A Distributed Newton Method for Dynamic Network Utility Maximization
with Delivery Contracts”

Ermin Weif, Asuman OzdaglarT, Atilla Eryilmazi, Ali Jadbabaie®

Abstract—The standard Network Utility Maximization
(NUM) problem has a static formulation, which fails to capture
the temporal dynamics in modern networks. This work con-
siders a dynamic version of the NUM problem by introducing
additional constraints, referred to as delivery contracts. Each
delivery contract specifies the amount of information that needs
to be delivered over a certain time interval for a particular
source and is motivated by applications such as video streaming
or webpage loading. The existing distributed algorithms for
the Network Utility Maximization problems are either only
applicable for the static version of the problem or rely on
dual decomposition and first-order (gradient or subgradient)
methods, which are slow in convergence. In this work, we
develop a distributed Newton-type algorithm for the dynamic
problem, which is implemented in the primal space and involves
computing the dual variables at each primal step. We propose
a novel distributed iterative approach for calculating the dual
variables with finite termination based on matrix splitting
techniques. It can be shown that if the error level in the Newton
direction (resulting from finite termination of dual iterations)
is below a certain threshold, then the algorithm achieves
local quadratic convergence rate to an error neighborhood of
the optimal solution in the primal space. Simulation results
demonstrate significant convergence rate improvement of our
algorithm, relative to the existing first-order methods based on
dual decomposition.

I. INTRODUCTION

The emergence and widespread use of large scale com-
munication networks motivated much recent research inter-
est in developing distributed methods for solving resource
allocation problems over networks. One of the important
tasks in the wireline networks is to allocate the available
bandwidth among the sources, which can be formulated as
a Network Utility Maximization problem (referred to as the
NUM problem in the literature ([3], [7], [1], [8], [12]). Since
first proposed in [6], this formulation has been used exten-
sively in the analysis of current wireline network congestion
control protocols and design of new wireline and wireless
network protocols. A standard Network Utility Maximization
problem consists of a fixed set of sources with predetermined
routes. Each source has a local utility function, which is a

*This research is supported by NSF Career grant DMI-0545910, AFOSR
MURI R6756-G2, ONR MURI N000140810747, and AFOSR Complex
Networks Program.

TDepartment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology.

f Electrical and Computer Engineering Ohio State University

§Department of Electrical and Systems Engineering and GRASP Labora-
tory, University of Pennsylvania.

function of its source rates, and the system utility is defined
as the sum of the individual utilities. The sources choose
their source rates to collectively maximize the system utility,
while respecting the link capacity constraints. Existing works
focus on solving this problem by distributed methods that
use either dual decomposition and first-order (subgradient)
algorithms ([6],[8], [10]) or second order Newton-type al-
gorithm ([14], [15]). First order methods employ a simple
dual price exchange mechanism but suffer from slow rate of
convergence. Second order algorithms have much faster rate
of convergence, but involve more complex computations that
require global information. The recent paper ([14] proposed
a Newton type method in which computations can be imple-
mented using local information.

The standard formulation treats the network as static and
fails to capture the temporal dynamics in modern networks. In
video streaming and page loading applications, for instance,
certain amount of information has to be delivered within
some small time intervals in order to meet quality of service
constraints, which can be viewed as delivery contracts. In this
paper, we focus on a dynamic version of the NUM problem.
We adopt the multi-period NUM formulation introduced in
[13], which used delivery contracts to couple the source
rates across time. Based on dual decomposition techniques,
the authors in [13] develop a distributed algorithm for this
problem when all the problem parameters are known a priori.
When the parameters of the problem are not known, the
authors suggest a heuristic based on model predictive control
to approximately solve the problem. The method is, however,
slow in convergence.

In this paper, we propose a Newton-type distributed second
order method for dynamic NUM problem with delivery con-
tracts, which can be used both when the parameters are known
before hand and in the model predictive control heuristic. The
proposed algorithm is an extension of the distributed Newton
algorithm for NUM problem developed in [14], where at each
Newton step the dual variables are computed in a decentral-
ized manner using some novel finitely terminated iterative
scheme based on matrix splitting techniques. By using a
similar analysis as in [15], we can show that if the error
due to finite truncation of the dual iterations satisfy certain
error tolerance level, then the overall algorithm converges
quadratically to an error neighborhood of the optimal function
value. The size of the error neighborhood depends explicitly
on the error tolerance level.

The rest paper is organized as follows: Section II defines
the formulation of the problem and introduces some related
transformations. Section III briefly describes the standard
centralized Newton method, where each update depends on
the value of the dual variables. Section IV specifies one
distributed approach to compute the dual variables based on
matrix splitting technique. Section V presents a procedure
to calculate the inexact Newton primal update using the
computed dual variables. Section VI shows some simulation
results to demonstrate convergence speed improvement of our
algorithm over the existing distributed method. Section VII
contains our concluding remarks.'

Basic Notation and Notions:

For a matrix A, we use [A]; to denote the i'" column of
the matrix A, and [A)7 to denote the j** row of the matrix
A. We denote by A’ the transpose of matrix A. We write
I(n) to denote the identity matrix of dimension n X n and
0(n x m) to denote the zero matrix of size n x m. A real-
valued convex function g : X — R, where X is a subset of
R, is self-concordant if |g" (z)| < 2¢"(x)? for all z in its
domain.? For real-valued functions in R™, a convex function
g: X — R, where X is a subset of R", is self-concordant if
it is self-concordant along every direction in its domain. (see
[2] Chapter 9 for more details).

II. DYNAMIC NETWORK UTILITY MAXIMIZATION
PROBLEM WITH DELIVERY CONTRACTS

We consider a dynamic version of the network utility
maximization problem with finite time horizon, time-varying
network topology and delivery contracts, which was first
studied in [13]. The network underlying this problem consists
of aset L = {1,...,L} of (directed) links and a set S =
{1,..., S} of sources. We let ¢ denote the time index, which
takes value from the set {1,2,...,T}. We use positive scalar
¢ to denote the finite link capacity for link [at period t.
At each time period ¢, the link capacities can be expressed
by the vector ¢* = [¢!],c.. At each time period, each source
transmits information flow along a predetermined route.> For
each link [, the set S?(l) consists of the set of sources using
it at period ¢. Similarly, for each source i, the set L!(7) is the
set of links it uses at period ¢. We use nonnegative scalar s’
to denote the source rate for source ¢ at period ¢, the vector
st = [s!];es to refer to the nonnegative source rate vector.
We define the (L x S)—matrix R! to be the routing matrix,

'Due to space constraints we omit some of the proofs here,
interested readers can find the full version of the paper at
http://www.mit.edu/~erminwei/Publication.html.

2Self-concordant functions are defined through the following more general
definition: a real-valued convex function g : X — R, where X is a subset of
R, is self-concordant, if there exists a constant a > 0, such that |g"’(z)| <
2a_%g”(x)% for all x in its domain [11], [5]. Here we focus on the case
a =1 for notational simplification in the analysis.

3The routes can be time-varying. To avoid the trivial cases, we assume
that at each time period, each source flow traverses at least one link and each
link is used by at least one source and at each time the (undirected) links
form a connected graph.

given by

Bt — { 1 if link ¢ is on the route of source j at period ¢,

*J 0 otherwise.

The aggregate flow on a link [during period ¢ can be repre-
sented as [R's'];. Hence the set of link capacity constraints
can be written as Rts* < & for all t.

A delivery contract can be imposed on a source ¢, specify-
ing the required minimal flow ¢ to be delivered during a time
interval [t, 7], i.e., Zi:t st > q. We say a contract is active
at periods t if ¢ is in the corresponding contract interval [t, £].
Each source ¢ is subject to m; such delivery contracts, with
¢; in R™ denoting the associated delivery contract amount.
We use the (m; x T)—matrix E; to represent the delivery
contract indicator matrix, given by

(B = 1 if the j** contract is active at period ¢,
Q9B 0 otherwise.

With the above notation, for each source ¢ the delivery
contract requirement can be written as FE;s; > ;, where
s; denotes the source rate allocation for source i, i.e., s; =
[Sﬂte{l,z,...,T}~

For each source ¢ at each time period ¢, we associate a
utility function U} : Ry — R. The overall utility of the
problem is the sum of all utility functions over the entire time
horizon. The dynamic Network Utility Maximization (NUM)
with delivery contracts problem, can be formulated as

T S
maximize ZZU;(SE) (1)

t=1 i=1
subject to R's' <¢', s'>0, foralltin{1,2,...,T},
E;s; > G, for all ¢ in S,

where the utility functions satisfy the following assumptions.

Assumption 1: The utility functions U} : R, — R are
additive, continuous, strictly concave, monotonically nonde-
creasing on R, and twice continuously differentiable on the
set of positive real numbers. The functions —Ziszl U}
Ry — R are self-concordant on the set of positive real
numbers for all periods t =1,...,T.

The self-concordance property is satisfied by many utility
functions considered in the literature, a-fair utility functions
with o = 1 for instance [9] and is adopted here to establish
local quadratic convergence rate. The above formulation can
be used when all the problem parameters are known a priori.
In [13], the authors also introduce a model predictive control
based heuristic to approximately solve an online version of
the problem where the link capacities ¢” are only known at
time ¢ > 7. In the modified problem, both the time horizon
and delivery contract constraints are adjusted to reflect the
remaining time period and the predicted capacity given the
realized values are used instead of ¢”. In the modified formu-

4Qur algorithm works in the case when delivery contract is defined over
non-consecutive time periods also. This setting was chosen for convenience.

lation, the problem structure remains the same, and therefore,
in this paper, we focus on developing a fast distributed
algorithm for Problem (1).

For notational simplicity, we let vector s =
[s),8h,...,85] in RTS be the source rate variables,
matrix R in {0,1}TEXTS be the corresponding
routing matrix for all time periods given by R =

(B 0(Lx(T-1)) 0(Lx (T —1))]
0(Lx1) [R?]; 0(Lx (T —-2))
0(L X:T— 1) [Ri‘r]l [Rép]s

We define the block diagonal matrix E in {0,1}M*75 to
be the aggregate delivery contract matrix for all sources,

E1 0(m27>< T) O(ms X T)_
0(m1 X T) E2 O(ms X T)
ie., E = s
0(m1 X T) O(MQ X T) s ES

where M is the total number of delivery contracts,
e, M = Y7 . m,; Set E!(i) denotes the set of
active constraints for source ¢ at time period t, i.e.,
E'(i) = {m | Epi—1yr+t) = 1,1 < m < M}. Set 4p(m)
denotes the set of active periods for contract m. We use
the aggregated capacity vector ¢ of length (T'L) to denote
c=[(@),(@),...,(€")] and contract amount vector q of
length M to denote ¢ = [¢7,q5,--.,qs]’. By using the new
notation, Problem (1) can written compactly as

T S
maximize Z Z Ul(sh) (2
t=1 i=1

subject to Rs < ¢,
FEs>q.

s>0,

To facilitate the development of a distributed Newton
method, we employ a similar interior-point approach as in
[14] and reformulate the problem into one with only equality
constraints by using slack variables. For the link capacity
constraints, we introduce a length (7'L) vector y of nonneg-
ative slack variables, i.e., Rs+y = ¢, and denote by [y!] the
slack in capacity constraint of link [at period ¢. Similarly, we
associate a vector of nonnegative slack variables z in R for
the delivery contracts, with 2™ representing the slack variable
associated with the m'" delivery contract. Hence the delivery
contract constraints can be rewritten as Es — z = q.

We then impose logarithmic barrier functions for the
nonnegativity constraints. The new decision vector is z =
[s',1/, 2'] and we use notation z! to refer to the rate of source
i during period ¢, i.e., ! = xg(;_1)4¢+ = s}. Problem (2) can
be rewritten as

TS+TL+M

T S

minimize — Z Z Ul(zt) — u Z log (x;) (3)
t=1 i=1 j=1

subject to Ax =1b

where p is a positive coefficient for the barrier functions,

/
vector b = [d ¢] and A is a matrix of dimension

(TL + M) x (TS + TL + M). Matrix A is defined by
A=[F @], where F=[R I(TL) O(TL x M)]
and G = [E O(M x TL) I(M)]. We denote by f :
R£S+TL+M — R the objective function, i.e.,

TS+TL+M

T S
fla)y==> > Ul@h)—p > log(x),

t=1 i=1 j=1

and by f* the optimal value for the equality constrained
problem (3). Due to the result from [15], which shows a
problem of the form Problem (2) can be addressed by solving
two instances of Problem (3) with different coefficients px > 1,
in the rest of the paper we focus on Problem (3) with p > 1.

III. EXACT NEWTON METHOD

Our distributed Newton method for problem (3) is devel-
oped based on a (feasible start) equality-constrained Newton
method (see [2] Chapter 10). In our iterative method, we use
x(k) to denote the primal vector at the k" iteration.

To initialize the algorithm, we start with some feasible
and strictly positive vector x(0) > 0. We assume such
feasible initialization is easy to find. This is the case in many
applications, where the capacity constraints are relatively
large compared to the delivery contract constraints.

We denote the Hessian matrix by Hy = V2 f(z(k)) for
notational convenience. Given an initial feasible vector x(0),
the algorithm generates the iterate sequence by

z(k+1) = z(k) + s(k)Az(k),

where s(k) is a positive stepsize. The vector Axz(k) is
the (primal) Newton direction given as the solution to the
following linear system of equations

Az(k) = —H; ' (Vf(z(k)) + Aw(k)), and (4
(AH " Aw(k) = —AH; 'V f(2(k)), 5)

where w(k) in R(TLHM) is the dual vector associated with
the equality constraints. The first 7L elements of w(k) are
associated with the link capacity constraints for each time
period and the last M elements are for each of the delivery
contracts. Direct computation of w(k) involves the evaluation
of the matrix inverse (AH, ' A’)~!, which is both costly and
requires global information, therefore cannot be implemented
in a decentralized way. In the next section, we present an
iterative approaches to compute the dual vector w(k) in a
distributed manner based on matrix splitting technique.

IV. DISTRIBUTED DUAL VARIABLE COMPUTATION

In Section IV-A, we introduce some notations, a key lemma
and specify what operations are allowed in the distributed
algorithm. In Section IV-B, we develop the iterative decen-
tralized algorithm based on matrix splitting technique. We
use w(k,n) to denote the dual variable value at the n‘"
dual iteration at the k' primal step. We use w!(k,n) =

wi4¢—1)r(k,n) to denote the dual variable of w(k,n) cor-
responding to the [*" link at time period ¢ and notation
wrL+m(k,n) to refer to the dual variable associated with
the m'" delivery contract.

A. Preliminaries

For notational convenience, we introduce the following
functions:

(A) Functions t(-) : {1,...,TL} — {1,2,...,T} and
() : {1,...,TL} — {1,2,...,L} are defined as, for v in
{1,...,TL}, t(v) = [#]. the time period of v and I(v) = v
mod L, the link associated with v.

(B) Functions s(-) : {1,..., 7S} — {1,2,...,S} and
() + {1,...,TS} — {1,2,...,T} are defined as, for u
in {1,...,7S} s(u) = v mod T, the time period of wu,
7(u) = [%], the source associated with .

(C) Function i(-) : {1,2,...M} — {1,2,...S5} is given by
i(m) = max;ey, Z;;E m; < my, ie., i(m) is the source
with which the m*" delivery contract is associated.

(D) Function H, '(z;) is defined as H ' (v;) = [H} ']i;.°
(E) Function V f (z)(x;) is a function of x; with V f(z)(x;) =
[V f (@) (i)l

We define weighted price of the route for source i at
tim.e t, .Wf(kv TL), as Wf(lﬁ n) : (lel)(sﬁ) .ZleLf(.i) wlt(k’ TL),
which is the sum of dual variables associated with the link
capacities along the route of source ¢ weighted by the Hessian
element associated with that source at time ¢. Similarly,
we denote the weighted price of the contracts for source
i at time ¢t by &!(k,n), which is given by &!(k,n) =
(Hkﬂ)(sf) > jert(@TLH(I{;,n), Which i.s the sum of dual
variables corresponding to the active delivery contracts of
source ¢ at time ¢ weighted by the Hessian element associated
with the source. We next define the notion of a distributed
algorithm.

Each of the link and source is viewed as a processor. An
algorithm is called distributed if it only uses the following
private knowledge and information exchange scheme, for
each primal iteration k& and dual iteration n:

(A) Private knowledge:

(A.a) Each source ¢ knows its source rate, routes, utility
function and associated barrier function (and first and second
derivative thereof) for the entire time horizon, i.e., st(k),
columns (i —1)S+1 to 45 of the matrix R and U/ (si(k)) +
wlog(st(k)) for t ={1,2,...T}.

(A.b) Each source 7 knows its own delivery contract(s), their
corresponding dual variable(s) and slack variable(s), i.e., E;,
qi» WrL+m(k,n), 2™ (k) for all m with i(m) = .

(A.c) Each link ! knows its own capacity constraints, slack
variable and dual variable associated with the constraint for

5Due to the fact that the objective function is separable, convex, and
contains a logarithmic component for each variable, the Hessian matrix
H, Lis strictly positive definite and diagonal. Hence the functions H, E (zi)
completely characterize the matrix H, L

Fig. 1. Direction of information
flow from sources to the links they
use.

Fig. 2. Direction of flow from
links to the sources using them.

the entire time horizon, i.e., [c[];, y}(k), wi(k,n) for t =
{1,2,...T}.

(B) Information exchange:

(B.a) Source ¢ may communicate with the links in the set
U Lt(i), information at the links is aggregated a long a route
and sent back to each source using a feedback mechanism,
as shown in Figures 1 and 2.°

(B.b) Links may receive information from sources traversing
them, i.e. U7 S*(I), and perform simple algebraic operations
on the data.

The definition of distributed algorithm above implies that
the weighted price of the contracts and weighted price of
the route for source i at time ¢, i.e., &/ (k,n) and 7!(k,n),
can be computed in a distributed way by source i. Also each
source can calculate quantity H, ' (2*)wrr4.(k,n) for any
contract v associated with that source. For link [, the term
H, " (y}) w!(k,n) can be calculated using local information
for all period ¢. The following key lemma expresses the
matrix-vector product AH, 'A’w(k,n) in a form that can
be computed in a distributed way. This lemma plays an
essential role in enabling us to compute the dual variables
in a decentralized way.

Lemma 4.1: The matrix vector product AH, 'A'w(k,n)
can be written in the following form

A Awkn)lo = > [(k) + €0 (k,n)]
i€StW) (1(v))
() wite) (),
forv=1,...TL and

[AHEIA/w(k’n)]U = Z [ﬂ—f(v) (k7n) + gf(v)(kVn)]

te€P(v)
+H (2")wr o (K, 0),
forv=1,..., M.
B. Distributed Computation of Dual Variables I: Matrix
Splitting
By using the matrix splitting technique employed in [14]

and [15] (see [4] for a comprehensive review), we can

6We allow communication between sources and all the links it uses in
the finite time horizon in this definition. This is required by the temporal
coupling nature of the problem and it is reasonable because within a short
time horizon the network topology is unlikely to vary much.

develop an iterative way to compute the dual variables. The
development is very similar to those in [15] and we highlight
the key result in the following theorem.

Theorem 4.2: For each primal iteration k, the dual
variables are given as the limit of the following iteration,

wy(k,n+1) = [Dil]w ([Bk}vvwv(k n) + [Dilvows (k,n)
30 BV

zGSlt((:;

+ 17 () 91 em) (4)).
for1<v<TLand forv=m+TL >TL,
wy(kyn + 1) = [D,;l]w([Bk]mwv(k,n)
- [AH_IA’ (k,n)lo + Hy ' (")V f(z(k)) (™)
+ [Dilovwn (k) 3 H (5% V £ @(0) (5Em))

tey(m)

— [AH ' A'w

where matrix Dy, is diagonal with diagonal entries [Dy],, =
[AH;; 1A/]vv7 matrix By is symmetric, defined by By =

AH, ' A’ — Dy, matrix By, is a diagonal matrix with diagonal
entries [Bgyy = Z]TL;r M [Br]ij and the diagonal matrix Dy,

is given by Dy, = Dy, + By,.

By using definition of the above matrices and Lemma
4.1, we can verify that all the above dual iteration can be
implemented in a distributed way.

V. DISTRIBUTED INEXACT NEWTON METHOD

Given a dual vector computed using the method in the
previous section, i.e., w(k) = w(k,n) for some finite n, we
can now generate the primal update. Relation (4) combined
with the diagonal structure of the Hessian matrix H suggests
that for 1 <v <TS,

Aa(k)), = —Hy @) (VI @R) @) + [Awk),), ©

where the last term [A’w(k)], can be express as [A'w(k)], =
D lenro (s(o)) Wi “)(k). Hence the above relation can be
computed in a distributed way.

Our distributed Newton method computes the primal
Newton direction in two stages. In the first stage, the
first T'S components of AZ(k), are computed using
relation (6). These elements correspond to the source
rates over the entire time horizon, which we denote by
[ASL(K)]; ¢ In order to maintain feasibility of Az = b
and guarantee all the capacity and delivery contract
constraints are satisfied, we calculate separately the last
TL + M components of AZ(k), corresponding to the
slack variables for the capacity and delivery contract
constraints, denoted by [Agf(k)];; and [AZ"(k)],
The feasibility correction is given by [Agl(k)]: =

(Aj(k)){TS+1,...,TS+TL} = -R (Af(k)){L...,TS})

and [AZ™(k)|m =
E (A‘%(k)){l,...,TS} :

Starting from an initial feasible vector x(0), the (inexact)
distributed Newton algorithm generates the primal vectors
x(k) as follows:

2k +1) = z(k) + s(k) Az (k), ()

where s(k) is a positive stepsize, and Az (k) is the inexact
Newton direction at the k" iteration generated as above.

Our stepsize choice is based on the quantity inexact Newton
decrement \(z(k)), which is given by

Mz (k) = V(AT (k) V2 f (2 (k) Az (k). (8)

Note that A(x(k)) is nonnegative and well defined because
the matrix V2 f(z(k)) is positive definite. The inexact Newton
decrement can be written as a sum of quantities known by
individual sources and links. One way to compute this sum-
mation exactly is by using a distributed iterative scheme with
finite termination described in [14]. Based on the computed
value A(z(k)) , we use a stepsize rule given by

it Me(k) > 1,
otherwise,

(Af(k)){TS+TL+1,...,TS+TL+M}

s(k) = { i(z(%»ﬂ)

where c is some positive scalar that satisfies % <ec<l1l

In order to achieve quadratic rate of convergence, we im-
pose the following assumption on the errors in this algorithm
due to finite truncation of the dual iterations.

Assumption 2: Let ~y(k) denote the error in the pri-
mal Newton direction, ie., Az(k) = Az(k) + (k).
For all k, ~(k) satisfies |[(v(k))'V2f(x(k))v(k) <
p?(AZ(k))'V2f(x(k))AZ(k) + € for some positive scalars
p <1 and e.

By using a similar approach as in [14], it can be shown
that the above condition can be achieved and verified in a dis-
tributed way. The convergence properties for the distributed
Newton algorithm follows directly from the analysis in [15],
since matrix A has full row rank and Problem 3 has the exact
same formulation as in [15] . Hence it can be shown that the
algorithm converges quadratically to an error neighborhood of
the optimal solution, where the size of the error neighborhood
can be explicitly characterized using the parameters of the
algorithm and the error tolerance level at each dual iteration.

VI. SIMULATION RESULTS

For comparison purposes, we simulated our distributed
Newton algorithm for dynamic NUM problem using a setting
similar to [13], with time horizon T' = 10. The network
topology is fixed and is shown in Figure 3. We impose the
following 4 delivery contracts, Y0, st > 1, 325 st > 1,
S0 485 > 1.2 and th35§ > 1.2. The utility functions
for each source 7 is given by f;(s;) = 200log(s; + 0.1).
The constant 0.1 is necessary to guarantee the logarithmic
function is numerically stable for small s;. The capacity for
link [at each time ¢ is chosen to be independently uniformly

Delivered Uity

o) —— Dual Descent
—— Newton

Flow 2:s, 7o

Flow 1:5, —————————————>

Flow 3: 5,

Fig. 4. Utilities generated by two
online algorithms over 30 trials with
randomly generated capacities each 10-
period long. The utilities generated in
time frames where there is a delivery
contract active and unmet is excluded.

Fig. 3. Network used for simulation,
from [13].

random between the interval [[R]'s? 1].7 We simulated the
case where capacity constraints ¢’ are known at time ¢ > 7
using model predictive control techniques and we use the
expected value to forecast ¢ for 7 > t.

To investigate the performance of the distributed Newton
algorithm, we simulated 30 trials each 10-period long with
randomly generated capacity constraint parameters c;. For
every trial, at each time period, distributed Newton and
the dual descent algorithm were both given 0.5 seconds to
execute. Figure 4 records the utilities generated by two online
algorithms over 30 trials. To enforce the delivery contract
constraints, we excluded the utilities associated with source
in time periods when source ¢ had an active delivery contract
which was not satisfied by the end of the time horizon. In
all trials, distributed Newton method was able to deliver
higher utility. In Figure 5, we present the percentage of
undelivered contracts over 30 trials, where the percentage is
measured as Zle w at the end of each trial.
Since the distributed Newton algorithm is an interior point
method, all solutions were feasible and hence all delivery
contracts were satisfied, while the dual descent algorithm
had about 15% undelivered contract amount. We also analyze
the violation of the capacity constraints. In each trial, there
were 165 capacity constraints in total. The distributed Newton
algorithm remained feasible for all trials, while the dual
descent algorithm violates about 55 constraints on average,
as shown in Figure 6. We conclude that due to the faster
convergence speed and interior point nature of the algorithm,
within the same amount of computation time, the distributed
Newton method was able to produce a solution that delivers
higher utility while satisfying all the constraints.

VII. CONCLUSIONS

This paper develops a distributed inexact Newton method
for dynamic Network Utility Maximization problems, based
on matrix splitting technique to solve for the dual variables. It
can be shown that the algorithm converges quadratically to an
error neighborhood of the optimal solution, where the size of
the error neighborhood can be explicitly characterized using

"This interval was chosen to make feasible interior initialization simple.

is
Trals

Fig. 5. Percentage of undelivered
contracts of two algorithms over 30 tri-
als with randomly generated capacities
each 10-period long.

Number of Violated Capacity Constraints out of 165

—— Dual Descent
—— Newton

Trials

Fig. 6. Number of total capac-
ity constraints violated by two online
algorithms over 30 trials with ran-
domly generated capacities each 10-

period long.

the parameters of the algorithm and the error tolerance level
at each dual iteration. Simulations demonstrate significant
improvements over the existing distributed algorithm. Our
future works include to extend Newton-type fast converging
algorithm to not self-concordant utility functions, to develop
and investigate performance of other techniques in solving the
dual variables, including conjugate gradient type distribued
methods, and to develop asynchronous version of the dis-
tributed Newton algorithm.

REFERENCES

[1] S. Athuraliya and S. Low. Optimization flow control with Newton-like
algorithm. Journal of Telecommunication Systems, 15:345-358, 2000.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] M. Chiang, S. H. Low, A. R. Calderbank, and J.C. Doyle. Layering
as optimization decomposition: a mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255-312, 2007.

[4] R. Cottle, J. Pang, and R. Stone. The Linear Complementarity Problem.
Academic Press, 1992.

[5]1 F. Jarre. Interior-point methods for convex programming. Applied
Mathematics and Optimization, 26:287-311, 1992.

[6] F. Kelly. Charging and rate control for elastic traffic.
Transactions on Telecommunications, 8:33-37, 1997.

[7]1 E. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for commu-
nication networks: shadow prices, proportional fairness, and stability.
Journal of the Operational Research Society, 49:237-252, 1998.

[8] S. H. Low and D. E. Lapsley. Optimization flow control, I: basic
algorithm and convergence. IEEE/ACM Transaction on Networking,
7(6):861-874, 1999.

[9] J. Mo and J Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5), 2000.

[10] A. Nedic and A. Ozdaglar. Convex Optimization in Signal Process-
ing and Communications, chapter Cooperative distributed multi-agent
optimization. Eds., Eldar, Y. and Palomar, D., Cambridge University
Press, 2008.

[11] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming. SIAM, 2001.

[12] R. Srikant. The Mathematics of Internet Congestion Control (Systems
and Control: Foundations and Applications). Birkhiduser Boston, 2004.

[13] N. Trichakis, A. Zymnis, and S. Boyd. Dynamic Network Utility Max-
imization with delivery contracts. Proceedings IFAC World Congress,
pages 2907-2912, 2008.

[14] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method
for Network Utility Maximization, I: Algorithm. LIDS Report 2832,
submitted for publication, 2011.

[15] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method
for Network Utility Maximization, II: Convergence. LIDS Report 2870,
submitted for publication, 2011.

European

