
Parallel Multi-splitting Proximal Method for Star Networks

Ermin Wei
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60202

ermin.wei@northwestern.edu

Abstract— We develop a parallel algorithm based on proxi-
mal method to solve the problem of minimizing summation of
convex (not necessarily smooth) functions over a star network.
We show that this method converges to an optimal solution for
any choice of constant stepsize for convex objective functions.
Under further assumption of Lipschitz-gradient and strong
convexity of objective functions, the method converges linearly.

I. INTRODUCTION

We consider the following class of optimization problem
minx

∑n
i=1 fi(x), which has gained much research attention

recently. It captures many important applications such as
distributed control for a team of autonomous robots/UAVs pur-
suing/aiming at a common target, sensor networks construct-
ing an estimation for the entire surrounding, communication
systems maximizing system throughput, and machine learning
applications [16], [11], [17], [6], [10], [13], [18]. Most of the
existing literature for solving this problem either does not
explore parallel potential [17], [6], [10], [23] or requires
a careful selection of stepsize to guarantee convergence
[18], [13]. The requirement of stepsize tuning can be
computationally expensive, and undermines the robustness of
the entire system to provide an optimal solution.

The only line of distributed algorithms that does not
suffer from the drawbacks of stepsize selection is Alternating
Direction Method of Multiplier (ADMM) based algorithms
[4], [16], [21], [22], [12], [11], [24], [16], [23], [2], [9], [15],
which has gained much popularity due to great numerical
performance. A closer look of the standard ADMM reveals
that it is a two-way splitting proximal algorithm [7], where
a two-way splitting of the dual function is formed and then
proximal method is applied iteratively to both parts. However,
as observed in recent work [5], while the standard two-way
splitting ADMM (corresponding to a two-agent setting in
a multi-agent setup) can converge for any stepsize choice,
a three-way splitting of the dual function may result in an
algorithm that diverges. Hence, in order to use ADMM in
a distributed setting with more than two agents, complex
reformulation of the problem and introduction of auxiliary
(primal and dual) variables are required [3], [4], [21]. Despite
the two promising features that proximal-based methods do
not require stepsize selection and that multi-splitting arises
naturally from multi-agent setup, the question of whether
we can design a convergent algorithm based on more than
two-way splitting proximal method remains open.

In this paper, we combine ideas from proximal method and
projection to develop a multi-splitting proximal algorithm
that works with non-smooth convex objective function, takes
advantage of parallel processing power and guarantees
asymptotic convergence for any positive stepsize. We also
analyze its rate of convergence under stronger assumptions
of Lipschitz gradient and strong convexity and show that the
algorithm converges linearly.

Our paper is related to the large literature on dis-
tributed/parallel computation, building upon seminal works
[3] and [20]. In particular, the distributed gradient descent
method [13] and EXTRA [18] method. The distributed
gradient method can be applied to non-smooth objective
function, however a constant stepsize would only guarantee
convergence to an error neighborhood of the optimal solution.
The recently proposed distributed first-order method, EXTRA,
uses a constant stepsize and converges to an optimal point.
However, the algorithm does require careful selection of
stepsizes to guarantee convergence and smoothness of the
objective functions, which limits its applicability to important
problems with non-smooth regularization term, such as the
LASSO.

The most closely related literature for our algorithm is [19]
from 1983, which was later generalized in [8]. These authors
combine multi-splitting proximal method and projection to
form a new algorithm. Spingarn’s algorithm is a special case
of our algorithm with a unit stepsize. We also note that
these papers do not have rate of convergence analysis (under
Lipschitz gradient and strong convexity assumptions). The
proposed algorithm shares the same rate of convergence as
some existing algorithms, such as EXTRA and ADMM, the
main advantage is its robustness against stepsize selection and
simple implementation in distributed setting. While we focus
on the star network in this work, this serves as a building
block to develop distributed methods for general network
topologies. The rest of the paper, we will first present the
algorithm along with some preliminary simulation results and
then the convergence and rate of convergence analysis.

II. ALGORITHM

We present the proposed algorithm in this section. First, we
note that the original problem can be equivalently expressed

f1(x1) f2(x2) f3(x3) fn(xn)

Aggregator

.

Fig. 1. Parallel architecture to implement the proposed
algorithm.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multi−Splitting (c=0.1)
DGD (α = 0.05)
EXTRA (α = 0.05)

Fig. 2. Preliminary numerical result. Y-axis: relative error
f(xt)−f∗

f(x0)−f∗ , x-axis: iteration count.

as

min
x

n∑
i=1

fi(xi),

s.t. x1 = . . . = xn. (1)

We adopt a general setup where each function fi : Rm →
R is convex but not necessarily differentiable. We aim at
developing algorithm to solve this reformulated problem under
the following standard assumption.

Assumption 1: Problem (1) has a non-empty optimal so-
lution set, denoted by X∗.
This condition does not require uniqueness of the optimal
solution. The parallel algorithm is implemented on n + 1
machines, connected in a star graph as shown in Figure 1.
We call the one in the center the aggregator, the rest of them
workers labeled {1, . . . , n}. 1 Each worker has information
about one function fi and specializes in computing the
proximal operator related to fi. Collectively, the workers
and aggregator are solving problem (1). Our algorithm is an
iterative method, where the updates are related to decision
variable and first order information. At each iteration, the
workers in parallel perform a proximal point updates for their
respective fi using the current state information received from
the aggregator (related to decision variable and corresponding
first order information) and sends the updated information to
the aggregator. The aggregator then averages the information
according to a specific rule and sends the averaged information
as the new state back to each worker. In particular, we use

1The number of machines can be reduced via mini-batching and/or
requiring the aggregator to also process information about one of the function
fi. We chose to present the setting with maximum parallelism.

the following set of notation to describe our algorithm. In
our algorithm, we use superscript to indicate the iteration
count and subscript to indicator the worker that is associated
with the variable. Positive parameter c is the stepsize and is a
constant throughout the algorithm. Our algorithm is presented
in Algorithm 1.

Algorithm 1 Parallel Multi-splitting Proximal Method
Initialization: The aggregator starts from arbitrary x̃0 and ṽ0i
in Rm for i in 1, . . . , n, compute x0i = x̃0, for all i = 1, . . . n

and v0i = ṽ0i −
∑n

i=1 ṽ
0
i

n . The aggregator sends information
x0i + cv0i (in Rm) to each worker i.
Iteration: for k = 0, 1, . . .

• Worker i = 1, . . . n computes in parallel

yk+1
i ∈ argmin

p
fi(p) +

1

2c

∣∣∣∣p− xki − cvki ∣∣∣∣2 , (2a)

wk+1
i =

1

c
(xki + cvki − yk+1

i), (2b)

and reports yk+1
i and wk+1

i (each in Rm) back to the
aggregator.

• After receiving yk+1
i and wk+1

i information from all n
workers, the aggregator generates

xk+1
i =

∑n
i=1 y

k+1
i

n
, vk+1

i = wk+1
i −

∑n
i=1 w

k+1
i

n
,

for i = 1, . . . , n and then sends information xk+1
i +

cvk+1
i (in Rm) to each worker i.

The {yki }k sequence can be viewed as local estimates of
x∗. At each time instant k, xki is the same for all i and equals
to the average of all local estimates. The {wki } sequence as
shown later in Lemma 3.1, represents a local subgradient
associated with xk+1

i of function fi. The variable vki captures
the difference between local subgradient and the average of
all subgradients.

This algorithm is well suited for problems where step
(2a), minimization related to one component of the objective
function, can be implemented in an efficient way. Examples
include SVM, quadratic objective functions, Lasso (Least
Absolute Shrinkage and Selection Operator) (see [4], [15]
for more examples). When analyzing convergence speed for
this algorithm, we focus on the iteration count of k, and
not counting the time needed to solve step (2a). We have
performed some initial numerical studies to compare our
method against distributed gradient descent (DGD) [13] and
EXTRA [18] with n = 4, m = 1 and quadratic objective
functions. We plot the relative error in objective function in
Figure 2. We used stepsize of 0.1 for the proposed method
and 0.05 for DGD and EXTRA,as they both diverge for the
stepsize choice of 0.1 and needed smaller stepsize.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence and speed
of convergence of the proposed algorithm. For concise
representation, we introduce the following notation. Vector

xk = [xki]i in Rnm is a long vector formed by stacking xki ,

i.e., xk =

x
k
1
...
xkn

 . Similarly, we form vectors yk = [yki]i,

vk = [vki]i and wk = [wki]i, all in Rnm. Unless otherwise
specified, vectors such as xi with sub-indices lie in Rm
and those without sub-indices, such as xk are in Rnm. We
denote by F : Rnm → Rn, and ∂F : Rnm ⇒ Rnm, the

mappings F


x1...
xn


 =

f1(x1)
...

fn(xn)

 , ∂F


x1...
xn


 =


v1...
vn

 , vi ∈ ∂fi(xi)
 ,where the notation ∂fi(x) denotes

the subdifferential set, i.e., the set consists of all subgradient
of fi at point xi. We use x′y to denote the inner product
between two vectors x and y. We next show that our algorithm
has two components: proximal method and projection, which
serves as the basis for convergence analysis.

A. Proximal method

We start by analyzing the sequences yk and wk. Step (2a)
can be equivalently expressed as

yk+1
i ∈ proxcfi(x

k
i + cvki)

using definition of proximal operator. We next give a
characterization of wk+1

i .
Lemma 3.1: For each iteration k, wk+1

i is in the set
∂fi(y

k+1
i).

Proof: By first order optimality condition (see [1] for
details) of (2a), we have that there exists a subgradient q of fi
at yk+1

i , such that q+ 1
c (yk+1

i −xki −cvki) = 0. This suggests
that q = 1

c (xki + cvki − y
k+1
i). By definition of wk+1

i in Eq.
(2b), we have wk+1

i = q, and thus wk+1
i is a subgradient and

therefore is in the set ∂fi(yk+1
i).

The proceeding lemma illustrates that at each iteration, at
each worker i, we have a pair of primal decision variable
and an associated subgradient (yk+1

i , wk+1
i) obtained based

on a proximal step. Hence the nm−dimensional vectors
yk+1, wk+1 also corresponds to decision variable and subgra-
dient pair generated based on a proximal step at xk + cvk.

B. Projection

We next study the sequence xk, vk. Motivated by op-
timality condition of problem (1), we next introduce the

following two subspaces: A =


x1...
xn

 , x1 = . . . = xn

 ,

B =


x1...
xn

 , ∑n
i=1 xi = 0

 . We use z(A) and z(B) to

denote the projection of vector z onto subspaces A and B
respectively. We observe that for any optimal solution x∗ of
(1), first order optimality conditions imply that x∗ is in A
and there exists a subgradient v in ∂F (x∗), with v in B. The

next lemma qualifies the connection between spaces A and
B.

Lemma 3.2: The spaces A and B are orthogonal comple-
ments.

Proof: For any x in A and y in B, we have x′y =∑n
i=1 xiyi = x1

∑n
i=1 yi = 0. Thus the elements in the two

subspaces are orthogonal. We next need to show that any
vector z in Rnm can be decomposed as a linear combination
of elements of those two sets. Define z̄i =

∑n
i=1 zi
n and

for i = 1, . . . , n, zi(A) = z̄i, zi(B) = zi − z̄i. We
can then obtain projections z(A) and z(B) both in Rnm by
z(A) = [zi(A)]i and z(B) = [zi(B)]i, which gives z(A) in
A, and

n∑
i=1

zi(B) =

n∑
i=1

zi − nz̄i =

n∑
i=1

zi −
n∑
i=1

zi = 0,

thus z(B) in B. We also have z = z(A) + z(B) and this
completes the proof.

We now note that in our algorithm xk is a projection of
decision variable yk onto space A and vk is a projection
of subgradient wk onto the space B. These projections are
performed to guide the decision variables and subgradients
towards the appropriate subspaces where the optimal solutions
live.

C. Convergence

Based on the previous two sections, we conclude that
our algorithm is a combination of the proximal method
and orthogonal projection method. The convergence analysis
is also motivated by the nonexpansive properties of these
methods.

Before we proceed to the analysis, we first observe that
by definition of wk+1

i , we have

yk+1
i + cwk+1

i = xk+1
i + cvk+1

i .

Therefore, one iteration of the algorithm can be represented
as follows:

xk + cvk = yk+1 + cwk+1 (4)
↓ (5)

xk+1 = yk+1(A), vk+1 = wk+1(B), (6)

where wk+1 is in ∂F (yk+1) by Lemma 3.1.
Since the two sequences xk and vk are in two orthogonal

spaces, their sum has a unique orthogonal decomposition and
convergence of the sum automatically implies convergence
of xk and vk. We will focus on the convergence of the sum
xk + cvk.

We first show that any fixed point of the above iteration
and the set of optimal solutions to problem (1) are equivalent.

Lemma 3.3: The vector x+ cv where x in A and v in B
is a fixed point of iteration (6) if and only if x is an optimal
solution of problem (1) and v is in ∂F (x).

Proof: We first assume that (x, v) is a fixed point of
iteration (6). We use y, w, x+, v+ to denote the updates
starting from xk = x, vk = v. Since x+ cv is a fixed point,
we have x+ + cv+ = x+ cv. Since x, x+ both are in A and

v, v+ are both in B, by orthogonality of A, and B, we have
x = x+, v = v+. Since x+ cv is a fixed point, we have

x+i + cv+i = yi(A) + cwi(B) = yi + cwi = xi + cvi, (7)

for i = 1, . . . , n. We can then sum over i and have∑n
i=1 yi(A) + cwi(B) =

∑n
i=1 x

+
i + cv+i . By construc-

tion of x+i , we have
∑n
i=1 yi(A) =

∑n
i=1 x

+
i . Therefore∑n

i=1 wi(B) =
∑n
i=1 v

+
i . Since v+ is in B, we have∑n

i=1 v
+
i = 0, which implies that

∑n
i=1 wi(B) = 0 and

w is in the subspace B. Hence v+ = w(B) = w = v. We
combine this with Eq. (7), and obtain x = y = y+. Therefore,
v in B is also in ∂F (x) with x in A. This suggests that the
first order optimality condition is satisfied and therefore the
pair (x, v) is an optimal solution and subgradient pair.

Next we start from an optimal solution and subgradient
pair (x, v). We have x is in A and v is in B. Since v is in
∂F (x), we have w = v and y = x, and the projection will
give the original pair back. Thus (x, v) is a pair of fixed point
with the components lying in orthogonal subspaces, which
implies that x+ cv is a fixed point of the iteration.

By Assumption 1, we have that the set of fixed points of
iteration (6) is nonempty. For the rest of the paper, we use
x∗, v∗ to denote a fixed point of the iteration (6). We next
show that the mapping from xk + cvk to xk+1 + cvk+1 is
nonexpansive, which is our building block for convergence
analysis.

Theorem 3.4: Let x∗ in A denote an optimal solution of
problem (1) and v∗ in B be a subgradient of ∂F (x∗). Then
any sequence of xk, vk, yk, wk generated by Algorithm 1, we
have for all k∣∣∣∣xk+1 − x∗

∣∣∣∣2 +
∣∣∣∣cvk+1 − cv∗

∣∣∣∣2 (8)

=
∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2 − ∣∣∣∣yk+1 − xk+1
∣∣∣∣2

−
∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2 − 2(yk+1 − x∗)′(cwk+1 − cv∗),

(yk −x∗)′(cwk − cv∗) =

n∑
i=1

(yki −x∗i)′(wki − v∗i) ≥ 0. (9)

The sequence {
∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2}k is monoton-
ically nonincreasing.

Proof: We first apply the equality of the form∣∣∣∣zk+1 − z∗
∣∣∣∣2+

∣∣∣∣zk − zk+1
∣∣∣∣2+2(zk−zk+1)′(zk+1−z∗) =∣∣∣∣zk − z∗∣∣∣∣2 , where z = x + cv with the corresponding

superscript, to
∣∣∣∣xk+1 + cvk+1 − x∗ − cv∗

∣∣∣∣2 and obtain∣∣∣∣xk+1 + cvk+1 − x∗ − cv∗
∣∣∣∣2 (10)

=
∣∣∣∣xk + cvk − x∗ − cv∗

∣∣∣∣2
−
∣∣∣∣xk + cvk − xk+1 − cvk+1

∣∣∣∣2
− 2(xk + cvk − xk+1 − cvk+1)′(xk+1 + cvk+1 − x∗ − cv∗).

The rest of the proof relies on the fact that A and B are
orthogonal complements and the inner products between any
elements of these sets are zero.

For the second term on the right hand side of Eq. (10),
we use Eq. (6) and have

∣∣∣∣xk + cvk − xk+1 − cvk+1
∣∣∣∣2 =

∣∣∣∣yk+1 + cwk+1 − xk+1 − cvk+1
∣∣∣∣2 . Since xk+1 is the pro-

jection of yk+1 in A we have that yk+1 − xk+1 lies in B
and similarly cwk+1 − cvk+1 is in A. Their inner product
is zero and thus the term can be further decomposed
into

∣∣∣∣xk + cvk − xk+1 − cvk+1
∣∣∣∣2 =

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2 .
We next analyze the inner product term on the right hand

of Eq. (10). By Eq. (6), we have xk + cvk = yk+1 + cwk+1,
and thus we have xk + cvk − xk+1 − cvk+1 = yk + 1 +
cwk+1−xk+1−cvk+1. We recall that yk+1−xk+1 lies in B
and cwk+1− cvk+1 is in A. We also observe that xk+1−x∗
is in A and cvk+1− cv∗ is in B. Combine these observations
together, we have

(xk + cvk − xk+1 − cvk+1)′(xk+1 + cvk+1 − x∗ − cv∗)
= (yk+1 − xk+1)′(cvk+1 − cv∗)

+ (cwk+1 − cvk+1)′(xk+1 − x∗),
= (yk+1 − xk+1 + xk+1 − x∗)′(cvk+1 − cv∗)

+ (cwk+1 − cvk+1)′(xk+1 − x∗ + yk+1 − xk+1),

where in the last equality we add terms (xk+1−x∗)′(cvk+1−
cv∗) to the first term and (cwk+1 − cvk+1)′(yk+1 − xk+1)
to the second term of the second equality, both of which
are zero due to the orthogonality of A and B. We can now
combine the terms and have

(xk + cvk − xk+1 − cvk+1)′(xk+1 + cvk+1 − x∗ − cv∗)
(11)

= (yk+1 − x∗)′(cwk+1 − cv∗).

We can now combine Eqs. (10)-(11) and conclude∣∣∣∣xk+1 + cvk+1 − x∗ − cv∗
∣∣∣∣2 − ∣∣∣∣xk + cvk − x∗ − cv∗

∣∣∣∣2
= −

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 − ∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2
− 2(yk+1 − x∗)′(cwk+1 − cv∗).

For the terms on the left hand side, we once again use
the orthogonality of A and B, along with the fact that all x
related terms are in A and v related terms are in B to break
down the norm, and have∣∣∣∣xk+1 − x∗

∣∣∣∣2 +
∣∣∣∣cvk+1 − cv∗

∣∣∣∣2
−
∣∣∣∣xk − x∗∣∣∣∣2 − ∣∣∣∣cvk − cv∗∣∣∣∣2

= −
∣∣∣∣yk+1 − xk+1

∣∣∣∣2 − ∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2

− 2(yk+1 − x∗)′(cwk+1 − cv∗),

which shows Eq. (8).
To see that the sequence {

∣∣∣∣xk − x∗∣∣∣∣2 +
∣∣∣∣cvk − cv∗∣∣∣∣2}k

is monotonically nonincreasing, we need to show that the
inner product term in the above line satisfies (yk+1 −
x∗)′(cwk+1 − cv∗) ≥ 0, i.e., Eq. (9). We note that since
wk+1 is in ∂F (yk+1), we have by convexity of fi, (yk+1

i −
x∗i)
′(wk+1

i − v∗i) ≥ 0 for i = 1, . . . , n. This establishes Eq.
(9).

The previous theorem establishes that the sequence
{
∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2}k is monotonically nonin-
creasing, we are now equipped to show convergence of the
sequence {xk} to an optimal solution.

Theorem 3.5: Let {xk} be a sequence generated by Algo-
rithm 1. Then the sequence converges to an optimal solution
of problem (1).

Proof: The monotonicity results from previous theorem
implies that the sequence {

∣∣∣∣xk − x∗∣∣∣∣2 +
∣∣∣∣cvk − cv∗∣∣∣∣2}k

is bounded. Hence sequence {xk, vk}k has subsequent con-
vergent sequence. We now focus on a convergent subsequent
{xkt , vkt}t and denote its limit point as x̃, ṽ, and the
corresponding {ykt , wkt} also converge and its limit point
as (ỹ, w̃). Eq. (8) suggests that∣∣∣∣xkt+1 − x∗

∣∣∣∣2 +
∣∣∣∣cvkt+1 − cv∗

∣∣∣∣2
=
∣∣∣∣xkt − x∗∣∣∣∣2 +

∣∣∣∣cvkt − cv∗∣∣∣∣2
−

∑
k=kt

kt+1

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 − ∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2
− 2(yk+1 − x∗)′(cwk+1 − cv∗).

By Eq. (9), we have the inner product term is nonnegative,
and thus∣∣∣∣xkt − x∗∣∣∣∣2 +

∣∣∣∣cvkt − cv∗∣∣∣∣2 − ∣∣∣∣xkt+1 − x∗
∣∣∣∣2

−
∣∣∣∣cvkt+1 − cv∗

∣∣∣∣2 ≥
kt+1∑
k=kt

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2 .

We then take limit as t→∞ on both sides and have

lim
t→∞

∣∣∣∣xkt − x∗∣∣∣∣2 +
∣∣∣∣cvkt − cv∗∣∣∣∣2

−
∣∣∣∣xkt+1 − x∗

∣∣∣∣2 − ∣∣∣∣cvkt+1 − cv∗
∣∣∣∣2

≥ lim
t→∞

kt+1∑
k=kt

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2 .

Since the sequence {xkt , vkt} is convergent to (x̃, ṽ), we
have

||x̃− x∗||2 + ||cṽ − cv∗||2 − ||x̃− x∗||2 − ||cṽ − cv∗||2

≥ lim
t→∞

kt+1∑
k=kt

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2 .

The left hand side is 0 and each summand on the right hand
side is nonnegative, therefore we have limt→∞ ykt − xkt =
0, limk→∞ cwkt − cvkt = 0, i.e., ỹ = x̃, w̃ = ṽ. Hence
the point (x̃, ṽ) is a fixed point of iteration (6). We can
then use x∗ = x̃, and v∗ = ṽ in Eq. (8). Since the value
of
∣∣∣∣xkt − x̃∣∣∣∣2 +

∣∣∣∣cvkt − cṽ∣∣∣∣2 is going to 0 along the kt
sequence and the original sequence in k is monotone, we have
limk→0

∣∣∣∣xk − x̃∣∣∣∣2 +
∣∣∣∣cvk − cṽ∣∣∣∣2 = 0. Therefore sequence

{xk, vk} converges. The limit point of (x̃, ṽ) is a fixed point
of iteration (6) and thus by Lemma 3.3, x̃ is an optimal
solution of problem (1).

We remark that the above theorem guarantees convergence
of the algorithm for any stepsize choice c > 0.

D. Rate of Convergence

We next show that under some assumptions of the objective
functions, we can establish linear rate of convergence of the
algorithm, and the stepsize choice c becomes a parameter
in the rate of convergence. For this section, we assume our
objective functions fi are continuously differentiable and
satisfy the following assumption.

Assumption 2: Each component of the objective function
fi has Lipschitz gradient with Lipschitz constant L and is
µ− strongly convex.

Note that in the event where precise values of L and
µ are missing, an upper bound on L and a lower bound
on µ can be used in place of L and µ for the rest of
analysis. The following lemma relates

∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2 + 2(yk+1 − x∗)′(cwk+1 − cv∗) to∣∣∣∣xk+1 − x∗
∣∣∣∣2 +

∣∣∣∣cvk+1 − cv∗
∣∣∣∣2. We later combine this

lemma with Theorem 3.4 to show linear convergence rate.
Lemma 3.6: For any sequence of xk, vk, yk, wk generated

by Algorithm 1, we have that∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2 (12)

+ 2(yk+1 − x∗)′(cwk+1 − cv∗)

≥ min

{
1

2
,
cµβ

2

} ∣∣∣∣xk+1 − x∗
∣∣∣∣2

+ min

{
1

2
,
µ(1− β)

2cL2

} ∣∣∣∣cvk+1 − cv∗
∣∣∣∣2

for any β in (0, 1).
Proof: We first focus on the inner product term on

the left hand side, then later combine it with the rest of the
norm terms. Since each fi is differentiable, the vector wk+1 is
composed of gradient vectors, i.e., wk+1 = [∇fi(yk+1

i)]i and
v∗ = [∇fi(x∗i)]i. By strong convexity of fi in Assumption
2, we have by [14], (yi − x∗i)

′(∇fi(yi) − ∇fi(x∗i)) ≥
µ ||yi − x∗i ||

2
, for any yi in Rm. For the long vector in

Rnm, we therefore have

(yk+1 − x∗)′(cwk+1 − cv∗) (13)

= c

n∑
i=1

(yk+1
i − x∗i)′(∇fi(yk+1

i)−∇fi(x∗i))

≥ cµ
n∑
i=1

∣∣∣∣yk+1
i − x∗i

∣∣∣∣2 = cµ
∣∣∣∣yk+1 − x∗

∣∣∣∣2 .
We also note that due to the fact that each fi has Lipschitz

gradient with Lipschitz constant L, we have by results in
[14], ||∇fi(yi)−∇fi(x∗i)|| ≤ L ||yi − x∗i || , for any yi in
Rm. Therefore, we have∣∣∣∣yk+1 − x∗

∣∣∣∣2 =

n∑
i=1

∣∣∣∣yk+1
i − x∗i

∣∣∣∣2
≥ 1

L2

n∑
i=1

∣∣∣∣∇fi(yk+1
i)−∇fi(x∗i)

∣∣∣∣2 =
1

L2

∣∣∣∣wk+1 − v∗
∣∣∣∣2 .

Thus we can introduce the factor β in (0, 1) to
Eq. (13) and have (yk+1 − x∗)′(cwk+1 − cv∗) ≥

cµβ
∣∣∣∣yk+1 − x∗

∣∣∣∣2 + cµ(1 − β)
∣∣∣∣yk+1 − x∗

∣∣∣∣2 ≥
cµβ

∣∣∣∣yk+1 − x∗
∣∣∣∣2 + µ(1−β)

cL2

∣∣∣∣cwk+1 − cv∗
∣∣∣∣2 .

We can now bring in the norm terms and have∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2

+ 2(yk+1 − x∗)′(cwk+1 − cv∗)

≥
∣∣∣∣yk+1 − xk+1

∣∣∣∣2 + cµβ
∣∣∣∣yk+1 − x∗

∣∣∣∣2
+
∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2 +
µ(1− β)

cL2

∣∣∣∣cwk+1 − cv∗
∣∣∣∣2

We next use the inequality 2 that ||a||2 + ||b||2 ≥
1
2 ||a+ b||2 , and have∣∣∣∣yk+1 − xk+1

∣∣∣∣2 + cµβ
∣∣∣∣yk+1 − x∗

∣∣∣∣2
≥ min

{
1

2
,
cµβ

2

} ∣∣∣∣xk+1 − x∗
∣∣∣∣2 ,

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2 +

µ(1− β)

cL2

∣∣∣∣cwk+1 − cv∗
∣∣∣∣2

≥ min

{
1

2
,
µ(1− β)

2cL2

} ∣∣∣∣cvk+1 − cv∗
∣∣∣∣2 .

By combining the previous three inequalities, we obtain
Eq. (12).

We next show linear rate of convergence.
Theorem 3.7: For any sequence of xk, vk generated by

Algorithm 1, we have that for any β in (0, 1),(
1 + min

{
1

2
,
cµβ

2

}) ∣∣∣∣xk+1 − x∗
∣∣∣∣2

+

(
1 + min

{
1

2
,
µ(1− β)

2cL2

}) ∣∣∣∣cvk+1 − cv∗
∣∣∣∣2

≤
∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2 .
Proof: Recall Eqs. (8) and (12)∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2 − ∣∣∣∣xk+1 − x∗
∣∣∣∣2−∣∣∣∣cvk+1 − cv∗

∣∣∣∣2 =
∣∣∣∣yk+1 − xk+1

∣∣∣∣2 +
∣∣∣∣cwk+1 − cvk+1

∣∣∣∣2
+ 2(yk+1 − x∗)′(cwk+1 − cv∗),

and ∣∣∣∣yk+1 − xk+1
∣∣∣∣2 +

∣∣∣∣cwk+1 − cvk+1
∣∣∣∣2

+ 2(yk+1 − x∗)′(cwk+1 − cv∗) ≥

min

{
1

2
,
cµβ

2

} ∣∣∣∣xk+1 − x∗
∣∣∣∣2

+ min

{
1

2
,
µ(1− β)

2cL2

} ∣∣∣∣cvk+1 − cv∗
∣∣∣∣2 .

Hence, we can combine the previous two lines and establish
the desired relation.

The above theorem establishes linear convergence rate
for the algorithm. To match the two constants, we can

2To see why this inequality is true, we have ||a||2 + ||b||2 − 2a′b =
||a− b||2 ≥ 0. Therefore, 1

2
[||a||2 + ||b||2] ≥ a′b, which implies that

||a||2 + ||b||2 ≥ 1
2
||a||2 + 1

2
||b||2 + a′b = 1

2
||a+ b||2.

set cµβ
2 = µ(1−β)

2cL2 , and have c =
√

1−β
β

1
L . This

choice of c gives cµβ
2 = µ(1−β)

2cL2 =
√

(1− β)β µ
2L .

This value is maximized at β = 1
2 . We can then have(

1 + min
{

1
2 ,

µ
4L

}) [∣∣∣∣xk+1 − x∗
∣∣∣∣2 +

∣∣∣∣cvk+1 − cv∗
∣∣∣∣2] ≤∣∣∣∣xk − x∗∣∣∣∣2 +

∣∣∣∣cvk − cv∗∣∣∣∣2 . For problems with µ
L > 2,

we have∣∣∣∣xk+1 − x∗
∣∣∣∣2 +

∣∣∣∣cvk+1 − cv∗
∣∣∣∣2

≤ 2

3

[∣∣∣∣xk − x∗∣∣∣∣2 +
∣∣∣∣cvk − cv∗∣∣∣∣2] .

For problems with µ
L ≤ 2, we have∣∣∣∣xk+1 − x∗

∣∣∣∣2 +
∣∣∣∣cvk+1 − cv∗

∣∣∣∣2
≤ 4

4 + κ

[∣∣∣∣xk − x∗∣∣∣∣2 +
∣∣∣∣cvk − cv∗∣∣∣∣2] ,

where κ = µ
L . We conclude that the rate of linear convergence

depends on the condition number of the objective functions.

IV. CONCLUSIONS

In this paper, we propose a parallel multi-splitting proximal
method and show that it converges for any positive stepsize.
When the objective functions are Lipschitz gradient and
strongly convex, the algorithm converges linearly. Future
works include extend this algorithm to stochastic setting
where delays and errors are involved.

REFERENCES

[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[2] D. P. Bertsekas. Incremental Gradient, Subgradient, and Proximal

Methods for Convex Optimization: A Survey. LIDS Report 2848,
2010.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, Belmont, MA,
1997.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Foundations and Trends in Machine Learning,
3(1):1–122, 2010.

[5] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct
extension of admm for multi-block convex minimization problems is
not necessarily convergent. Mathematical Programming, 155(1-2):57–
79, 2016.

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A
fast incremental gradient method with support for non-strongly convex
composite objectives. In Advances in Neural Information Processing
Systems, pages 1646–1654, 2014.

[7] J. Eckstein. Augmented Lagrangian and Alternating Direction Methods
for Convex Optimization: A Tutorial and Some Illustrative Computa-
tional Results. Rutcor Research Report, 2012.

[8] Jonathan Eckstein and Benar Fux Svaiter. General projective splitting
methods for sums of maximal monotone operators. SIAM Journal on
Control and Optimization, 48(2):787–811, 2009.

[9] Pontus Giselsson and Stephen Boyd. Diagonal scaling in douglas-
rachford splitting and admm. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on, pages 5033–5039. IEEE, 2014.

[10] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in Neural Information
Processing Systems, pages 315–323, 2013.

[11] J. Mota, J Xavier, P. Aguiar, and M. Püschel. ADMM For Consensus
On Colored Networks. Proceedings of IEEE Conference on Decision
and Control (CDC), 2012.

[12] J. Mota, J. Xavier, P. Aguiar, and M. Püschel. D-ADMM : A
Communication-Efficient Distributed Algorithm For Separable Opti-
mization. IEEE Transactions on Signal Processing, 61(10):2718–2723,
2013.

[13] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-
agent optimization. Automatic Control, IEEE Transactions on, 54(1):48
–61, Jan 2009.

[14] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2013.

[15] Neal Parikh and Stephen P Boyd. Proximal algorithms. Foundations
and Trends in optimization, 1(3):127–239, 2014.

[16] I. D. Schizas, R. Ribeiro, and G. B. Giannakis. Consensus in Ad Hoc
WSNs with Noisy Links - Part I: Distributed Estimation of Deterministic
Signals. IEEE Transactions on Singal Processing, 56:350–364, 2008.

[17] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing
finite sums with the stochastic average gradient. arXiv preprint
arXiv:1309.2388, 2013.

[18] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact
first-order algorithm for decentralized consensus optimization. SIAM
Journal on Optimization, 25(2):944–966, 2015.

[19] Jonathan E Spingarn. Partial inverse of a monotone operator. Applied
mathematics and optimization, 10(1):247–265, 1983.

[20] J. N. Tsitsiklis. Problems in Decentralized Decision Making and
Computation. PhD thesis, Massachusetts Institute of Technology, 1984.

[21] E. Wei and A. Ozdaglar. Distributed Alternating Direction Method of
Multipliers. Proceedings of IEEE Conference on Decision and Control
(CDC), 2012.

[22] E. Wei and A. Ozdaglar. On the O(1/k) convergence of asynchronous
distributed alternating Direction Method of Multipliers. In Global
Conference on Signal and Information Processing (GlobalSIP), 2013
IEEE, pages 551–554. IEEE, 2013.

[23] Lin Xiao and Tong Zhang. A proximal stochastic gradient method
with progressive variance reduction. SIAM Journal on Optimization,
24(4):2057–2075, 2014.

[24] H. Zhu, A. Cano, and G. B. Giannakis. In-Network Channel Decoding
Using Consensus on Log-Likelihood Ratio Averages. Proceedings of
Conference on Information Sciences and Systems (CISS), 2008.

	Introduction
	Algorithm
	Convergence analysis
	Proximal method
	Projection
	Convergence
	Rate of Convergence

	Conclusions
	References

