
A Distributed Newton Method for Network Utility
Maximization, II: Convergence∗

Ermin Wei†, Asuman Ozdaglar†, and Ali Jadbabaie‡

October 31, 2012

Abstract

The existing distributed algorithms for Network Utility Maximization (NUM) problems
are mostly constructed using dual decomposition and first-order (gradient or subgradient)
methods, which suffer from slow rate of convergence. Recent work [25] proposed an alter-
native distributed Newton-type algorithm for solving NUM problems with self-concordant
utility functions. For each primal iteration, this algorithm features distributed exact step-
size calculation with finite termination and decentralized computation of the dual variables
using a finitely truncated iterative scheme obtained through novel matrix splitting tech-
niques. This paper analyzes the convergence properties of a broader class of algorithms
with potentially different stepsize computation schemes. In particular, we allow for errors
in the stepsize computation. We show that if the error levels in the Newton direction
(resulting from finite termination of dual iterations) and stepsize calculation are below a
certain threshold, then the algorithm achieves local quadratic convergence rate in primal
iterations to an error neighborhood of the optimal solution, where the size of the neigh-
borhood can be explicitly characterized by the parameters of the algorithm and the error
levels.

∗This work was supported by National Science Foundation under Career grant DMI-0545910, the DARPA
ITMANET program, ONR MURI N000140810747 and AFOSR Complex Networks Program.
†Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
‡Department of Electrical and Systems Engineering and GRASP Laboratory, University of Pennsylvania

1 Introduction

There has been much recent interest in developing distributed algorithms for solving convex
optimization problems over networks. This is mainly motivated by resource allocation problems
that arise in large-scale communication networks. This paper focuses on the rate allocation
problem in wireline networks, which can be formulated as the Network Utility Maximization
(NUM) problem (see [1], [23], [7], [17], [19]). NUM problems are characterized by a fixed set of
sources with predetermined routes over a network topology. Each source in the network has a
local utility, which is a function of the rate at which it transmits information over the network.
The objective is to determine the source rates that maximize the sum of the utilities without
violating link capacity constraints. The standard approach for solving NUM problems in a
distributed way relies on using dual decomposition and first-order (subgradient) methods, which
through a dual price exchange mechanism enables each source to determine its transmission
rate using only locally available information ([16], [19], [21]). However, the drawback of these
methods is their slow rate of convergence.

In this paper, we study the convergence properties of a distributed Newton-type method for
solving NUM problems proposed in [25]. This method involves an iterative scheme to compute
the dual variables based on matrix splitting and uses the same information exchange mechanism
as that of the first-order methods applied to the NUM problem. The stepsize rule is inversely
proportional to the inexact Newton decrement (where the inexactness arises due to errors in the
computation of the Newton direction) if this decrement is above a certain threshold and takes
the form of a pure Newton step otherwise.

Since the method uses iterative schemes to compute the Newton direction, exact computation
is not feasible. In this paper, we consider a truncated version of this scheme and present a
convergence rate analysis of the constrained Newton method when the stepsize and the Newton
direction are estimated with some error. We show that when these errors are sufficiently small,
the value of the objective function converges superlinearly in terms of primal iterations to a
neighborhood of the optimal objective function value, whose size is explicitly quantified as a
function of the errors and bounds on them.

Our paper is most related to [4] and [13]. In [4], the authors have developed a distributed
Newton-type method for the NUM problem using a belief propagation algorithm. Belief prop-
agation algorithms, while performing well in practice, lack systematic convergence guarantees.
Another recent paper [13] studied a Newton method for equality-constrained network optimiza-
tion problems and presented a convergence analysis under Lipschitz assumptions. In this paper,
we focus on an inequality-constrained problem, which is reformulated as an equality-constrained
problem using barrier functions. Therefore, this problem does not satisfy Lipschitz assumptions.
Instead, we assume that the utility functions are self-concordant and present a novel convergence
analysis using properties of self-concordant functions.

Our analysis for the convergence of the algorithm also relates to work on convergence rate
analysis of inexact Newton methods (see [10], [15]). These works focus on providing conditions
on the amount of error at each iteration relative to the norm of the gradient of the current iterate
that ensures superlinear convergence to the exact optimal solution (essentially requiring the error
to vanish in the limit). Even though these analyses can provide superlinear rate of convergence,
the vanishing error requirement can be too restrictive for practical implementations. Another
novel feature of our analysis is the consideration of convergence to an approximate neighborhood
of the optimal solution. In particular, we allow a fixed error level to be maintained at each step
of the Newton direction computation and show that superlinear convergence is achieved by the
primal iterates to an error neighborhood, whose size can be controlled by tuning the parameters
of the algorithm. Hence, our work also contributes to the literature on error analysis for inexact

1

Newton methods.
The rest of the paper is organized as follows: Section 2 defines the problem formulation and

related transformations. Section 3 describes the exact constrained primal-dual Newton method
for this problem. Section 4 outlines the distributed inexact Newton-type algorithm developed
in [25]. Section 5 contains the rate of convergence analysis for our algorithm. Section 6 contains
our concluding remarks.

Basic Notation and Notions:
A vector is viewed as a column vector, unless clearly stated otherwise. We write R+ to

denote the set of nonnegative real numbers, i.e., R+ = [0,∞). We use subscripts to denote the
components of a vector and superscripts to index a sequence, i.e., xi is the ith component of
vector x and xk is the kth element of a sequence. When xi ≥ 0 for all components i of a vector
x, we write x ≥ 0.

For a matrix A, we write Aij to denote the matrix entry in the ith row and jth column. We
write I(n) to denote the identity matrix of dimension n × n. We use x′ and A′ to denote the
transpose of a vector x and a matrix A respectively. For a real-valued function f : X → R,
where X is a subset of Rn, the gradient vector and the Hessian matrix of f at x in X are denoted
by ∇f(x) and ∇2f(x) respectively. We use the vector e to denote the vector of all ones.

A real-valued convex function g : X → R, where X is a subset of R, is self-concordant
if it is three times continuously differentiable and |g′′′(x)| ≤ 2g′′(x)

3
2 for all x in its domain.1

For real-valued functions in Rn, a convex function g : X → R, where X is a subset of Rn, is
self-concordant if it is self-concordant along every direction in its domain, i.e., if the function
g̃(t) = g(x+ tv) is self-concordant in t for all x and v. Operations that preserve self-concordance
property include summing, scaling by a factor α ≥ 1, and composition with affine transformation
(see [6] Chapter 9 for more details).

2 Network Utility Maximization Problem

We consider a network represented by a set L = {1, ..., L} of (directed) links of finite nonzero
capacity given by c = [cl]l∈L and a set S = {1, ..., S} of sources, each of which transmits
information along a predetermined route.2 For each link l, let S(l) denote the set of sources
using it. For each source i, let L(i) denote the set of links it uses. Let the nonnegative source
rate vector be denoted by s = [si]i∈S . Let matrix R be the routing matrix of dimension L× S,
given by

Rij =

{
1 if link i is on the route of source j,
0 otherwise.

(1)

For each i, we use Ui : R+ → R to denote the utility function of source i. The Network
Utility Maximization (NUM) problem involves choosing the source rates to maximize a global
system function given by the sum of all utility functions and can be formulated as

maximize
S∑
i=1

Ui(si) (2)

subject to Rs ≤ c, s ≥ 0.

We adopt the following assumptions on the utility function.

1Self-concordant functions are defined through the following more general definition: a real-valued three times
continuously differentiable convex function g : X → R, where X is a subset of R, is self-concordant, if there exists
a constant a > 0, such that |g′′′(x)| ≤ 2a−

1
2 g′′(x)

3
2 for all x in its domain [22], [14]. Here we focus on the case

a = 1 for notational simplification in the analysis.
2We assume that each source flow traverses at least one link and each link is used by at least one source.

2

Assumption 1. The utility functions Ui : R+ → R are continuous, strictly concave, mono-
tonically nondecreasing on R+ and twice continuously differentiable on the set of positive real
numbers. The functions −Ui : R+ → R are self-concordant on the set of positive real numbers.

The self-concordance assumption is satisfied by standard utility functions considered in the
literature, for instance logarithmic (i.e., weighted proportionally fair, see [23]) utility functions
and concave quadratic functions, and is adopted here to allow a self-concordant analysis in
establishing local quadratic convergence. We use h(x) to denote the (negative of the) objective
function of problem (2), i.e., h(x) = −

∑S
i=1 Ui(xi), and h∗ to denote the (negative of the) optimal

value of this problem.3 Since h(x) is continuous and the feasible set of problem (2) is compact,
it follows that problem (2) has an optimal solution, and therefore h∗ is finite. Moreover, the
interior of the feasible set is nonempty, i.e., there exists a feasible solution x with xi = c

S+1
for

all i ∈ S with c > 0.4

We reformulate the problem into one with only equality constraints by introducing nonneg-
ative slack variables [yl]l∈L, such that

S∑
j=1

Rljsj + yl = cl for l = 1, 2 . . . L, (3)

and using logarithmic barrier functions for the nonnegativity constraints (which can be done since
the feasible set of (2) has a nonempty interior).5 The new decision vector is x = ([si]

′
i∈S , [yl]

′
l∈L)′

and problem (2) can be rewritten as

minimize −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi) (4)

subject to Ax = c,

where A is the L× (S + L)-dimensional matrix given by

A = [R I(L)], (5)

and µ is a nonnegative barrier function coefficient. We use f(x) to denote the objective function
of problem (4), i.e.,

f(x) = −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi), (6)

and f ∗ to denote the optimal value of this problem, which is finite for positive µ.6

By Assumption 1, the function f(x) is separable, strictly convex, and has a positive definite
diagonal Hessian matrix on the positive orthant. The function f(x) is also self-concordant for
µ ≥ 1, since both summing and scaling by a factor µ ≥ 1 preserve self-concordance property.

We write the optimal solution of problem (4) for a fixed barrier function coefficient µ as
x(µ). One can show that as the barrier function coefficient µ approaches 0, the optimal solution
of problem (4) approaches that of problem (2), when the constraint set in (2) has a nonempty

3We consider the negative of the objective function value to work with a minimization problem.
4One possible value for c is c = minl{cl}.
5We adopt the convention that log(x) = −∞ for x ≤ 0.
6This problem has a feasible solution, hence f∗ is upper bounded. Each of the variable xi is upper bounded by

c̄, where c̄ = maxl{cl}, hence by monotonicity of utility and logarithm functions, the optimal objective function
value is lower bounded. Note that in the optimal solution of problem (4) xi 6= 0 for all i, due to the logarithmic
barrier functions.

3

interior and is convex [2], [11]. Hence by continuity from Assumption 1, h(x(µ)) approaches h∗.
Therefore, in the rest of this paper, unless clearly stated otherwise, we study iterative distributed
methods for solving problem (4) for a given µ. In order to preserve the self-concordance property
of the function f , which will be used in our convergence analysis, we first develop a Newton-type
algorithm for µ ≥ 1. In Section 5.3, we show that problem (4) for any µ > 0 can be tackled by
solving two instances of problem (4) with different coefficients µ ≥ 1, leading to a solution x(µ)

that satisfies h(x(µ))−h∗
h∗

≤ a for any positive scalar a.

3 Exact Newton Method

For each fixed µ, problem (4) is feasible and has a convex objective function, affine constraints,
and a finite optimal value f ∗. Therefore, we can use a strong duality theorem to show that,
for problem (4), there is no duality gap and there exists a dual optimal solution (see [3]).
Moreover, since matrix A has full row rank, we can use a (feasible start) equality-constrained
Newton method to solve problem (4)(see [6] Chapter 10), which serves as a starting point in the
development of a distributed algorithm. In our iterative method, we use xk to denote the primal
vector at the kth iteration.

3.1 Feasible Initialization

We initialize the algorithm with some feasible and strictly positive vector x0. For example, one
such initial vector is given by

x0
i =

c

S + 1
for i = 1, 2 . . . S, (7)

x0
l+S = cl −

S∑
j=1

Rlj
c

S + 1
for l = 1, 2 . . . L,

where cl is the finite capacity for link l, c is the minimum (nonzero) link capacity, S is the total
number of sources in the network, and R is routing matrix [cf. Eq. (1)].

3.2 Iterative Update Rule

We denote Hk = ∇2f(xk) for notational convenience. Given an initial feasible vector x0, the
algorithm generates the iterates by xk+1 = xk + dk∆xk, where dk is a positive stepsize, ∆xk is
the (primal) Newton direction given as

∆xk = −H−1
k

(
∇f(xk) + A′wk

)
, and (8)

(AH−1
k A′)wk = −AH−1

k ∇f(xk), (9)

where wk = [wkl]l∈L is the dual vector and the wkl are the dual variables for the link capacity
constraints at primal iteration k. This system has a unique solution for all k. To see this, note
that the matrix Hk is a diagonal matrix with entries

(Hk)ii =

{
−∂2Ui(x

k
i)

∂(xki)2
+ µ

(xki)2
1 ≤ i ≤ S,

µ
(xki)2

S + 1 ≤ i ≤ S + L.
(10)

By Assumption 1, the functions Ui are strictly concave, which implies
∂2Ui(x

k
i)

∂x2i
≤ 0. Moreover,

the primal vector xk is bounded (since the method maintains feasibility) and, as we shall see in

4

Section 4.2, can be guaranteed to remain strictly positive by proper choice of stepsize. Therefore,
the entries (Hk)ii > 0 and are well-defined for all i, implying that the Hessian matrix Hk is
invertible. Due to the structure of A [cf. Eq. (5)], the column span of A is the entire space RL,
and hence the matrix AH−1

k A′ is also invertible.7 This shows that the preceding system of linear
equations can be solved uniquely for all k.

The objective function f is separable in xi, therefore given the vector wkl for l in L(i), the
Newton direction ∆xki can be computed by each source i using local information available to
that source. However, the computation of the vector wk at a given primal solution xk cannot be
implemented in a decentralized manner since the evaluation of the matrix inverse (AH−1

k A′)−1

requires global information. This motivates using matrix splitting technique to compute the
dual variables wk in the inexact distributed Newton method developed in [25], which we briefly
summarize in the following section.

4 Distributed Inexact Newton Method

This section describes the distributed Newton algorithm developed in [25]. We consider a broader
class of algorithms which allow for errors in the stepsize computation. These algorithms use
a distributed iterative scheme to compute the dual vector, which is then used to determine
an inexact primal Newton direction that maintains primal feasibility. Section 4.1 summarizes
the distributed finitely terminated dual vector computation procedure. Section 4.2 presents
the distributed primal Newton direction computation and the stepsize rule, together with the
bounds on the error level in the inexact algorithm.

4.1 Distributed Dual Variable Computation via Matrix Splitting

The computation of the dual vector wk at a given primal solution xk requires solving a linear
system of equations [cf. Eq. (9)]. The dual variables can be computed using a distributed iterative
scheme relying on novel ideas from matrix splitting (see [9] for a comprehensive review). We let
Dk be a diagonal matrix with diagonal entries

(Dk)ll = (AH−1
k A′)ll, (11)

Bk be a symmetric matrix given by

Bk = (AH−1
k A′)−Dk, (12)

and B̄k be a diagonal matrix with diagonal entries

(B̄k)ii =
L∑
j=1

(Bk)ij. (13)

It was shown in [25] that we can use the matrix splitting

AH−1
k A′ = (B̄k +Dk) + (Bk − B̄k) (14)

to compute the dual variables iteratively. We include the theorem statement here for complete-
ness.

7If for some x ∈ RL, we have AH−1
k A′x = 0, then x′AH−1

k A′x =
∣∣∣∣∣∣H− 1

2

k A′x
∣∣∣∣∣∣

2
= 0, which implies ||A′x||2 = 0,

because the matrix H is invertible. The rows of the matrix A′ span RL, therefore we have x = 0. This shows
that the matrix AH−1

k A′ is invertible.

5

Theorem 4.1. For a given k > 0, let Dk, Bk, B̄k be the matrices defined in Eqs. (11), (12) and
(13). Let w(0) be an arbitrary initial vector and consider the sequence {w(t)} generated by the
iteration

w(t+ 1) = (Dk + B̄k)
−1(B̄k −Bk)w(t) + (Dk + B̄k)

−1(−AH−1
k ∇f(xk)), (15)

for all t ≥ 0. Then the spectral radius of the matrix (Dk + B̄k)
−1(Bk − B̄k) is strictly bounded

above by 1 and the sequence {w(t)} converges as t→∞, and its limit is the solution to Eq. (9).

The results from [25] shows that iteration (15) can be implemented in a distributed way,
where each source or link is viewed as a processor, information available at source i can be
passed to the links it traverses, i.e., l ∈ L(i), and information about the links along a route
can be aggregated and sent back to the corresponding source using a feedback mechanism. The
algorithm has comparable level of information exchange with the subgradient based algorithms
applied to the NUM problem, see [25] for more implementation details.

4.2 Distributed Primal Direction Computation

Given the dual variables computed using the above iteration, the distributed Newton method
computes the primal Newton direction in two stages to maintain feasibility. In the first stage,
the first S components of ∆x̃k are computed via Eq. (8) using the dual vector obtained from
iteration (15). Then in the second stage, the last L components of ∆x̃k, corresponding to the
slack variables, are solved explicitly by the links to guarantee the condition A∆x̃k = 0 is satisfied.
The feasibility correction is given by(

∆x̃k
)
{S+1...S+L} = −R

(
∆x̃k

)
{1...S} . (16)

Starting from an initial feasible vector x0, the initialization in Eq. (7) for instance, the
distributed Newton algorithm generates the primal vectors xk as follows:

xk+1 = xk + dk∆x̃k, (17)

where dk is a positive stepsize, and ∆x̃k is the inexact Newton direction at the kth iteration.
The stepsize used in the distributed algorithm is based on an inexact Newton decrement,

which we introduce next. We refer to the exact solution of the system of equations (8) as the
exact Newton direction, denoted by ∆xk. The inexact Newton direction ∆x̃k computed by our
algorithm is a feasible estimate of ∆xk. At a given primal vector xk, we define the exact Newton
decrement λ(xk) as

λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. (18)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′∇2f(xk)∆x̃k. (19)

Note that both λ(xk) and λ̃(xk) are nonnegative and well defined because the matrix ∇2f(xk)
is positive definite.

We assume that λ̃(xk) is obtained through some distributed computation procedure and
denote θk as its approximate value. One possible procedure with finite termination yielding
θk = λ̃(xk) is described in [25]. However, other estimates θk can be used, which can potentially
be obtained by exploiting the diagonal structure of the Hessian matrix, writing the inexact
Newton decrement as

λ̃(xk) =

√ ∑
i∈L

⋃
S

(∆x̃k)2
i (Hk)ii =

√
(L+ S)ȳ,

6

where ȳ = 1
S+L

∑
i∈S

⋃
L(∆x̃k)2

i (Hk)ii and using iterative consensus-type algorithms.

Given the scalar θk, an approximation to the inexact Newton decrement λ̃(xk), at each
iteration k, we choose the stepsize dk as follows: Let V be some positive scalar with 0 < V <
0.267. Based on [22], we have

dk =

{
b

θk+1
if θk ≥ V for all previous k,

1 otherwise,
(20)

where V+1
2V+1

< b ≤ 1. The upper bound on V will be used in analysis of the quadratic convergence
phase of our algorithm [cf. Assumption 4]. This bound will also ensure the strict positivity of
the generated primal vectors [cf. Theorem 4.3]. The lower bound on b will be used to guarantee
a lower bounded improvement in the damped convergent phase. The stepsize rule in [25] uses
θk = λ̃(xk) and b = 1 as a special case of this broader class of stepsize rules.

There are three sources of inexactness in this algorithm: finite precision achieved in the com-
putation of the dual vector due to truncation of the iterative scheme (15); two-stage computation
of an approximate primal direction to maintain feasibility; inexact stepsize value obtained from
a finitely truncated consensus algorithm. The following assumptions quantify the bounds on the
resulting error levels.

Assumption 2. Let {xk} denote the sequence of primal vectors generated by the distributed
inexact Newton method. Let ∆xk and ∆x̃k denote the exact and inexact Newton directions at
xk, and γk denote the error in the Newton direction computation, i.e.,

∆xk = ∆x̃k + γk. (21)

For all k, γk satisfies

|(γk)′∇2f(xk)γk| ≤ p2(∆x̃k)′∇2f(xk)∆x̃k + ε. (22)

for some positive scalars p < 1 and ε.

This assumption imposes a bound on the weighted norm of the Newton direction error γk

as a function of the weighted norm of ∆x̃k and a constant ε. Note that without the constant
ε, we would require this error to vanish when xk is close to the optimal solution, i.e., when
∆x̃k is small, which is impractical for implementation purposes. Since the errors arise due to
finite truncation of the dual iteration (15) , the primal Newton direction can be computed with
arbitrary precision. Therefore given any p and ε, the dual computation can terminate after
certain number of iterations such that the resulting error γk satisfies this Assumption.

The recent papers [25] and [26] presented two different distributed methods to determine
when to terminate the dual computation procedure such that the above error tolerance level
is satisfied. The method in [25] has two stages: in the first stage a predetermined number
of dual iterations is implemented; in the second stage, the error bound is checked after each
dual iteration. The method in [26] computes an upper bound on the number of dual iterations
required to satisfy Assumption 2 at each primal iteration. Simulation results suggest that the
method proposed in [26] yields a loose upper bound, while it does not require distributed error
checking at each dual iteration and hence involves less communication and computation overhead
in terms of error checking.

We bound the error in the inexact Newton decrement calculation as follows.

Assumption 3. Let τ k denote the error in the Newton decrement calculation, i.e.,

τ k = λ̃(xk)− θk. (23)

7

For all k, τ k satisfies

|τ k| ≤
(

1

b
− 1

)
(1 + V).

This assumption will be used in establishing the strict positivity of the generated primal
vectors xk. When the method presented in [25] is used to compute θk, then we have τ k = 0
and b = 1 for all k and the preceding assumption is satisfied clearly. Throughout the rest of the
paper, we assume the conditions in Assumptions 1-3 hold.

In [25] we have shown that the stepsize choice with θk = λ̃(xk) and b = 1 can guarantee
strict positivity of the primal vector xk generated by our algorithm, which is important since it
ensures that the Hessian Hk and therefore the (inexact) Newton direction is well-defined at each
iteration. We next show that the stepsize choice in (20) will also guarantee strict positivity. We
first establish a bound on the error in the stepsize under Assumption 3.

Lemma 4.2. Let θk be an approximation of the inexact Newton decrement λ̃(xk) defined in
(19). For θk ≥ V , we have

(2b− 1)/(λ̃(xk) + 1) ≤ b

θk + 1
≤ 1/(λ̃(xk) + 1), (24)

where b ∈ (0, 1] is the constant used in stepsize choice (20).

Proof. By Assumption 3 and the fact θk ≥ V , we have

|λ̃(xk)− θk| ≤
(

1

b
− 1

)
(1 + V) ≤

(
1

b
− 1

)
(1 + θk). (25)

By multiplying both sides by the positive scalar b, the above relation implies

bθk − bλ̃(xk) ≤ (1− b)(1 + θk),

which yields

(2b− 1)θk + (2b− 1) ≤ bλ̃(xk) + b.

By dividing both sides of the above relation by the positive scalar (θk + 1)(λ̃(xk) + 1), we obtain
the first inequality in Eq. (24).

Similarly, using Eq. (25) we can establish

bλ̃(xk)− bθk ≤ (1− b)(1 + θk),

which can be rewritten as

bλ̃(xk) + b ≤ θk + 1.

After dividing both sides of the preceding relation by the positive scalar (θk + 1)(λ̃(xk) + 1), we
obtain the second inequality in Eq. (24).

With this bound on the stepsize error, we can show that starting with a strictly positive
feasible solution, the primal vectors xk generated by our algorithm remain positive for all k.

Proposition 4.3. Given a strictly positive feasible primal vector x0, let {xk} be the sequence
generated by the inexact distributed Newton method (17). Assume that the stepsize dk is
selected according to Eq. (20) and the constant b satisfies V+1

2V+1
< b ≤ 1. Then, the primal

vector xk is strictly positive for all k.

8

Proof. We will prove this claim by induction. The base case of x0 > 0 holds by the assumption
of the theorem. Since the Ui are strictly concave [cf. Assumption 1], for any xk, we have

−∂2Ui

∂x2i
(xki) ≥ 0. Given the form of the Hessian matrix [cf. Eq. (10)], this implies (Hk)ii ≥ µ

(xki)2

for all i, and therefore

λ̃(xk) =

(
S+L∑
i=1

(∆x̃ki)
2(Hk)ii

) 1
2

≥

(
S+L∑
i=1

µ

(
∆x̃ki
xki

)2
) 1

2

≥ maxi

∣∣∣∣√µ∆x̃ki
xki

∣∣∣∣ ,
where the last inequality follows from the nonnegativity of the terms µ

(
∆x̃ki
xki

)2

. By taking the

reciprocal on both sides, the above relation implies

1

λ̃(xk)
≤ 1

maxi

∣∣∣√µ∆x̃ki
xki

∣∣∣ =
1
√
µ

mini

∣∣∣∣ xki∆x̃ki

∣∣∣∣ ≤ mini

∣∣∣∣ xki∆x̃ki

∣∣∣∣ , (26)

where the last inequality follows from the fact that µ ≥ 1.
We show the inductive step by considering two cases.

� Case i: θk ≥ V
Since 0 < V+1

2V+1
< b ≤ 1, we can apply Lemma 4.2 and obtain that the stepsize dk satisfies

dk ≤ 1/(1 + λ̃(xk)) < 1/λ̃(xk).

Using Eq. (26), this implies dk < mini

∣∣∣ xki
∆x̃ki

∣∣∣. Hence if xk > 0, then xk+1 = xk+dk∆x̃k > 0.

� Case ii: θk < V
By Assumption 3, we have λ̃(xk) < V +

(
1
b
− 1
)

(1 + V). Using the fact that b > V+1
2V+1

, we
obtain

λ̃(xk) < V +

(
1

b
− 1

)
(1 + V) < V +

(
2V + 1

V + 1
− 1

)
(1 + V) = 2V ≤ 1,

where the last inequality follows from the fact that V < 0.267. Hence we have dk = 1 <
1

λ̃(xk)
≤ mini| x

k
i

∆x̃ki
|, where the last inequality follows from Eq. (26). Once again, if xk > 0,

then xk+1 = xk + dk∆x̃k > 0.

In both cases we have xk+1 = xk + dk∆x̃k > 0, which completes the induction proof.

Hence the algorithm with a more general stepsize rule is also well defined. In the rest of
the paper, we will assume that the constant b used in the definition of the stepsize satisfies
V+1
2V+1

< b ≤ 1.

5 Convergence Analysis

We next present our convergence analysis for both primal and dual iterations of the algorithm
presented above. We first establish convergence for dual iterations.

9

5.1 Convergence in Dual Iterations

We study the convergence rate of iteration (15) in terms of a dual (routing) graph, which we
introduce next.

Definition 1. Consider a network G = {L,S}, represented by a set L = {1, ..., L} of (directed)
links, and a set S = {1, ..., S} of sources. The links form a strongly connected graph, and
each source sends information along a predetermined route. The weighted dual (routing) graph
G̃ = {Ñ , L̃}, where Ñ is the set of nodes, and L̃ is the set of (directed) links defined by:
A. Ñ = L;
B. A link is present between node Li to Lj in G̃ if and only if there is some common flow between
Li and Lj in G.
C. The weight W̃ij on the link from node Li to Lj is given by

W̃ij = (Dk + B̄k)
−1
ii (Bk)ij = (Dk + B̄k)

−1
ii (AH−1

k A′)ij = (Dk + B̄k)
−1
ii

∑
s∈S(i)∩S(j)

H−1
ss ,

where the matrices Dk, Bk, and B̄k are defined in Eqs. (11), (12) and (13).

Two sample network - dual graph pairs are presented in Figures 1, 2 and 3, 4 respectively.
Note that the unweighted indegree and outdegree of a node are the same in the dual graph,
however the weights are different depending on the direction of the links. The splitting scheme
in Eq. (14) involves the matrix (Dk + B̄k)

−1(B̄k − Bk), which is the weighted Laplacian matrix
of the dual graph.8 The weighted out-degree of node i in the dual graph, i.e., the diagonal entry
(Dk + B̄k)

−1
ii B̄ii of the Laplacian matrix, can be viewed as a measure of the congestion level of

a link in the original network since the neighbors in the dual graph represent links that share
flows in the original network. We show next that the spectral properties of the Laplacian matrix
of the dual graph dictate the convergence speed of dual iteration (15). We will use the following
lemma [24].

Lemma 5.1. Let M be an n×n matrix, and assume that its spectral radius, denoted by ρ(M),
satisfies ρ(M) < 1. Let {λi}i=1,...,n denote the set of eigenvalues of M , with 1 > |λ1| ≥ |λ2| ≥
. . . ≥ |λn| and let vi denote the set of corresponding unit length right eigenvectors. Assume the
matrix has n linearly independent eigenvectors.9 Then for the sequence w(t) generated by the
following iteration

w(t+ 1) = Mw(t), (27)

we have
||w(t)− w∗||2 ≤ |λ1|tα, (28)

for some positive scalar α, where w∗ is the limit of iteration (27) as t→∞.

We use M to denote the L × L matrix, M = (Dk + B̄k)
−1(B̄k − Bk), and z to denote the

vector z = (Dk+B̄k)
−1(−AH−1

k ∇f(xk)). We can rewrite iteration (15) as w(t+1) = Mw(t)+z,
which implies

w(t+ q) = M qw(t) +

q−1∑
i=0

M iz = M qw(t) + (I −M q)(I −M)−1z.

8We adopt the following definition for the weighted Laplacian matrix of a graph. Consider a weighted directed
graph G with weight Wij associated with the link from node i to j. We let Wij = 0 whenever the link is not
present. These weights form a weighted adjacency matrix W . The weighted out-degree matrix D is defined as a
diagonal matrix with Dii =

∑
j Wij and the weighted Laplacian matrix L is defined as L = D −W . See [5], [8]

for more details on graph Laplacian matrices.
9An alternative assumption is that the algebraic multiplicity of each λi is equal to its corresponding geometric

multiplicity, since eigenvectors associated with different eigenvalues are independent [18].

10

This alternative representation is possible since ρ(M) < 1, which follows from Theorem 4.1.
After rearranging the terms, we obtain

w(t+ q) = M q(w(t)− (I −M)−1z) + (I −M)−1z.

Therefore starting from some arbitrary initial vector w(0), the convergence speed of the sequence
w(t) coincides with the sequence u(t), generated by u(t + q) = M qu(0), where u(0) = w(0) −
M(I −M)−1z.

We next show that the matrix M has L linearly independent eigenvectors in order to apply
the preceding lemma. We first note that since the nonnegative matrix A has full row rank
and the Hessian matrix H has positive diagonal elements, the product matrix AH−1

k A′ has
positive diagonal elements and nonnegative entries. This shows that the matrix Dk [cf. Eq.
(11)] has positive diagonal elements and the matrix B̄ [cf. Eq. (13)] has nonnegative entries.

Therefore the matrix (Dk + B̄k)
− 1

2 is diagonal and nonsingular. Hence, using the relation M̃ =

(Dk + B̄k)
1
2M(Dk + B̄k)

− 1
2 , we see that the matrix M = (Dk + B̄k)

−1(B̄k −Bk) is similar to the

matrix M̃ = (Dk + B̄k)
− 1

2 (B̄k−Bk)(Dk + B̄k)
− 1

2 . From the definition of Bk [cf. Eq. (12)] and the
symmetry of the matrix AH−1

k A′, we conclude that the matrix B is symmetric. This shows that
the matrix M̃ is symmetric and hence diagonalizable, which implies that the matrix M is also
diagonalizable, and therefore it has L linearly independent eigenvectors.10 We can use Lemma
5.1 to infer that

||w(t)− w∗||2 = ||u(t)− u∗||2 ≤ |λ1|tα,

where λ1 is the eigenvalue of M with largest magnitude, and α is a constant that depends on
the initial vector u(0) = w(0) − (I −M)−1z. Hence λ1 determines the speed of convergence of
the dual iteration.

We next analyze the relationship between λ1 and the dual graph topology. First note that
the matrix M = (Dk + B̄k)

−1(B̄k − Bk) is the weighted Laplacian matrix of the dual graph [cf.
Section 4.1], and is therefore positive semidefinite [8]. We then have ρ(M) = |λ1| = λ1 ≥ 0.
From graph theory [20], Theorem 4.1 and the above analysis, we have

4mc(M)

L
≤ λ1 ≤ min

{
2 max

l∈L

[
(Dk + B̄k)

−1B̄k

]
ll
, 1

}
, (29)

where mc(M) is the weighted maximum cut of the dual graph, i.e.,

mc(M) = max
S⊂Ñ

{ ∑
i∈S,j 6∈S

W̃ij +
∑

i∈S,j 6∈S

W̃ji

}
,

where W̃ij is the weight associated with the link from node i to j. The above relation suggests
that a large maximal cut of the dual graph provides a large lower bound on λ1, implying the
dual iteration cannot finish with very few iterates. When the maximum weighted out-degree,
i.e., maxl∈L

[
(Dk + B̄k)

−1B̄k

]
ll
, in the dual graph is small, the above relation provides a small

upper bound on λ1 and hence suggesting that the dual iteration converges fast.
We finally illustrate the relationship between the dual graph topology and the underlying net-

work properties by means of two simple examples that highlight how different network structures
can affect the dual graph and hence the convergence rate of the dual iteration. In particular, we
show that the dual iteration converges slower for a network with a more congested link. Con-
sider once more the two networks given in Figures 1 and 3, whose corresponding dual graphs

10If a square matrix A of size n× n is symmetric, then A has n linearly independent eigenvectors. If a square
matrix B of size n× n is similar to a symmetric matrix, then B has n linearly independent eigenvectors [12].

11

are presented in Figures 2 and 4 respectively. Both of these networks have 3 source-destination
pairs and 7 links. However, in Figure 1 all three flows use the same link, i.e., L4, whereas in
Figure 3 at most two flows share the same link. This difference in the network topology results
in different degree distributions in the dual graphs as shown in Figures 2 and 4. To be more
concrete, let Ui(si) = 15 log(si) for all sources i in both graphs and link capacity cl = 35 for all
links l. We apply our distributed Newton algorithm to both problems, for the primal iteration
when all the source rates are 10, the largest weighted out-degree in the dual graphs of the two
examples are 0.46 for Figure 2 and 0.095 for Figure 4, which implies the upper bounds for λ1

of the corresponding dual iterations are 0.92 and 0.19 respectively [cf. Eq. (29)]. The weighted
maximum cut for Figure 2 is obtained by isolating the node corresponding to L4, with weighted
maximum cut value of 0.52. The maximum cut for Figure 4 is formed by isolating the set
{L4, L6}, with weighted maximum cut value of 0.17. Based on (29) these graph cuts generate
lower bounds for λ1 of 0.30 and 0.096 respectively. By combining the upper and lower bounds,
we obtain intervals for λ1 as [0.30, 0.92] and [0.096, 0.19] respectively. Recall that a large spectral
radius corresponds to slow convergence in the dual iteration [cf. Eq. (28)], therefore these bounds
guarantee that the dual iteration for the network in Figure 3, which is less congested, converges
faster than for the one in Figure 1. Numerical results suggest the actual largest eigenvalues are
0.47 and 0.12 respectively, which confirm with the prediction.

5.2 Convergence in Primal Iterations

We next present our convergence analysis for the primal sequence {xk} generated by the inexact
Newton method (17). For the kth iteration, we define the function f̃k : R→ R as

f̃k(t) = f(xk + t∆x̃k), (30)

which is self-concordant, because the objective function f is self-concordant. Note that the
value f̃k(0) and f̃k(d

k) are the objective function values at xk and xk+1 respectively. Therefore
f̃k(d

k)− f̃k(0) measures the decrease in the objective function value at the kth iteration. We will
refer to the function f̃k as the objective function along the Newton direction.

Before proceeding further, we first introduce some properties of self-concordant functions and
the Newton decrement, which will be used in our convergence analysis.11

5.2.1 Preliminaries

Using the definition of a self-concordant function, we have the following result (see [6] for the
proof).

Lemma 5.2. Let f̃ : R→ R be a self-concordant function. Then for all t ≥ 0 in the domain of
the function f̃ with tf̃ ′′(0)

1
2 < 1, the following inequality holds:

f̃(t) ≤ f̃(0) + tf̃ ′(0)− tf̃ ′′(0)
1
2 − log(1− tf̃ ′′(0)

1
2). (31)

We will use the preceding lemma to prove a key relation in analyzing convergence properties
of our algorithm [see Lemma 5.8]. The next lemma will be used to relate the weighted norms of
a vector z, with weights ∇2f(x) and ∇2f(y) for some x and y. This lemma plays an essential
role in establishing properties for the Newton decrement (see [14], [22] for more details).

11We use the same notation in these lemmas as in (4)-(6) since these relations will be used in the convergence
analysis of the inexact Newton method applied to problem (4).

12

S1

S3

D1

D3

S2 D2

L1 : x1

L2 : x2

L3 : x3

L4 : x1, x2, x3

L5 : x1

L6 : x2

L7 : x3

Figure 1: Each source-destination pair is displayed with the same color. We use xi to denote the
flow corresponding to the ith source-destination pair and Li to denote the ith link. All 3 flows
traverse link L4.

L1 L5

L4

L2

L6 L3

L7

x1

x1

x1

x1

x1

x1

x2

x2x2

x2

x2

x2 x3

x3

x3

x3

x3

x3

Figure 2: Dual graph for the network in Figure 1, each link in this graph corresponds to the
flows shared between the links in the original network. The node corresponding to link L4 has
high unweighted out-degree equal to 6.

13

S1

S3

D1

D3

S2 D2

L1 : x1

L2 : x3
L3 : x2

L4 : x1, x3

L5 : x1

L6 : x2, x3

L7 : x2

Figure 3: Each source-destination pair is displayed with the same color. We use xi to denote
the flow corresponding to the ith source-destination pair and Li to denote the ith link. Each link
has at most 2 flows traversing it.

L1

L2

L4

L5

L6

L3 L7

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

Figure 4: Dual graph for the network in Figure 4, each link in this graph corresponds to the
flows shared between the links in the original network. Both nodes corresponding to links L4

and L6 has relatively high out-degree equal to 4.

14

Lemma 5.3. Let f : Rn → R be a self-concordant function. Suppose vectors x and y are in the
domain of f and λ̃ = ((x−y)′∇2f(x)(x−y))

1
2 < 1, then for any z ∈ Rn, the following inequality

holds:

(1− λ̃)2z′∇2f(x)z ≤ z′∇2f(y)z ≤ 1

(1− λ̃)2
z′∇2f(x)z. (32)

The next two lemmas establish properties of the Newton decrement generated by the equality-
constrained Newton method. The first lemma extends results in [14] and [22] to allow inexactness
in the Newton direction and reflects the effect of the error in the current step on the Newton
decrement in the next step.12

Lemma 5.4. Let f : Rn → R be a self-concordant function. Consider solving the equality
constrained optimization problem

minimize f(x) (33)

subject to Ax = c,

using an (exact) Newton method with feasible initialization, where the matrix A is in RL×(L+S)

and has full column rank, i.e., rank(A) = L. Let ∆x be the exact Newton direction at x, i.e.,
∆x solves the following system of linear equations,(

∇2f(x) A′

A 0

)(
∆x
w

)
= −

(
∇f(x)

0

)
. (34)

Let ∆x̃ denote any direction with γ = ∆x−∆x̃, and x(t) = x+ t∆x̃ for t ∈ [0, 1]. Let z be
the exact Newton direction at x+ ∆x̃. If λ̃ =

√
∆x̃′∇2f(x)∆x̃ < 1, then we have

z∇2f(x+ ∆x̃)′z ≤ λ̃2

1− λ̃

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

Proof. See Appendix A.

One possible matrix K in the above proof for problem (4) is given by K =

(
I(S)
−R

)
, whose

corresponding unconstrained domain consists of the source rate variables. In the unconstrained
domain, the source rates are updated and then the matrix K adjusts the slack variables accord-
ingly to maintain the feasibility, which coincides with our inexact distributed algorithm in the
primal domain. The above lemma will be used to guarantee quadratic rate of convergence for
the distributed inexact Newton method (17)]. The next lemma plays a central role in relating
the optimality gap in the objective function value to the exact Newton decrement (see [6] for
more details).

Lemma 5.5. Let F : Rn → R be a self-concordant function. Consider solving the unconstrained
optimization problem

minimizex∈Rn F (x), (35)

using an (unconstrained) Newton method. Let ∆x be the exact Newton direction at x, i.e., ∆x =
−∇2F (x)−1∇F (x). Let λ(x) be the exact Newton decrement, i.e., λ(x) =

√
(∆x)′∇2F (x)∆x.

Let F ∗ denote the optimal value of problem (35). If λ(x) ≤ 0.68, then we have

F ∗ ≥ F (x)− λ(x)2. (36)

12We use the same notation in the subsequent lemmas as in problem formulation (4) despite the fact that
the results hold for general optimization problems with self-concordant objective functions and linear equality
constraints.

15

Using the same elimination technique and isomorphism established for Lemma 5.4, the next
result follows immediately.

Lemma 5.6. Let f : Rn → R be a self-concordant function. Consider solving the equality
constrained optimization problem

minimize f(x) (37)

subject to Ax = c,

using a constrained Newton method with feasible initialization. Let ∆x be the exact (primal)
Newton direction at x, i.e., ∆x solves the system(

∇2f(x) A′

A 0

)(
∆x
w

)
= −

(
∇f(x)

0

)
.

Let λ(x) be the exact Newton decrement, i.e., λ(x) =
√

(∆x)′∇2f(x)∆x. Let f ∗ denote the
optimal value of problem (37). If λ(x) ≤ 0.68, then we have

f ∗ ≥ f(x)− λ(x)2. (38)

Note that the relation on the optimality gap in the preceding lemma holds when the exact
Newton decrement is sufficiently small (provided by the numerical bound 0.68, see [6]). We will
use these lemmas in the subsequent sections for the convergence rate analysis of the distributed
inexact Newton method applied to problem (4). Our analysis comprises of two parts: The first
part is the damped convergent phase, in which we provide a lower bound on the improvement
in the objective function value at each step by a constant. The second part is the quadrati-
cally convergent phase, in which the optimality gap in the objective function value diminishes
quadratically to an error level.

5.2.2 Basic Relations

We first introduce some key relations, which provides a bound on the error in the Newton
direction computation. This will be used for both phases of the convergence analysis.

Lemma 5.7. Let {xk} be the primal sequence generated by the inexact Newton method (17).
Let λ̃(xk) be the inexact Newton decrement at xk [cf. Eq. (19)]. For all k, we have

|(γk)′∇2f(xk)∆x̃k| ≤ pλ̃(xk)2 + λ̃(xk)
√
ε,

where γk, p, and ε are nonnegative scalars defined in Assumption 2.

Proof. By Assumption 1, the Hessian matrix ∇2f(xk) is positive definite for all xk. We therefore
can apply the generalized Cauchy-Schwarz inequality and obtain

|(γk)′∇2f(xk)∆x̃k| ≤
√

((γk)′∇2f(xk)γk)((∆x̃k)′∇2f(xk)∆x̃k) (39)

≤
√

(p2λ̃(xk)2 + ε)λ̃(xk)2

≤
√

(p2λ̃(xk)2 + ε+ 2pλ̃(xk)
√
ε)λ̃(xk)2,

where the second inequality follows from Assumption 2 and definition of λ̃(xk), and the third
inequality follows by adding the nonnegative term 2p

√
ελ̃(xk)3 to the right hand side. By the

nonnegativity of the inexact Newton decrement λ̃(xk), it can be seen that relation (39) implies

|(γk)′∇2f(xk)∆x̃k| ≤ λ̃(xk)(pλ̃(xk) +
√
ε) = pλ̃(xk)2 + λ̃(xk)

√
ε,

which proves the desired relation.

16

Using the preceding lemma, the following basic relation can be established, which will be
used to measure the improvement in the objective function value.

Lemma 5.8. Let {xk} be the primal sequence generated by the inexact Newton method (17).
Let f̃k be the objective function along the Newton direction and λ̃(xk) be the inexact Newton
decrement [cf. Eqs. (30) and (19)] at xk respectively. For all k with 0 ≤ t < 1/λ̃(xk), we have

f̃k(t) ≤ f̃k(0)− t(1− p)λ̃(xk)2 − (1−
√
ε)tλ̃(xk)− log(1− tλ̃(xk)), (40)

where p, and ε are the nonnegative scalars defined in Assumption 2.

Proof. Recall that ∆xk is the exact Newton direction, which solves the system (8). Therefore
for some wk, the following equation is satisfied,

∇2f(xk)∆xk + A′wk = −∇f(xk).

By left multiplying the above relation by (∆x̃k)′, we obtain

(∆x̃k)′∇2f(xk)∆xk + (∆x̃k)′A′wk = −(∆x̃k)′∇f(xk).

Using the facts that ∆xk = ∆x̃k + γk from Assumption 2 and A∆x̃k = 0 by the design of our
algorithm, the above relation yields

(∆x̃k)′∇2f(x)∆x̃k + (∆x̃k)′∇2f(xk)γk = −(∆x̃k)′∇f(xk).

By Lemma 5.7, we can bound (∆x̃k)′∇2f(xk)γk by,

pλ̃(xk)2 + λ̃(xk)
√
ε ≥ (∆x̃k)′∇2f(xk)γk ≥ −pλ̃(xk)2 − λ̃(xk)

√
ε.

Using the definition of λ̃(xk) [cf. Eq. (19)] and the preceding two relations, we obtain the following
bounds on (∆x̃k)′∇f(xk):

−(1 + p)λ̃(xk)2 − λ̃(xk)
√
ε ≤ (∆x̃k)′∇f(xk) ≤ −(1− p)λ̃(xk)2 + λ̃(xk)

√
ε.

By differentiating the function f̃k(t), and using the preceding relation, this yields,

f̃ ′k(0) = ∇f(xk)′∆x̃k (41)

≤ −(1− p)λ̃(xk)2 + λ̃(xk)
√
ε.

Moreover, we have

f̃ ′′k (0) = (∆x̃k)′∇2f(xk)∆x̃k (42)

= λ̃(xk)2.

The function f̃k(t) is self-concordant for all k, therefore by Lemma 5.2, for 0 ≤ t < 1/λ̃(xk), the
following relations hold:

f̃k(t) ≤ f̃k(0) + tf̃ ′k(0)− tf̃ ′′k (0)
1
2 − log(1− tf ′′k (0)

1
2)

≤ f̃k(0)− t(1− p)λ̃(xk)2 + tλ̃(xk)
√
ε− tλ̃(xk)− log(1− tλ̃(xk))

= f̃k(0)− t(1− p)λ̃(xk)2 − (1−
√
ε)tλ̃(xk)− log(1− tλ̃(xk)),

where the second inequality follows by Eqs. (41) and (42). This proves Eq. (40).

The preceding lemma shows that a careful choice of the stepsize t can guarantee a constant
lower bound on the improvement in the objective function value at each iteration. We present
the convergence properties of our algorithm in the following two sections.

17

5.2.3 Damped Convergent Phase

In this section, we consider the case when θk ≥ V and stepsize dk = b
θk+1

[cf. Eq. (20)]. We
will provide a constant lower bound on the improvement in the objective function value in this
case. To this end, we first establish the improvement bound for the exact stepsize choice of
t = 1/(λ̃(xk) + 1).

Theorem 5.9. Let {xk} be the primal sequence generated by the inexact Newton method (17).
Let f̃k be the objective function along the Newton direction and λ̃(xk) be the inexact Newton
decrement at xk [cf. Eqs. (30) and (19)]. Consider the scalars p and ε defined in Assumption 2

and assume that 0 < p < 1
2

and 0 < ε <
(

(0.5−p)(2V b−V+b−1)
b

)2

, where b is the constant used in

the stepsize rule [cf. Eq. (20)]. For θk ≥ V and t = 1/
(
λ̃(xk) + 1

)
, there exists a scalar α > 0

such that

f̃k(t)− f̃k(0) ≤ −α (1 + p)

(
2V b− V + b− 1

b

)2/(
1 +

2V b− V + b− 1

b

)
. (43)

Proof. For notational simplicity, let y = λ̃
(
xk
)

in this proof. We will show that for any positive

scalar α with 0 < α ≤
(

1
2
− p−

√
εb

(2V b−V+b−1)

)
/ (p+ 1), Eq. (43) holds. Note that such α exists

since ε <
(

(0.5−p)(2V b−V+b−1)
b

)2

.

By Assumption 3, we have for θk ≥ V ,

y ≥ θk −
(

1

b
− 1

)
(1 + V) ≥ V −

(
1

b
− 1

)
(1 + V) =

2V b− V + b− 1

b
. (44)

Using b > V+1
2V+1

, we have y ≥ V −
(

1
b
− 1
)

(1 + V) > 0, which implies 2V b − V + b − 1 > 0.

Together with 0 < α ≤
(

1
2
− p−

√
εb

2V b−V+b−1

)
/ (p+ 1) and b > V+1

2V+1
, this shows

√
ε ≤ 2V b− V + b− 1

b

(
1

2
− p− α (1 + p)

)
.

Combining the above, we obtain

√
ε ≤ y

(
1

2
− p− α (1 + p)

)
,

which using algebraic manipulation yields

− (1− p) y −
(
1−
√
ε
)

+ (1 + y)− y

2
≤ −α (1 + p) y.

From Eq. (44), we have y > 0. We can therefore multiply by y and divide by 1 + y both sides
of the above inequality to obtain

−1− p
1 + y

y2 − 1−
√
ε

1 + y
y + y − y2

2 (1 + y)
≤ −α(1 + p) y2

1 + y
(45)

Using second order Taylor expansion on log (1 + y), we have for y ≥ 0

log (1 + y) ≤ y − y2

2 (1 + y)
.

18

Using this relation in Eq. (45) yields,

−1− p
1 + y

y2 − 1−
√
ε

1 + y
y + log (1 + y) ≤ −α(1 + p) y2

1 + y
.

Substituting the value of t = 1/ (y + 1), the above relation can be rewritten as

− (1− p) ty2 −
(
1−
√
ε
)
ty − log (1− ty) ≤ −α(1 + p) y2

1 + y
.

Using Eq. (40) from Lemma 5.8 and definition of y in the preceding, we obtain

f̃k (t)− f̃k (0) ≤ −α (1 + p)
y2

y + 1
.

Observe that the function h (y) = y2

y+1
is monotonically increasing in y, and for θk ≥ V by

relation (44) we have y ≥ 2V b−V+b−1
b

. Therefore

−α (1 + p)
y2

y + 1
≤ −α (1 + p)

(
2V b− V + b− 1

b

)2

/

(
1 +

2V b− V + b− 1

b

)
.

Combining the preceding two relations completes the proof.

Note that our algorithm uses the stepsize dk = d
θk+1

in the damped convergent phase, which

is an approximation to the stepsize t = 1/(λ̃(xk) + 1) used in the previous theorem. The error
between the two is bounded by relation (24) as shown in Lemma 4.2. We next show that with
this error in the stepsize computation, the improvement in the objective function value in the
inexact algorithm is still lower bounded at each iteration.

Let β = dk

t
, where t = 1/(λ̃(xk) + 1). By the convexity of f , we have

f(xk + βt∆xk) = f(β(xk + t∆xk) + (1− β)(xk)) ≤ βf(xk + t∆xk) + (1− β)f(xk).

Therefore the objective function value improvement is bounded by

f(x+ βt∆xk)− f(xk) ≤ βf(xk + t∆xk) + (1− β)f(xk)− f(xk)

= β(f(xk + t∆xk)− f(xk))

= β(f̃k(t)− f̃k(0)),

where the last equality follows from the definition of f̃k(t). Since 0 < V+1
2V+1

< b ≤ 1, we can
apply Lemma 4.2 and obtain bounds on β as 2b− 1 ≤ β ≤ 1. Hence combining this bound with
Theorem 5.9, we obtain

f(xk+1)− f(xk) ≤ −(2b− 1)α (1 + p)

(
2V b−V+b−1

b

)2(
1 + 2V b−V+b−1

b

) . (46)

Hence in the damped convergent phase we can guarantee a lower bound on the object function
value improvement at each iteration. This bound is monotone in b, i.e., the closer the scalar b
is to 1, the faster the objective function value improves, however this also requires the error in
the inexact Newton decrement calculation, i.e., λ̃(xk)− θk, to diminish to 0 [cf. Assumption 3].

19

5.2.4 Quadratically Convergent Phase

In this phase, there exists k̄ with θk̄ < V and the step size choice is dk = 1 for all k ≥ k̄.13 We
show that the optimality gap in the primal objective function value diminishes quadratically to
a neighborhood of optimal solution. We proceed by first establishing the following lemma for
relating the exact and the inexact Newton decrements.

Lemma 5.10. Let {xk} be the primal sequence generated by the inexact Newton method (17)
and λ(xk), λ̃(xk) be the exact and inexact Newton decrements at xk [cf. Eqs. (18) and (19)]. Let
p and ε be the nonnegative scalars defined in Assumption 2. We have

(1− p)λ̃(xk)−
√
ε ≤ λ(xk) ≤ (1 + p)λ̃(xk) +

√
ε. (47)

Proof. By Assumption 1, for all k, ∇2f(xk) is positive definite. We therefore can apply the
generalized Cauchy-Schwarz inequality and obtain

|(∆xk)′∇2f(xk)∆x̃k| ≤
√

((∆xk)′∇2f(xk)∆xk)((∆x̃k)′∇2f(xk)∆x̃k) (48)

= λ(xk)λ̃(xk),

where the equality follows from definition of λ(xk) and λ̃(xk). Note that by Assumption 2, we
have ∆xk = ∆x̃k + γk, and hence

|(∆xk)′∇2f(xk)∆x̃k| = |(∆x̃k + γk)′∇2f(xk)∆x̃k| (49)

≥ (∆x̃k)′∇2f(xk)∆x̃k − |(γk)′∇2f(xk)∆x̃k|
≥ λ̃(xk)2 − pλ̃(xk)2 − λ̃(xk)

√
ε,

where the first inequality follows from a variation of triangle inequality, and the last inequality
follows from Lemma 5.8. Combining the two inequalities (48) and (49), we obtain

λ(xk)λ̃(xk) ≥ λ̃(xk)2 − pλ̃(xk)2 −
√
ελ̃(xk),

By canceling the nonnegative term λ̃(xk) on both sides, we have

λ(xk) ≥ λ̃(xk)− pλ̃(xk)−
√
ε.

This shows the first half of the relation (47). For the second half, using the definition of λ(xk),
we have

λ(xk)2 = (∆xk)′∇2f(xk)∆xk

= (∆x̃k + γk)′∇2f(xk)(∆x̃k + γk)

= (∆x̃k)′∇2f(xk)∆x̃k + (γk)′∇2f(xk)γk + 2(∆x̃k)′∇2f(xk)γk,

where the second equality follows from the definition of γk [cf. Eq. (21)]. By using the definition
of λ̃(xk), Assumption 2 and Lemma 5.7, the preceding relation implies,

λ(xk)2 ≤ λ̃(xk)2 + p2λ̃(xk)2 + ε+ 2pλ̃(xk)2 + 2
√
ελ̃(xk)

≤ λ̃(xk)2 + p2λ̃(xk)2 + 2pλ̃(xk)2 + 2
√
ε(1 + p)λ̃(xk) + ε

= ((1 + p)λ̃(xk) +
√
ε)2,

where the second inequality follows by adding a nonnegative term of 2
√
εpλ̃(xk) to the right

hand side. By nonnegativity of p, ε, λ and λ̃(xk), we can take the square root of both sides and
this completes the proof for relation (47).

13Note that once the condition θk̄ < V is satisfied, in all the following iterations, we have stepsize dk = 1 and
no longer need to compute θk.

20

Before proceeding to establish quadratic convergence in terms of the primal iterations to an
error neighborhood of the optimal solution, we need to impose the following bound on the errors
in our algorithm in this phase. Recall that k̄ is an index such that θk̄ < V and dk = 1 for all
k ≥ k̄.

Assumption 4. Let {xk} be the primal sequence generated by the inexact Newton method
(17). Let φ be a positive scalar with φ ≤ 0.267. Let ξ and v be nonnegative scalars defined in
terms of φ as

ξ =
φp+

√
ε

1− p− φ−
√
ε

+
2φ
√
ε+ ε

(1− p− φ−
√
ε)2
, v =

1

(1− p− φ−
√
ε)2
,

where p and ε are the scalars defined in Assumption 2. The following relations hold

(1 + p)(θk̄ + τ k̄) +
√
ε ≤ φ, (50)

v(0.68)2 + ξ ≤ 0.68, (51)

0.68 +
√
ε

1− p
≤ 1, (52)

p+
√
ε ≤ 1− (4φ2)

1
4 − φ, (53)

where τ k̄ > 0 is a bound on the error in the Newton decrement calculation at step k̄ [cf.
Assumption 3].

The upper bound of 0.267 on φ is necessary here to guarantee relation (53) can be satisfied
by some nonnegative scalars p and ε. Relation (50) can be satisfied by some nonnegative scalars
p, ε and τ k̄, because we have θk̄ < V < 0.267. Relation (50) and (51) will be used to guarantee
the condition λ(xk) ≤ 0.68 is satisfied throughout this phase, so that we can use Lemma 5.6
to relate the optimality gap with the Newton decrement, and relation (52) and (53) will be
used for establishing the quadratic rate of convergence of the objective function value, as we
will show in the Theorem 5.12. This assumption can be satisfied by first choosing proper values
for the scalars p, ε and τ such that all the relations are satisfied, and then adapt both the
consensus algorithm for θk̄ and the dual iterations for wk according to the desired precision (see
the discussions following Assumption 2 and 3 for how these precision levels can be achieved).

To show the quadratic rate of convergence for the primal iterations, we need the following
lemma, which relates the exact Newton decrement at the current and the next step.

Lemma 5.11. Let {xk} be the primal sequence generated by the inexact Newton method (17)
and λ(xk), λ̃(xk) be the exact and inexact Newton decrements at xk [cf. Eqs. (18) and (19)].
Let θk be the computed inexact value of λ̃(xk) and let Assumption 4 hold. Then for all k with
λ̃(xk) < 1, we have

λ(xk+1) ≤ vλ(xk)2 + ξ, (54)

where ξ and v are the scalars defined in Assumption 4 and p and ε are defined as in Assumption
2.

Proof. Given λ̃(xk) < 1, we can apply Lemma 5.4 by letting z = ∆xk+1, we have

λ(xk+1)2 = (∆xk+1)′∇f 2(x+ ∆x̃)∆xk+1

≤ λ̃(xk)2

1− λ̃(xk)

√
(∆xk+1)′∇2f(x)∆xk+1 +

∣∣(γk)′∇2f(x)′∆xk+1
∣∣

≤ λ̃(xk)2

1− λ̃(xk)

√
(∆xk+1)′∇2f(x)∆xk+1 +

√
(γk)′∇2f(x)γk

√
(∆xk+1)′∇2f(x)∆xk+1,

21

where the last inequality follows from the generalized Cauchy-Schwarz inequality. Using As-
sumption 2, the above relation implies

λ(xk+1)2 ≤

(
λ̃(xk)2

1− λ̃(xk)
+

√
p2λ̃(xk)2 + ε

)√
(∆xk+1)′∇2f(x)∆xk+1.

By the fact that λ̃(xk) ≤ θk + τ ≤ φ < 1, we can apply Lemma 5.3 and obtain,

λ(xk+1)2 ≤ 1

1− λ̃(xk)

(
λ̃(xk)2

1− λ̃(xk)
+

√
p2λ̃(xk)2 + ε

)√
(∆xk+1)′∇2f(x+ ∆x̃)∆xk+1

=

 λ̃(xk)2

(1− λ̃(xk))2
+

√
p2λ̃(xk)2 + ε

1− λ̃(xk)

λ(xk+1).

By dividing the last line by λ(xk+1), this yields

λ(xk+1) ≤ λ̃(xk)2

(1− λ̃(xk))2
+

√
p2λ̃(xk)2 + ε

1− λ̃(xk)
≤ λ̃(xk)2

(1− λ̃(xk))2
+
pλ̃(xk) +

√
ε

1− λ̃(xk)
.

From Eq. (47), we have λ̃(xk) ≤ λ(xk)+
√
ε

1−p . Therefore the above relation implies

λ(xk+1) ≤
(

λ(xk) +
√
ε

1− p− λ(xk)−
√
ε

)2

+
pλ(xk) +

√
ε

1− p− λ(xk)−
√
ε
.

By Eq. (56), we have λ(xk) ≤ φ, and therefore the above relation can be relaxed to

λ(xk+1) ≤
(

λ(xk)

1− p− φ−
√
ε

)2

+
φp+

√
ε

1− p− φ−
√
ε

+
2φ
√
ε+ ε

(1− p− φ−
√
ε)2
.

Hence, by definition of ξ and v, we have

λ(xk+1) ≤ vλ(xk)2 + ξ.

In the next theorem, building upon the preceding lemma, we apply relation (38) to bound
the optimality gap in our algorithm, i.e., f(xk) − f ∗, using the exact Newton decrement. We
show that under the above assumption, the objective function value f(xk) generated by our
algorithm converges quadratically in terms of the primal iterations to an explicitly characterized
error neighborhood of the optimal value f ∗.

Theorem 5.12. Let {xk} be the primal sequence generated by the inexact Newton method (17)
and λ(xk), λ̃(xk) be the exact and inexact Newton decrements at xk [cf. Eqs. (18) and (19)]. Let
f(xk) be the corresponding objective function value at kth iteration and f ∗ denote the optimal
objective function value for problem (4). Let Assumption 4 hold, and ξ and v be the scalars
defined in Assumption 4. Assume that for some δ ∈ [0, 1/2),

ξ + vξ ≤ δ

4v
.

22

Then for all m ≥ 1, we have

λ(xk̄+m) ≤ 1

22mv
+ ξ +

δ

v

22m−1 − 1

22m
, (55)

and

limsupm→∞f(xk̄+m)− f ∗ ≤ ξ +
δ

2v
,

where k̄ is the iteration index with θk̄ < V .

Proof. We prove Eq. (55) by induction. First for m = 1, from Assumption 3, we have λ̃(xk̄) ≤
θk̄ + τ k̄. Relation (50) implies θk̄ + τ k̄ ≤ φ < 1, hence we have λ̃(xk̄) < 1 and we can apply
Lemma 5.11 and obtain

λ(xk̄+1) ≤ vλ(xk̄)2 + ξ.

By Assumption 4 and Eq. (47), we have

λ(xk̄) ≤ (1 + p)(θk̄ + τ k̄) +
√
ε ≤ φ. (56)

The above two relations imply

λ(xk̄+1) ≤ vφ2 + ξ.

The right hand side is monotonically increasing in φ. Since φ ≤ 0.68, we have by Eq. (51),
λ(xk̄+1) ≤ 0.68. By relation (53), we obtain (1− p− φ−

√
ε)4 ≥ 4φ2. Using the definition of v,

i.e., v = 1
(1−p−φ−

√
ε)2

, the above relation implies vφ2 ≤ 1
4v

. Hence we have

λ(xk̄+1) ≤ 1

4v
+ ξ.

This establishes relation (55) for m = 1.
We next assume that Eq. (55) holds and λ(xk̄+m) ≤ 0.68 for some m > 0, and show that

these also hold for m+ 1. From Eqs. (47) and (52), we have

λ̃(xk̄+m) ≤ λ(xk̄+m) +
√
ε

1− p
≤ 0.68 +

√
ε

1− p
≤ 1, 14

where in the second inequality we used the inductive hypothesis that λ(xk̄+m) ≤ 0.68. Hence we
can apply Eq. (54) and obtain

λ(xk̄+m+1) ≤ vλ(xk̄+m)2 + ξ,

using Eq. (51) and λ(xk̄+m) ≤ 0.68 once more, we have λ(xk̄+m+1) ≤ 0.68. From our inductive
hypothesis that (55) holds for m, the above relation also implies

λ(xk̄+m+1) ≤ v

(
1

22mv
+ ξ +

δ

v

22m−1 − 1

22m

)2

+ ξ

=
1

22m+1v
+

ξ

22m−1
+
δ

v

22m−1 − 1

22m+1−1
+ v

(
ξ +

δ

v

22m−1 − 1

22m

)2

+ ξ,

14Note that we do not need monotonicity in λ̃(xk), instead the error level assumption from relation (52) enables
us to use Lemma 5.11 to establish quadratic rate of convergence.

23

Using algebraic manipulations and the assumption that ξ + vξ ≤ δ
4v

, this yields

λ(xk̄+m+1) ≤ 1

22m+1v
+ ξ +

δ

v

22m+1−1 − 1

22m+1 ,

completing the induction and therefore the proof of relation (55).
The induction proof above suggests that the condition λ(xk̄+m) ≤ 0.68 holds for all m > 0,

we can therefore apply Lemma 5.6, and obtain an upper bound on optimality gap as follows,

f(xk̄+m)− f ∗ ≤
(
λ(xk̄+m)

)2

≤ λ(xk̄+m).

Combining this with Eq. (55), we obtain

f(xk̄+m)− f ∗ ≤ 1

22mv
+ ξ +

δ

v

22m−1 − 1

22m
.

Taking limit superior on both sides of the preceding relation establishes the final result.

The above theorem shows that the objective function value f(xk) generated by our algorithm
converges in terms of the primal iterations quadratically to a neighborhood of the optimal value
f ∗, with the neighborhood of size ξ + δ

2v
, where

ξ =
φp+

√
ε

1− p− φ−
√
ε

+
2φ
√
ε+ ε

(1− p− φ−
√
ε)2
, v =

1

(1− p− φ−
√
ε)2
,

and the condition ξ + vξ ≤ δ
4v

is satisfied. Note that with the exact Newton algorithm, we have
p = ε = 0, which implies ξ = 0 and we can choose δ = 0, which in turn leads to the size of the
error neighborhood being 0. This confirms the fact that the exact Newton algorithm converges
quadratically to the optimal objective function value.

Note that the analysis is independent of how the dual variables are obtained. Any algorithm
for problem (4) where the update rule is given as Eq. (17) with stepsize dk defined as in Eq. (20)
and inexact Newton direction ∆x̃k defined as an inexact solution to the system (8), if Assump-
tions 2-4 are satisfied, then the preceding analysis can be extended and the sequence of objective
function value generated by the algorithm converges quadratically to an error neighborhood of
the optimal value.

5.3 Convergence with respect to Design Parameter µ

In the preceding development, we have restricted our attention to developing an algorithm for a
given logarithmic barrier coefficient µ. We next study the convergence properties of the optimal
object function value as a function of µ and develop a method that enables us to bound the error
introduced by the logarithmic barrier functions to be arbitrarily small. We utilize the following
result from [22].

Lemma 5.13. Let G the nonnegative orthant in Rn, and function g : Rn → R be a logarithmic
barrier for G, i.e., g(x) = −

∑n
i=1 log(xi). Then for any x, y in interior of G, we have (y −

x)′∇g(x) ≤ 1.15

Using this lemma and an argument similar to that in [22], we can establish the following
result, which bounds the sub-optimality as a function of µ.

15The lemma also holds for more general cases, when G is a closed convex domain and function g is a logarithmic
barrier for G.

24

Theorem 5.14. Given µ ≥ 0, let x(µ) denote the optimal solution of problem (4) and h(x(µ)) =∑S
i=1−Ui(xi(µ)) . Similarly, let x∗ denote the optimal solution of problem (2) together with

corresponding slack variables (defined in Eq. (3)), and h∗ =
∑S

i=1−Ui(x∗i). Then, the following
relation holds,

h(x(µ))− h∗ ≤ µ.

Proof. For notational simplicity, we write g(x) = −
∑S+L

i=1 log (xi). Therefore the objective
function for problem (4) can be written as h(x) + µg(x). By Assumption 1, we have that the
utility functions are concave, therefore the negative objective functions in the minimization
problems are convex. From convexity, we obtain

h(x∗) ≥ h(x(µ)) + (x∗ − x(µ))′∇h(x(µ)). (57)

By optimality condition for x(µ) for problem (4) for a given µ, we have,

(∇h(x(µ)) + µ∇g(x(µ)))′(x− x(µ)) ≥ 0,

for any feasible x. Since x∗ is feasible, we have

(∇h(x(µ)) + µ∇g(x(µ)))′(x∗ − x(µ)) ≥ 0,

which implies

∇h(x(µ))′(x∗ − x(µ)) ≥ −µ∇g(x(µ))′(x∗ − x(µ)).

For any µ, we have x(µ) belong to the interior of the feasible set, and by Lemma 5.13, we have
for all µ̃, ∇g(x(µ))′(x(µ̃) − x(µ)) ≤ 1. By continuity of x(µ) and the fact that the convex set
Ax ≤ c is closed, for A and c defined in problem (4), we have x∗ = limµ→0 x(µ), and hence

∇g(x(µ))′(x∗ − x(µ)) = lim
µ̃→0
∇g(x(µ))′(x(µ̃)− x(µ)) ≤ 1.

The preceding two relations imply

∇h(x(µ))′(x∗ − x(µ)) ≥ −µ.

In view of relation (57), this establishes the desired result, i.e.,

h(x(µ))− h∗ ≤ µ.

By using the above theorem, we can develop a method to bound the sub-optimality between
the objective function value our algorithm provides for problem (4) and the exact optimal objec-
tive function value for problem (2), i.e, the sub-optimality introduced by the barrier functions
in the objective function, such that for any positive scalar a, the following relation holds,

h(x(µ))− h∗

h∗
≤ a, (58)

where the value h(x(µ)) is the value obtained from our algorithm for problem (4), and h∗ is
the optimal objective function value for problem (2). We achieve the above bound by im-
plementing our algorithm twice. The first time involves running the algorithm for problem

25

(4) with some arbitrary µ. This leads to a sequence of xk converging to some x(µ). Let
h(x(µ)) =

∑S
i=1−Ui(xi(µ)). By Theorem 5.14, we have

h(x(µ))− µ ≤ h∗. (59)

Let scalar M be such that M = (a[h(x(µ))− µ])−1 and implement the algorithm one more time
for problem (4), with µ = 1 and the objective function multiplied by M , i.e., the new objective is
to minimize −M

∑S
i=1 Ui(xi)−

∑S+L
i=1 log (xi), subject to link capacity constraints.16 We obtain

a sequence of x̃k converges to some x̃(1). Denote the objective function value as h(x̃(1)), then
by applying the preceding theorem one more time we have

Mh(x̃(1))−Mh∗ ≤ µ = 1,

which implies
h(x̃(1))− h∗ ≤ a[h (x(µ))− µ] ≤ ah∗

where the first inequality follows by definition of the positive scalar M and the second inequality
follows from relation (59). Hence we have the desired bound (58).

Therefore even with the introduction of the logarithmic barrier function, the relative error in
the objective function value can be bounded by an arbitrarily small positive scalar at the cost
of performing the fast Newton-type algorithm twice.

6 Conclusions

This paper presents a convergence analysis for the distributed Newton-type algorithm for Net-
work Utility Maximization problems proposed in [25], which uses an information exchange mech-
anism similar to that involved in first order methods applied to this problem. We utilize the
property of self-concordant functions and show that even when the Newton direction and step-
size are computed with some error, the method converges globally and achieves local superlinear
convergence rate in terms of primal iterations to an error neighborhood, the size of which can
be specified explicitly using the error tolerance level and the parameters of the algorithm. Pos-
sible future directions include a more detailed analysis of the relationship between the rate of
convergence of the dual iterations and the underlying topology of the network and investigating
convergence properties for a fixed finite truncation of dual iterations.

A Proof of Lemma 5.4

We first transform problem (33) into an unconstrained one via elimination technique, establish
equivalence in the Newton decrements and the Newton primal directions between the two prob-
lems following the lines in [6], then derive the results for the unconstrained problem and lastly
we map the result back to the original constrained problem.

Since the matrix A has full column rank, i.e., rank(A) = L, in order to eliminate the equality
constraints, we let matrix K ∈ R(S+L)×S be any matrix whose range is null space of A, with
rank(K) = S, vector x̂ ∈ RS+L be a feasible solution for problem (33), i.e., Ax̂ = c. Then we
have the parametrization of the affine feasible set as

{x|Ax = c} = {Ky + x̂|y ∈ RS}.
16When M < 0, we can simply add a constant to the original objective function to shift it upward. Therefore

the scalar M can be assumed to be positive without loss of generality. If no estimate on M is available apriori,
we can implement the distributed algorithm one more time in the beginning to obtain an estimate to generate
the constant accordingly.

26

The eliminated equivalent optimization problem becomes

minimizey∈RS F (y) = f(Ky + x̂). (60)

We next show the Newton primal direction for the constrained problem (33) and uncon-
strained problem (60) are isomorphic, where a feasible solution x for problem (33) is mapped to
y in problem (60) with Ky + x̂ = x. We start by showing that each ∆y in the unconstrained
problem corresponds uniquely to the Newton direction in the constrained problem.

For the unconstrained problem, the gradient and Hessian are given by

∇F (y) = K ′∇f(Ky + x̂), ∇2F (y) = K ′∇2f(Ky + x̂)K. (61)

Note that the objective function f is three times continuously differentiable, which implies its
Hessian matrix ∇2f(Ky + x̂) is symmetric, and therefore we have ∇2F (y) is symmetric, i.e.,
∇2F (y)′ = ∇2F (y).

The Newton direction for problem (60) is given by

∆y = −
(
∇2F (y)

)−1∇F (y) = −(K ′∇2f(x)K)−1K ′∇f(x).17 (62)

We choose
w = −(AA′)−1A(∇f(x) +∇2f(x)∆x), (63)

and show that (∆x,w) where
∆x = K∆y (64)

is the unique solution pair for the linear system (34) for the constrained problem (33). To estab-

lish the first equation, i.e., ∇2f(x)∆x + A′w = −∇f(x), we use the property that

(
K ′

A

)
u =(

K ′u
Au

)
= 0 for some u ∈ RS+L implies u = 0.18 We have

(
K ′

A

)(
∇2f(x)∆x+ A′w +∇f(x)

)
=

(
K ′∇2f(x)K(−(K ′∇2f(x)K)−1K ′∇f(x)) +K ′A′w +K ′∇f(x)

A∇2f(x)∆x− A(∇f(x) +∇2f(x)∆x) + A∇f(x)

)
=

(
0
0

)
,

where the first equality follows from definition of ∆x, ∆y and w [cf. Eqs. (64), (62) and (63)]
and the second equality follows the fact that K ′A′w = 0 for any w.19 Therefore we conclude
that the first equation in (34) holds. Since the range of matrix K is the null space of matrix A,
we have AKy = 0 for all y, therefore the second equation in (34) holds, i.e., A∆x = 0.

For the converse, given a Newton direction ∆x defined as solution to the system (34) for the
constrained problem (33), we can uniquely recover a vector ∆y, such that K∆y = ∆x. This is

17The matrix K∇2f(x)K is invertible. If for some y ∈ RS , we have K∇2f(x)K ′y = 0, then y′K∇2f(x)K ′y =∣∣∣∣∣∣(∇2f(x))
1
2K ′y

∣∣∣∣∣∣
2

= 0, which implies ||K ′x||2 = 0, because the matrix ∇2f(x) is strictly positive for all x. The

rows of the matrix K ′ span RS , therefore we have y = 0. This shows that the matrix K∇2f(x)K ′ is invertible.
18If K ′u = 0, then the vector u is orthogonal to the row space of the matrix K ′, and hence column space of

the matrix K, i.e., null space of the matrix A. If Au = 0, then u is in the null space of the matrix A. Hence the
vector u belongs to the set nul(A) ∩ (nul (A))

⊥
, which implies u = 0.

19Let K ′A′w = u, then we have ||u||22 = u′K ′A′w = w′AKu. Since the range of matrix K is the null space of

matrix A, we have AKu = 0 for all u, hence ||u||22 = 0, suggesting u = 0.

27

because A∆x = 0 from (34), and hence ∆x is in the null space of the matrix A, i.e., column
space of the matrix K. The matrix K has full rank, thus there exists a unique ∆y. Therefore
the (primal) Newton directions for problems (60) and (33) are isomorphic under the mapping
K. In what follows, we perform our analysis for the unconstrained problem (60) and then use
isomorphic transformations to show the result hold for the equality constrained problem (33).

Consider the unconstrained problem (33), let ∆y denote the exact Newton direction at y [cf.
Eq. (61)], vector ∆ỹ denote any direction in RS, y(t) = y+ t∆ỹ and λ̃ =

√
∆ỹ′∇2F (y)∆ỹ. Note

that with the isomorphism established earlier, we have

λ̃ =
√

∆ỹ′∇2F (y)∆ỹ =
√

∆ỹ′K ′∇2f(Ky + x̂)K∆ỹ =
√

∆x̃′∇2f(x)∆x̃,

where x = Ky + x̂ and ∆x̃ = K∆ỹ. From the assumption in the theorem, we have λ̃ < 1. For
any t < 1, (y − y(t))′∇2F (y)(y − y(t)) = t2λ̃2 < 1 and by Lemma 5.3 for any zy in RS, we have

(1− tλ̃)2z′y∇2F (y)zy ≤ z′y∇2F (y(t))zy ≤
1

(1− tλ̃)2
z′y∇2F (y)zy

which implies

z′y(∇2F (y(t))−∇2F (y))zy ≤
(

1

(1− tλ̃)2
− 1

)
z′y∇2F (y)zy, (65)

and
z′y(∇2F (y)−∇2F (y(t)))zy ≤

(
1− (1− tλ̃)2

)
z′y∇2F (y)zy.

Using the fact that 1− (1− tλ̃)2 ≤ 1
(1−tλ̃)2

− 1, the preceding relation can be rewritten as

z′y(∇2F (y)−∇2F (y(t)))zy ≤
(

1

(1− tλ̃)2
− 1

)
z′y∇2F (y)zy. (66)

Combining relations (65) and (66) yields∣∣z′y(∇2F (y)−∇2F (y(t)))zy
∣∣ ≤ (1

(1− tλ̃)2
− 1

)
z′y∇2F (y)zy. (67)

Since the function F is convex, the Hessian matrix ∇2F (y) is positive semidefinite. We can
therefore apply the generalized Cauchy-Schwarz inequality and obtain∣∣(∆ỹ)′(∇2F (y(t))−∇2F (y))zy

∣∣ (68)

≤
√

(∆ỹ)′(∇2F (y(t))−∇2F (y))∆ỹ′
√
z′y(∇2F (y(t))−∇2F (y))zy

≤
(

1

(1− tλ̃)2
− 1

)√
(∆ỹ)′∇2F (y)∆ỹ

√
z′y∇2F (y)zy

=

(
1

(1− tλ̃)2
− 1

)
λ̃
√
z′y∇2F (y)zy,

where the second inequality follows from relation (67), and the equality follows from definition
of λ̃.

Define the function κ : R→ R, as κ(t) = ∇F (y(t))′zy + (1− t)(∆ỹ)′∇2F (y)′zy, then∣∣∣∣ ddtκ(t)

∣∣∣∣ =
∣∣(∆ỹ)′∇2F (y(t))′zy − (∆ỹ)′∇2F (y)zy

∣∣ =
∣∣(∆ỹ)′(∇2F (y(t))−∇2F (y))zy

∣∣ ,
28

which is the left hand side of (68).
Define γy = ∆y−∆ỹ, which by the isomorphism, implies γ = ∆x−∆x̃ = Kγy. By rewriting

∆ỹ = ∆y−γy and observing the exact Newton direction ∆y satisfies ∆y = −∇2F (y)−1∇F (y) [cf.
Eq. (61)] and hence by symmetry of the matrix ∇2F (y), we have ∆y′∇2F (y) = ∆y′∇2F (y)′ =
−∇F (y)′, we obtain

κ(0) = ∇F (y)′zy + (∆ỹ)′∇2F (y)′zy = ∇F (y)′zy −∇F (y)′zy − γ′y∇2F (y)zy = −γ′y∇2F (y)zy.

Hence by integration, we obtain the bound

|κ(t)| ≤ λ̃
√
z′y∇2F (y)zy

∫ t

0

(
1

(1− sλ̃)2
− 1

)
ds+ |γ′y∇2F (y)zy|

=
λ̃2t2

1− λ̃t

√
z′y∇2F (y)zy + |γ′y∇2F (y)zy|.

For t = 1, y(t) = y + ∆ỹ, above equation implies

|κ(1)| = |∇F (y + ∆ỹ)′zy| ≤
λ̃2

1− λ̃

√
z′y∇2F (y)zy + |γ′y∇2F (y)zy|.

We now specify zy to be the exact Newton direction at y+∆ỹ, then zy satisfies z′y∇2F (y+∆ỹ)zy =
|∇F (y + ∆ỹ)′zy|, by using the definition of Newton direction at y+∆ỹ [cf. Eq. (62)], which proves

zy∇2F (y + ∆ỹ)zy ≤
λ̃2

1− λ̃

√
z′y∇2F (y)zy + |γ′y∇2F (y)′zy|.

We now use the isomorphism once more to transform the above relation to the equality
constrained problem domain. We have z = Kzy, the exact Newton direction at x + ∆x̃ =
x̂+Ky +K∆ỹ. The left hand side becomes

z′y∇2F (y + ∆ỹ)zy = z′yK
′∇2f(x+ ∆x̃)Kzy = z′∇2f(x+ ∆x̃)z.

Similarly, we have the right hand sand satisfies

λ̃2

1− λ̃

√
z′y∇2F (y)zy + |γ′y∇2F (y)′zy| =

λ̃2

1− λ̃

√
z′yK

′∇2f(x)Kzy + |γ′yK ′∇2f(x)Kzy|

=
λ̃2

1− λ̃

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

By combining the above two relations, we have established the desired relation.

References

[1] S. Athuraliya and S. Low. Optimization flow control with Newton-like algorithm. Journal
of Telecommunication Systems, 15:345–358, 2000.

[2] D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009.

[3] D. P. Bertsekas, A. Nedic, and A. Ozdaglar. Convex Analysis and Optimization. Athena
Scientific, Cambridge, MA, 2003.

29

[4] D. Bickson, Y. Tock, A. Zymnis, S. Boyd, and D. Dolev. Distributed large scale network
utility maximization. Proceedings of the 2009 IEEE International Conference on Symposium
on Information Theory, 2, 2009.

[5] N. Biggs. Algebraic Graph Theory. Cambridge University Press, second edition, 1993.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] M. Chiang, S. H. Low, A. R. Calderbank, and J.C. Doyle. Layering as optimization de-
composition: a mathematical theory of network architectures. Proceedings of the IEEE,
95(1):255–312, 2007.

[8] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Mathemat-
ics). No. 92, American Mathematical Society, 1997.

[9] R. Cottle, J. Pang, and R. Stone. The Linear Complementarity Problem. Academic Press,
1992.

[10] R. Dembo, S. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM Journal on
Numerical Analysis, 19, 1982.

[11] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. SIAM, 1990.

[12] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.

[13] A. Jadbabaie, A. Ozdaglar, and M. Zargham. A Distributed Newton method for network
optimization. Proc. of CDC, 2009.

[14] F. Jarre. Interior-point methods for convex programming. Applied Mathematics and Opti-
mization, 26:287–311, 1992.

[15] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,
PA, 1995.

[16] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions on Telecom-
munications, 8:33–37, 1997.

[17] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for communication networks:
shadow prices, proportional fairness, and stability. Journal of the Operational Research
Society, 49:237–252, 1998.

[18] D. C. Lay. Linear Algebra and Its Applications. Person Education, third edition, 2006.

[19] S. H. Low and D. E. Lapsley. Optimization flow control, I: basic algorithm and convergence.
IEEE/ACM Transaction on Networking, 7(6):861–874, 1999.

[20] B. Mohar. Some applications of Laplace eigenvalues of graphs. In: Hahn, G. and Sabidussi,
G. (Eds.) Graph Symmetry: Algebraic Methods and Applications, NATO ASI Series C
497:227–275, 1997.

[21] A. Nedic and A. Ozdaglar. Convex Optimization in Signal Processing and Communications,
chapter Cooperative distributed multi-agent optimization. Eds., Eldar, Y. and Palomar,
D., Cambridge University Press, 2008.

30

[22] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. SIAM, 2001.

[23] R. Srikant. The Mathematics of Internet Congestion Control (Systems and Control: Foun-
dations and Applications). Birkhäuser Boston, 2004.

[24] R. Varga. Matrix Iterative Analysis. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1965.

[25] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method for Network Utility
Maximization I, Algorithm. LIDS Report 2832, 2010.

[26] E. Wei, M. Zargham, A. Ozdaglar, and A. Jadbabaie. On dual convergence of the distributed
Newton method for Network Utility Maximization. LIDS Report 2868, 2011.

31

