L(D̄k)ll and maxl∈L |(D̄
3
2

k ψ
k)l| using maximum

consensus algorithm. Then the number of dual iterations
Nk is determined by (12).

1.e Each link l then initializes with price wl(1) =
[D̄−1

k]llψ
k
l .

Dual Iteration.
2.a The link prices wl(t) are updated using (13) and aggre-

gated along route i to compute π(t) at the destination.
This information is sent back to source i.

2.b Each source computes the weighted price Πi(t) and
sends it to the links along its route, l ∈ L(i).

The result from the above distributed computation proce-
dure is guaranteed to satisfy Assumption 2. In the remaining
part of this section, we introduce the notion of a dual graph
and relate the information exchange structure in the dual
iterations to the topology of the dual graph.

Definition 1: Consider a network G = {L,S}, represented
by a set L = {1, ..., L} of (directed) links, and a set S =
{1, ..., S} of sources. The links form a strongly connected
graph, and each source sends information along a predeter-
mined route. The weighted dual (routing) graph G̃ = {Ñ , L̃},
where Ñ is the set of nodes, and L̃ is the set of (directed)
links defined by: Ñ = L; a link is present between node
Li to Lj in G̃ if and only if there is some common flow
between Li and Lj in G. The weight W̃ij on the link from
node Li to Lj is given by W̃ij = (Dk + B̄k)−1

ii (Bk)ij =
(Dk + B̄k)−1

ii (AH−1
k A′)ij = [D̄−1]ii

∑
s∈S(i)∩S(j)H

−1
ss .

One example of a network and its dual graph are presented
in Figure 1. The out-degree of node i in the dual graph can
be viewed as a measure of centrality of a link in the original
network since the neighbors in the dual graph represent
links that share flows in the original network. The matrix
Mk = D̄−1

k (B̄k − Bk) is the Laplacian matrix of the dual
graph. Since the dual iteration (6) with initialization wk(1) =
−D̄−1

k ψk can be written as in w(t) =
∑t−1
r=0M

r
k D̄
−1
k ψk,

we conclude that Nk steps in the dual iterations require
information from links (nodes in the dual graph) which
are within (Nk − 1) hops away. Thus the parameter Nk

defines an explicit trade off between the exactness of the
approximation and the information required to compute it.
The spectral radius of the matrix Mk is subunit, which implies
that information from nodes closer in the dual graph is more
important than information from nodes far away. The relative
importance is determined by the spectral radius of the matrix
Mk .

V. SIMULATION RESULTS

Our simulation results demonstrate that the distributed
Newton method with locally computed dual iteration steps
Nk, significantly outperforms the gradient descent method

S1

S2

D1

D2

L1 : x1

L2 : x2

L3 : x1, x2

L4 : x1

L5 : x2

1

L1

L2

L3

L4

L5

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

1

Fig. 1: A sample network and its dual graph. Each source-
destination pair is displayed with the same color. We use xi
to denote the flow corresponding to the ith source-destination
pair and Li to denote the ith link.

10
0

10
1

10
2

10
3

-10

-5

0

5

10

15

20

25

30

iteration

-M
 Σ

 U
(x

)
-

Σ
lo

g(
x)

primal objective

10
0

10
1

10
2

10
3

10
-20

10
-15

10
-10

10
-5

10
0

10
5

iteration

(∆
 x

T
H

 ∆
 x

)1/
2

Approx Newton Decrement

10
0

10
1

10
2

10
3

10
-20

10
-15

10
-10

10
-5

10
0

10
5

iteration

||c
-A

x|
|

primal feasibility

10
0

10
1

10
2

10
3

10
-15

10
-10

10
-5

10
0

iteration

||w
-w

* || Q

dual domain approximation error

Gradient
Newton N

k
Newton-1

Fig. 2: Sample with 10 links and 7 sources. (Top Left)
Convergence to the Primal Objective is shown. (Top Right)
Feasibility of our algorithm is maintained. (Lower Left) The
Newton Decrement exhibits quadratic convergence. (Lower
Right) Dual variables are shown to be optimal for each
iteration

in terms of primal iterations required to converge. Due to
the conservative bounds on the number of dual iterations,
our algorithm effectively recovers the true Newton method in
practice. Recognizing that our algorithm recovers the Newton
method at the cost of many dual updates, we also implement
a truncated version of algorithm in the style of [21], with
exactly 1 dual update per primal iteration. Our results also
show that the truncated version of our algorithm yields an
effective approximate method.

The key characteristics of our algorithm are demonstrated
in Figure 2. This representative sample trial was generated
randomly with 10 links and 7 sources and assuming that
the probability a source uses a particular edge is a Bernoulli
random variable. Figure 2 (top right) demonstrates that our
algorithm, and its truncated counterpart (denoted Newton-
1) remain feasible for the duration of the algorithm as
guaranteed by the feasibility correction in (7). Figure 2
(bottom left) shows the Newton decrement of our algorithm
exhibits quadratic convergence. It is clear the optimal dual is

0 1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

ite
ra

tio
ns

Problem Dimension Key

Algorithm Scalability

Gradient
Newton
Newton-1

Fig. 3: Number of iterations for 50 randomly generated
networks as a function of problem dimension defined as
follows: 1= 10 links, 7 sources; 2= 20 links, 15 sources; 3= 40
links, 30 source; 4= 80 links, 50 sources. Wide lines denote
means.

computed to machine precision. Therefore our approximate
Newton algorithm, under conservative bound on the number
of dual iterations (12), effectively achieves the true Newton
algorithm. As shown in Figure 2 (bottom right), with the
truncated method, the dual variable eventually converges to
the true dual variable, after which the truncated algorithm
also achieves quadratic convergence.

A more complete characterization of the convergence rate
of our algorithm is shown in Figure 3. The data is collected
from 200 random graphs, 50 each of 10 links with 7 sources,
20 links with 15 sources, 40 links with 30 sources and
80 links with 50 sources. Link usage is determined by
Bernoulli random variable and convergence stopping rule is
given by λ(x) < 10−5. The markers denote the iterations
required to converge for individual trials and the large markers
denote the mean. The data clearly shows our inexact Newton
algorithm converges in order 10 primal iterations which is
consistent with the true Newtons method. The truncated
version of our algorithm performs remarkably well requiring
only marginally more iterations than the basic version. Both
Newton based algorithms scale well with increasing problem
dimension and outperform the gradient descent algorithm by
several orders of magnitude in all cases.

VI. CONCLUSIONS

This paper continues to develop the distributed Newton-
type family of second order algorithms for network utility
maximization problem. In particular, the paper contains a
novel convergence rate analysis for dual iterations that enable
computation of the number of dual steps using local infor-
mation, such that the error bounds sufficient for superlinear
convergence to an error neighborhood around the optimal
solution can be guaranteed. Simulations show that our bounds
are conservative and computing the dual vector using the
number of iterations suggested by our bounds essentially

recovers the exact Newton direction at each step. Furthermore
simulations show that an effective approximate version of
this algorithm can be achieved by truncating the number of
dual iterations to 1. Possible future work includes extending
our convergence analysis to a “uniformly” truncated dual
iterations (i.e., independent of primal iteration), analyzing
asynchronous update schemes, and more broadly developing
distributed second-order methods for other network resource
allocation problems.

REFERENCES

[1] S. Athuraliya and S. Low. Optimization flow control with Newton-like
algorithm. Journal of Telecommunication Systems, 15:345–358, 2000.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] M. Chiang, S. H. Low, A. R. Calderbank, and J.C. Doyle. Layering
as optimization decomposition: a mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255–312, 2007.

[4] R. Cottle, J. Pang, and R. Stone. The Linear Complementarity Problem.
Academic Press, 1992.

[5] A. Jadbabaie, J. Lin, and S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions
on Automatic Control, 48(6):988–1001, 2003.

[6] A. Jadbabaie, A. Ozdaglar, and M. Zargham. A Distributed Newton
method for network optimization. Proc. of CDC, 2009.

[7] F. Jarre. Interior-point methods for convex programming. Applied
Mathematics and Optimization, 26:287–311, 1992.

[8] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[9] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for commu-
nication networks: shadow prices, proportional fairness, and stability.
Journal of the Operational Research Society, 49:237–252, 1998.

[10] S. H. Low and D. E. Lapsley. Optimization flow control, I: basic
algorithm and convergence. IEEE/ACM Transaction on Networking,
7(6):861–874, 1999.

[11] J. Mo and J Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5), 2000.

[12] A. Nedic and A. Ozdaglar. Convex Optimization in Signal Process-
ing and Communications, chapter Cooperative distributed multi-agent
optimization. Eds., Eldar, Y. and Palomar, D., Cambridge University
Press, 2008.

[13] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming. SIAM, 2001.

[14] A. Olshevsky and J. Tsitsiklis. Convergence speed in distributed
consensus and averaging. SIAM Journal on Control and Optimization,
48(1):33–35, 2009.

[15] J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed
protocols for cross-layer design of physical and transport layers in
MANETs. IEEE/ACM Transactions on Networking, 16(6):1392–1405,
2008.

[16] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Com-
putation. PhD thesis, Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1984.

[17] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method
for Network Utility Maximization, I: Algorithm. LIDS Report 2832,
2011.

[18] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method
for Network Utility Maximization, II: Convergence. LIDS Report 2870,
2011.

[19] E. Wei, M. Zargham, A. Ozdaglar, and A. Jadbabaie. On dual
convergence of the distributed Newton method for Network Utility
Maximization. LIDS Report 2868, 2011.

[20] L. Xiao and S. Boyd. Optimal scaling of a gradient method for
distributed resource allocation. Journal of Optimization Theory and
Applications, 129(3):469–488, 2006.

[21] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated
dual descent for network optimization. Proceedings of the American
Control Conference, 2011.

