
Distributed Newton-type Algorithms for Network

Resource Allocation

by

Ermin Wei

B.S., Computer Engineering
B.S., Mathematics

B.S., Finance
Minor in German Language, Literature, and Culture

University of Maryland, College Park (2008)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 11, 2010

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asuman Ozdaglar

Associate Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Professor Terry P. Orlando

Chair of the Committee on Graduate Students



2



Distributed Newton-type Algorithms for Network Resource

Allocation

by

Ermin Wei

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract

Most of today’s communication networks are large-scale and comprise of agents with
local information and heterogeneous preferences, making centralized control and co-
ordination impractical. This motivated much interest in developing and studying
distributed algorithms for network resource allocation problems, such as Internet
routing, data collection and processing in sensor networks, and cross-layer commu-
nication network design. Existing works on network resource allocation problems
rely on using dual decomposition and first-order (gradient or subgradient) methods,
which involve simple computations and can be implemented in a distributed man-
ner, yet suffer from slow rate of convergence. Second-order methods are faster, but
their direct implementation requires computation intensive matrix inversion opera-
tions, which couple information across the network, hence cannot be implemented in
a decentralized way. This thesis develops and analyzes Newton-type (second-order)
distributed methods for network resource allocation problems. In particular, we fo-
cus on two general formulations: Network Utility Maximization (NUM), and network
flow cost minimization problems.

For NUM problems, we develop a distributed Newton-type fast converging algo-
rithm using the properties of self-concordant utility functions. Our algorithm utilizes
novel matrix splitting techniques, which enable both primal and dual Newton steps
to be computed using iterative schemes in a decentralized manner with limited in-
formation exchange. Moreover, the stepsize used in our method can be obtained via
an iterative consensus-based averaging scheme. We show that even when the Newton
direction and the stepsize in our method are computed within some error (due to
finite truncation of the iterative schemes), the resulting objective function value still
converges superlinearly to an explicitly characterized error neighborhood. Simula-
tion results demonstrate significant convergence rate improvement of our algorithm
relative to the existing subgradient methods based on dual decomposition.

The second part of the thesis presents a distributed approach based on a Newton-
type method for solving network flow cost minimization problems. The key com-
ponent of our method is to represent the dual Newton direction as the limit of an
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iterative procedure involving the graph Laplacian, which can be implemented based
only on local information. Using standard Lipschitz conditions, we provide analysis
for the convergence properties of our algorithm and show that the method converges
superlinearly to an explicitly characterized error neighborhood, even when the itera-
tive schemes used for computing the Newton direction and the stepsize are truncated.
We also present some simulation results to illustrate the significant performance gains
of this method over the subgradient methods currently used.

Thesis Supervisor: Asuman Ozdaglar
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Recently there has been much interest in distributed control and coordination of net-

works comprised of multiple agents with local information and heterogeneous prefer-

ences, where the goal is to collectively optimize a global objective. This is motivated

by the ubiquitous presence of large-scale networks and new networking applications,

such as Internet and wireless sensor networks. One main characteristic of these net-

works is the lack of centralized access to information due to either security require-

ments or the size of the network. Therefore control and optimization algorithms

deployed in such networks should be completely distributed, relying only on local

information.

Standard approach for developing distributed algorithms is to use first-order meth-

ods which only rely on gradient (subgradient) information and involve simple steps.

The simplicity in computation comes at the cost of slow rate of convergence, which

limits application of such methods in dynamic networked environments. Second order

methods are known to have much faster rate of convergence, however their implemen-

tation involves the inversion of a matrix whose size is the dimension of the problem,

which is either computationally intensive or infeasible. Therefore for large scale opti-

mization problems, even with full global knowledge, the requirement of large storage

and high computation power restricts the usage of Newton-type algorithm, making
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the once powerful algorithm powerless.

Motivated by the need for fast converging distributed Newton-type algorithms,

this thesis focuses on two network resource allocation problems: Network Utility

Maximization (NUM) problems, and network flow cost minimization problems. The

objective in NUM problems is to allocate rates among sources in the network, such

that the link capacity constraints are satisfied. In these problems, the network topol-

ogy and routes are predetermined, each source in the network has a local utility

function based on source rate, and the collective objective is to maximize overall util-

ity, which is the sum of source utilities. Traditional distributed algorithm for this

problem features a price exchange scheme and is first order in convergence speed [27],

[30], [6], [14], [28]. In this thesis we propose and analyze a Newton-type second order

distributed algorithm, which is significantly faster in convergence.

Similarly, the objective in (nonlinear) network flow cost minimization problems is

to route the flows such that the flow conservation constraints are satisfied. In these

problems, the network topology is predetermined and each link has a cost associated

with it for carrying flows. Given the requirement of transporting fixed amount of flows

from pre-selected sources to destinations, the overall objective is to minimize the in-

curred cost. Applications of this problem include but not limited to multi-commodity

flow problems, supply chain management and Internet packet routing. The standard

approach to this problem is to use dual decomposition and subgradient (or first-order)

methods, which for some classes of problems yields iterative algorithms that operate

on the basis of local information (see [30], [28], [39], and [14]). However, a major

shortcoming of this approach, particularly relevant in today’s large-scale networks,

is the slow convergence rate of the resulting algorithms. In this thesis, we propose

and analyze an alternative approach based on using Newton-type (or second-order)

methods for network flow cost minimization problems.
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1.2 Relevant Literature

In recent years, there has been much research in distributed control and coordination

over networks. In this section, we present a brief overview of some relevant literature.

Most work in the area of multi-agent optimization, control, and learning in large-

scale networked systems builds on the seminal work by Tsitsiklis [40] and Bertsekas

and Tsitsiklis [10] (see also Tsitsiklis et al. [41]). The standard approach in this

literature involves considering consensus-based schemes, in which agents exchange

their local estimates (or states) with their neighbors with the goal of aggregating

information over an exogenous (fixed or time-varying) network topology [22], [35], [24],

[36], [41]. It has been shown that under some mild assumption on the connectivity

of the graph and updating rules, consensus can be achieved. One application of

consensus scheme is to compute the average of local estimates over a network, which

will be extensively used in the development of our distributed Newton algorithms.

Pioneered by Kelly [27], followed by Low and Lapsley [30], distributed optimiza-

tion algorithm over networks have been developed based on dual decomposition and

subgradient (or first-order) method for network utility maximization problems. De-

spite the slow rate of convergence for these algorithm, these methods are appealing in

view of their decentralized implementation. In these algorithms, each link charges the

source traversing it a price, and then based on the aggregate price of a path, the source

adjusts the flow rate accordingly. The information exchange in these works involves

communication between the sources and the links. As we shall see, our algorithms

will involve similar limited information exchange among the agents.

Berteskas and Gafni [3] and Athuraliya and Low in [6] have used diagonal scaling

to approximate Newton steps to speed up the subgradient based distributed algorithm

for multicommodity flows problem and NUM problems respectively. These algorithms

incorporate some properties of the Newton-type algorithm, and feature improvements

in speed over the first order methods. However, these improvements do not achieve

the convergence rate behavior obtained from second order methods.

In a more recent work [11], the authors have developed a distributed Newton-type
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method for the NUM problem using belief propagation algorithm. While the belief

propagation algorithm is known to converge in most practical applications, there is no

provable guarantee. Our work differs from this by developing a standalone distributed

Newton-type algorithm and providing analysis for the convergence properties thereof.

Our analysis for the convergence of the algorithms also relates to work on the

convergence rate analysis of inexact Newton methods ([37], [26]). These works focus

on providing conditions on the amount of error at each iteration relative to the norm

of the gradient of the current iterate that ensures superlinear convergence to the

exact optimal solution (essentially requiring the error to vanish in the limit). Even

though these analyses can provide superlinear rate of convergence, the vanishing error

requirement can be too restrictive for practical implementations. In our algorithms,

we allow for a fixed error level to be maintained at each step of Newton direction

computation and show superlinear convergence to an error neighborhood, whose size

can be controlled by tuning the parameter of the algorithm. Hence our work also

contributes to the literature on error analysis for inexact Newton methods.

1.3 Outline and Contributions

The rest of the thesis is organized as follows. In Chapter 2, we develop and analyze a

distributed Newton-type fast converging algorithm for solving network utility maxi-

mization problems with self-concordant utility functions. Our main contribution lies

in using novel matrix splitting techniques to compute both primal and dual Newton

steps with iterative decentralized schemes. Moreover, the stepsize used in our method

can be obtained via an iterative consensus-based averaging scheme. We show that

the amount of information exchange required in this algorithm is similar to that of

the methods currently used [27], [30], [6]. We also prove that even when the Newton

direction and the stepsize in our method are computed within some error (due to

finite truncation of the iterative schemes), the resulting objective function value still

converges superlinearly to an explicitly characterized error neighborhood. Simulation

results demonstrate significant convergence rate improvement of our algorithm rel-
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ative to the existing subgradient methods based on dual decomposition or diagonal

scaling. Hence our algorithm performs significantly faster, while it is scalable in the

size of the network, and does not require significant increase in information exchange

when compared with what is currently implemented.

Similarly, in Chapter 3, we develop and analyze a distributed algorithm based

on Newton-type (or second-order) methods for network flow cost minimization prob-

lems. This chapter builds on the work [24] and provides a more detailed convergence

rate analysis. Our main contribution lies in representing the dual Newton direction

as the limit of an iterative procedure involving the graph Laplacian, which can be

implemented based only on local information. Using standard Lipschitz conditions,

we show that even when the iterative schemes used for computing the Newton di-

rection and the stepsize in our method are truncated, the resulting iterates converge

superlinearly within an explicitly characterized error neighborhood. Simulation re-

sults illustrate significant performance gains of this method relative to the existing

methods.

Chapter 4 summarizes the thesis, and discusses possible future extensions.
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Chapter 2

A Distributed Newton Method for

Network Utility Maximization

2.1 Introduction

In this chapter, we study the Network Utility Maximization (NUM) problems, which

is a general framework for formulating rate control problems in wireline networks.

In NUM problems, the network topology and routes are predetermined, each source

in the network has a local utility, which is a function of the rate at which it sends

information over the network. The objective is to determine the source rates in the

network that maximize the sum of the utilities, subject to link capacity constraints.

The standard approach for solving NUM problems relies on using dual decomposi-

tion and subgradient (or first-order) methods, which through a dual price exchange

mechanism yields algorithms that operate on the basis of local information [27], [30],

[31]. One major shortcoming of this approach is the slow rate of convergence.

In this chapter we propose a novel Newton-type second order method for solving

the NUM problem in a distributed manner, which is significantly faster in conver-

gence. Our method involves transforming the inequality constrained NUM problem

to an equality-constrained one through introducing slack variables and using loga-

rithmic barrier functions, and using an equality-constrained Newton method for the

reformulated problem. There are two challenges for implementing this method in
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a distributed manner. First challenge is the computation of the Newton direction.

This computation involves matrix inversion, which is costly and requires global in-

formation. We solve this problem by utilizing an iterative scheme based on novel

matrix splitting techniques, which enables us to compute both primal and dual up-

dates for the Newton step using decentralized algorithms that involves dual price

vector exchange between sources and links. The second challenge is the global in-

formation required in the computation of the stepsize. We resolve this by using a

consensus-based local averaging scheme.

Since our algorithm uses iterative schemes to compute the stepsize and the New-

ton direction, exact computation is not feasible. Another major contribution of our

work is to consider truncated versions of these schemes and present convergence rate

analysis of the constrained Newton method when the stepsize and the Newton direc-

tion are estimated with some error. Due to inequality constraints, Lipschitz-based

results cannot be applied, instead we use properties of self-concordant functions in

our convergence analysis. We show that when these errors are sufficiently small, the

value of the objective function converges superlinearly to a neighborhood of the op-

timal objective function value, whose size is explicitly quantified as a function of the

errors and bounds on them.

The rest of the chapter is organized as follows: Section 2.2 defines the problem

formulation and equivalent transformations thereof. Section 2.3 presents the exact

constrained primal-dual Newton method for this problem. Section 2.4 presents a dis-

tributed iterative scheme for computing the dual Newton step and the distributed

inexact Newton-type algorithm. Section 2.5 analyzes the rate of convergence of our

algorithm. Section 2.6 presents simulation results to demonstrate convergence speed

improvement of our algorithm to the existing methods with linear convergence rates.

Section 2.7 contains our concluding remarks.

Basic Notation and Notions:

A vector is viewed as a column vector, unless clearly stated otherwise. We write

R+ to denote the set of nonnegative real numbers, i.e., R+ = [0,∞). We denote by
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xi the ith component of a vector x. When xi ≥ 0 for all components i of a vector x,

we write x ≥ 0. For a matrix A, we write Aij to denote the matrix entry in the ith

row and jth column, and [A]i to denote the ith column of the matrix A, and [A]j to

denote the jth row of the matrix A. We write I(n) to denote the identity matrix of

dimension n× n. We use x′ to denote the transpose of a vector x. For a real-valued

function f : Rn → R, the gradient vector and the Hessian matrix of f at x ∈ Rn are

denoted by ∇f(x), and ∇2f(x) respectively.

A real-valued convex function g : R→ R is said to be self-concordant if |g′′′(x)| ≤

2g′′(x)
3
2 for all x in its domain 1. For real-valued functions in Rn, a convex function

g : Rn → R is self-concordant if it is self-concordant along every direction in its

domain, i.e., if the function g̃(t) = g(x + tv) is self-concordant in t for all x and v.

Operations that preserve self-concordance property include summing, scaling by a

factor α ≥ 1, and composition with affine transformation (see [13] for more details).

2.2 Network Utility Maximization Problem

We consider a network represented by a set L = {1, ..., L} of directed links of finite

capacity given by c = [cl]l∈L, where these links form a strongly connected graph.

The network is shared by a set S = {1, ..., S} of sources, each of which transmits

information along a predetermined route. For each link l, let S(l) denote the set of

sources using it. For each source i, let L(i) denote the set of links it uses. We also

denote the nonnegative source rate vector by s = [si]i∈S . The capacity constraint at

the links can be compactly expressed as

Rs ≤ c,

1One alternative definition for a real-valued convex function g : R → R to be self-concordant is
that there exist a constant a > 0, such that |g′′′(x)| ≤ 2a−

1
2 g′′(x)

3
2 for all x in its domain [34], [25].

The definition we adopt is a special case of this one, where a = 1. Even though this alternative
definition is more general, it introduces unnecessary complications for the convergence analysis.
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where R is the routing matrix of dimension L× S, i.e.,

Rij =

 1 if link i is on the route for source j,

0 otherwise.
(2.1)

We associate a utility function Ui : R+ → R with each source i, i.e., Ui(si) denotes

the utility of source i as a function of the source rate si. We assume the utility func-

tions are additive, such that the overall utility of the network is given by
∑S

i=1 Ui(si).

Thus the Network Utility Maximization(NUM) problem can be formulated as

maximize
S∑
i=1

Ui(si) (2.2)

subject to Rs ≤ c,

s ≥ 0.

We adopt the following standard assumption.

Assumption 1. The utility functions Ui : R+ → R are strictly concave, monotoni-

cally nondecreasing, twice continuously differentiable, and self-concordant.

To facilitate development of a distributed Newton-type method, we reformulate

the problem into one with only equality constraints, by introducing nonnegative slack

variables [yl]l∈L, such that

S∑
j=1

Rljsj + yl = cl for l = 1, 2 . . . L, (2.3)

and using logarithmic barrier functions for nonnegativity constraints. We denote the

new decision variable vector by x = ([si]
′
i∈S , [yl]

′
l∈L)′. Problem (2.2) then can be

rewritten as

minimize −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi) (2.4)

subject to Ax = c,
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where A = [R I(L)], and µ is a nonnegative constant coefficient for the barrier func-

tions. We denote by f ∗ the optimal objective value for the equality constrained prob-

lem (2.4). Notice that by Assumption 1 and the properties of logarithmic functions,

the objective function for problem (2.4),

f(x) = −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi),

is separable, strictly convex, twice continuously differentiable, and has a positive

definite diagonal Hessian matrix. The function f(x) is also self-concordant for µ ≥ 1,

since it is a sum of self-concordant functions.

One can show that as the coefficient µ approaches 0, the optimal solution of

problem (2.4) approaches that of problem (2.2) [8], [20]. Therefore, in the rest of

this chapter, unless clearly stated otherwise, our goal is to investigate iterative dis-

tributed methods for solving problem (2.4) for a fixed µ. In order to preserve the

self-concordant property of the function f , which will be used to prove convergence of

our distributed algorithm, we assume the coefficient µ ≥ 1 for the rest of the chapter.

2.3 Exact Newton Method

We consider solving problem (2.4) using a (feasible start) equality-constrained Newton

method (see [13] Chapter 10). In our iterative method, we use xk to denote the

solution vector at the kth step.

2.3.1 Feasible Initialization

To initialize the algorithm, we start with some feasible and strictly positive vector

x0 > 0. For example, one possible such choice is given by

x0
i =

mink{ck}
S + 1

for i = 1, 2 . . . S,

x0
i+S = ci −

S∑
j=1

Rij
mink{ck}
S + 1

for i = 1, 2 . . . L,
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where ck is the finite capacity for link k, S is the total number of sources in the

network, and R is routing matrix [cf. Eq. (2.1)].

2.3.2 Iterative Update Rule

Given an initial feasible vector x0, the algorithm generates the iterates by

xk+1 = xk + sk∆xk, (2.5)

where sk is a positive stepsize, ∆xk is the Newton direction given as the solution to

the following system of linear equations:2

 ∇2f(xk) A′

A 0

 ∆xk

wk

 = −

 ∇f(xk)

0

 . (2.6)

In the rest of the chapter, we let Hk = ∇2f(xk) for notational convenience. The vector

[wkl ]l∈L are the dual variables for the link capacity constraints. The dual variables

associated with each link capacity constraint can be viewed as a price for using the

link, we will use the terms ”dual variable” and ”price” interchangeably in the rest of

the thesis. Solving for xk and wk in the preceding system yields

∆xk = −H−1
k (∇f(xk) + A′wk), and (2.7)

(AH−1
k A′)wk = −AH−1

k ∇f(xk). (2.8)

Since the objective function f is separable in xi, the matrix H−1
k is a diagonal matrix

with entries [H−1
k ]ii = ( ∂2f

(∂xk
i )2

)−1. Therefore given the vector wk, the Newton direction

∆xk can be computed using local information. However, the computation of the

vector wk at a given primal solution xk cannot be implemented in a decentralized

manner in view of the fact that the evaluation of the matrix inverse (AH−1
k A′)−1

2This is essentially a primal-dual method with the vectors ∆xk and wk acting as primal and dual
steps.
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requires global information. The following section provides a distributed inexact

Newton method, based on an iterative scheme to compute the vector wk using a

decentralized scheme.

2.4 Distributed Inexact Newton Method

Our inexact Newton method uses the same initialization as presented in Section 2.3.1,

however, it computes the dual variables and the primal direction using a distributed

iterative scheme with some error. The construction of these schemes relies on novel

ideas from matrix splitting. Before proceeding to present further details of the algo-

rithm, we first introduce some preliminaries on the matrix splitting technique.

2.4.1 Preliminaries on Matrix Splitting

Matrix splitting can be used to solve a system of linear equations given by

Gy = b,

where G is a matrix of dimension n × n and b is a vector of length n. Suppose that

the matrix G can be expressed as the sum of two matrices M and N , i.e.,

G = M +N. (2.9)

Let y0 be an arbitrary vector of length n. A sequence {yk} can be generated by the

following iteration:

yk+1 = −M−1Nyk +M−1b. (2.10)

It can be seen that the sequence {yk} converges as k →∞ if and only if the spectral

radius of the matrix M−1N is strictly bounded above by 1. When the sequence {yk}

converges, its limit y∗ solves the original linear system, i.e., Gy∗ = b (see [7] and [17]

for more details). Hence, the key to solve the linear equation via matrix splitting is

the bound on the spectral radius of the matrix M−1N . Such a bound can be obtained
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using the following result (see Theorem 2.5.3 from [17]).

Theorem 2.4.1. Let G be a real symmetric matrix. Let M and N be matrices such

that G = M+N and assume that both matrices M+N and M−N are positive definite.

Then the spectral radius of M−1N , denoted by ρ(M−1N), satisfies ρ(M−1N) < 1.

By the above theorem, if G is a real, symmetric and positive definite matrix, then

one sufficient condition for the iteration (2.10) to converge is that the matrix M −N

is positive definite. This can be guaranteed using Gershgorin Circle Theorem, which

we introduce next (see [42] for more details).

Theorem 2.4.2. (Gershgorin Circle Theorem) Let G be an n×n matrix, and define

ri(G) =
∑

j 6=i |Gij|. Then, each eigenvalue of G lies in one of the Gershgorin sets

{Γi}, with Γi defined as disks in the complex plane, i.e.,

Γi = {z ∈ C | |z −Gii| ≤ ri(G)}.

One corollary of the above theorem is that if a matrix G is strictly diagonally

dominant, i.e., |Gii| >
∑

j 6=i |Gij|, and Gii > 0 for all i, then the real parts of all the

eigenvalues lie in the positive half of the real line, and thus the matrix is positive

definite. Hence a sufficient condition for the matrix M −N to be positive definite is

that M −N is strictly diagonally dominant with its diagonal entries strictly positive.

2.4.2 Distributed Computation of the Dual Variables

We use the matrix splitting scheme introduced in the preceding section to compute

the dual variables wk in Eq. (2.8) in a distributed manner. Let Dk be a diagonal

matrix, with diagonal entries

(Dk)ll = (AH−1
k A′)ll, (2.11)

and matrix Bk be given by

Bk = AH−1
k A′ −Dk. (2.12)
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Let matrix B̄k be a diagonal matrix, with diagonal entries

(B̄k)ii =
L∑
j=1

(Bk)ij. (2.13)

By splitting the matrix AH−1
k A′ as the sum of Dk + B̄k and Bk − B̄k, we obtain the

following result.

Theorem 2.4.3. For a given k > 0, let Dk, Bk, B̄k be the matrices defined in Eqs.

(2.11), (2.12) and (2.13). Let w(0) be an arbitrary initial vector and consider the

sequence {w(t)} generated by the iteration

w(t+ 1) = (Dk + B̄k)
−1(B̄k −Bk)w(t) + (Dk + B̄k)

−1(−AH−1
k ∇f(xk)), (2.14)

for all t ≥ 0. Then the sequence {w(t)} converges as t → ∞, and its limit is the

solution to Eq. (2.8).

Proof. We use a matrix splitting scheme given by

(AH−1
k A′) = (Dk + B̄k) + (Bk − B̄k) (2.15)

and the iterative scheme presented in Eqs. (2.9) and (2.10) to solve Eq. (2.8). For all k,

both the real matrix Hk and its inverse, H−1
k , are positive definite and diagonal. The

matrix A has full row rank and is element-wise nonnegative. Therefore the product

AH−1
k A′ is real, symmetric, element-wise nonnegative and positive definite. We let

Qk = (Dk + B̄k)− (Bk − B̄k) = Dk + 2B̄k −Bk (2.16)

denote the difference matrix. By definition of B̄k [cf. Eq. (2.13)], the matrix 2B̄k−Bk

is diagonally dominant, with nonnegative diagonal entries. Due to strict positivity

of the second derivatives of the logarithmic barrier functions, we have (Dk)ii > 0 for

all i. Therefore the matrix Qk is strictly diagonally dominant. By Theorem 2.4.2,

such matrices are positive definite. Therefore, by Theorem 2.4.1, the spectral radius
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of the matrix (Dk + B̄k)
−1(Bk − B̄k) is strictly bounded above by 1. Hence the

splitting scheme (2.15) guarantees the sequence {w(t)} generated by iteration (2.14)

to converge to the solution of Eq. (2.8). Q.E.D.

There can be many ways to split the matrix AH−1
k A′, the particular one in Eq.

(2.15) is chosen here due to two desirable features. First it guarantees that the

difference matrix Qk [cf. Eq. (2.16)] is strictly diagonally dominant, and hence

ensures convergence of the sequence {w(t)}. Second, with this splitting scheme, the

matrix Dk + B̄k is diagonal, which eliminates the need for global information and

computational complexity when calculating its inverse matrix.

We next describe a computation and information exchange procedure to show

that with this splitting scheme wk can be computed in a distributed manner. In

order to express the procedure concisely, we next define the price of the route for

source i, πi(t), as the sum of the dual variables associated with the links traversed

by source i at the tth dual iteration, i.e., πi(t) =
∑

l∈L(i) wl(t); and the weighted

price of the route for source i, Πi(t) is defined as the price of the route for source i

weighted by the element in the inverse Hessian matrix corresponding to source i, i.e.,

Πi(t) = (H−1
k )ii

∑
l∈L(i) wl(t). With this set of notation, at each primal iteration k,

the dual variable can be computed as follows:

1. Initialization

1.a Each source i sends its second derivative information (Hk)ii and first deriva-

tive ∇if(xk) (the ith component of the gradient vector ∇f(xk)) to the links

it is using, i.e., l ∈ L(i). Each link l computes (Dk)ll,
∑

i∈S(l)(Hk)
−1
ii and∑

i∈S(l)(H
−1
k )ii∇if(xk).

1.b Each link sends a pilot price of 1, i.e., wl(0) = 1, to the sources that uses

it, i.e., i ∈ S(l). The sources aggregates the prices along its path to obtain

πi(0) =
∑

l∈L(i) wl(0) and computes Πi(0) = (H−1
k )ii

∑
l∈L(i) wl(0).

1.c The weighted price of route of source i, Πi(0) is sent to all the links along
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ith path. Each link l aggregate the total prices and computes

(B̄k)ll =
∑
i∈S(l)

Πi(0)−
∑
i∈S(l)

(Hk)
−1
ii . (2.17)

1.d Initialize an arbitrary vector of dual variables as w(1).

2. Iteration.

2.a Each link sends the current dual variable, i.e., wl(t) to the sources that

uses it, i.e., i ∈ S(l). Each source i aggregates the prices along its path to

obtain πi(t) =
∑

l∈L(i) wl(t) and computes Πi(t) = (H−1
k )ii

∑
l∈L(i) wl(t).

2.b The weighted price of route of source i, Πi(t) is sent to all the links along

ith path, then each link l aggregate the total prices from all the sources

and computes

wl(t+ 1) =
1

(Dk)ll + (B̄k)ll
((B̄k)llwl(t)−

∑
i∈S(l)

Πi(t)−
∑
i∈S(l)

(Hk)
−1
ii wl(t)

(2.18)

−
∑
i∈S(l)

(H−1
k )ii∇if(xk)− (H−1

k )(S+l)(S+l)∇S+lf(xk)).

The direction of information flow can be seen in Figures 2-1 and 2-2, with Figure

2-1 representing the direction of information flow for the steps 1.a, 1.c and 2.b in the

above procedure, and Figure 2-2 representing the direction of flow for the steps 1.b

and 2.a.

We now show the above procedure can be implemented in a distributed way. We

first observe that due to the separable nature of the objective function, the Hessian

matrix Hk is diagonal, with dimension (S + L) × (S + L), whose entries are of the

form

(Hk)ii =

 −
∂2Ui(x

k
i )

∂x2
i

+ µ
(xk

i )2
1 ≤ i ≤ S,

µ
(xk

i )2
S + 1 ≤ i ≤ S + L.
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sj

Figure 2-1: Direction of information flow
for the steps 1.a, 1.c and 2.b, from sources
to the links they use.

si

sj

Figure 2-2: Direction of flow for the steps
1.b and 2.a, from links to the sources using
them.

Each source knows its own utility function, barrier function and source rate, therefore

the first S entries of the form (Hk)ii can be computed by the sources in a distributed

manner. Similarly, since each link has information about its corresponding slack

variable and barrier function, the last L entries of the form (Hk)ii can be computed

by the links in a distributed way. The similar argument holds for the gradient vector.

Therefore, with information received from step 1.a, the lth diagonal entry of the matrix

Dk, i.e.,

(Dk)ll = (AH−1
k A′)ll =

∑
i∈S(l)

(Hk)
−1
ii + (Hk)

−1
(S+l)(S+l), (2.19)

[cf. Eq. (2.11)], can be calculated by link l with only information about its slack

variable and the Hessian information from the sources i ∈ S(l). Also each link

l also has the gradient ∇if(xk) for i ∈ S(l), and therefore each link l can compute∑
i∈S(l)(H

−1
k )ii∇if(xk) individually. Hence all information in step 1.a can be obtained

in a decentralized manner.

Using the definition of the price of the routes, πi(t), once the links send out their

associated price, each source i can compute πi(t) in a distributed way. We use the fact

that the Hessian information (Hk)ii can be computed at each source one more time,

and conclude the weighted prices Πi(t) can be calculated in a distributed manner,

and therefore steps 1.b and 2.a can be completed using only local information.

In step 1.c, each link aggregates the weighted prices Πi(0) sent out via the sources

that use it, and uses Hessian information from step 1.a to calculate (B̄k)ll. It can
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clearly be done in a distributed way. The similar argument hold for step 2.b, by noting

that the term (H−1
k )(S+l)(S+l)∇S+lf(xk) only depends on the slack variable and the

barrier function at the lth link.

Hence all the steps can be implemented in a decentralized way. We next show

the limit point of w(t) generated by the dual variable computation procedure above

solves Eq. (2.8) by establishing the following lemma.

Lemma 2.4.4. The iterative dual variable computation procedure defined above co-

incides with the iteration (2.14).

Proof. Recall the definition of the matrix A, i.e., Aji = 1 for i = 1, 2 . . . S if link j is

on the route for source i, and Aji = 0 otherwise. Therefore, we can write the price

of the route for source i as, πi(t) =
∑L

j=1Ajiw(t)j = [A′]iw(t). Similarly since the

Hessian matrix H is diagonal, the weighted price can be written as

Πi(t) = (Hk)
−1
ii [A′]iw(t) = [H−1

k A′]iw(t). (2.20)

On the other hand, from basic linear algebra, and the fact that A = [R I(L)], where

R is the routing matrix, we have the following relation hold,

(AH−1
k A′w(t))l =

S∑
i=1

([A]i[H
−1
k A′]iw(t))l + (H−1

k )(S+l)(S+l)wl(t)

=
S∑
i=1

Ali([H
−1
k A′]iw(t)) + (H−1

k )(S+l)(S+l)wl(t),

where [A]i denotes the ith column of the matrix A, and [A]j to denotes the jth row of

the matrix A. Using the definition of the matrix A one more time, the above relation

implies,

(AH−1
k A′w(t))l =

∑
i∈S(l)

[H−1
k A′]iw(t) + (H−1

k )(S+l)(S+l)wl(t) (2.21)

=
∑
i∈S(l)

Πi(t) + (H−1
k )(S+l)(S+l)wl(t),
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where the last equality follows from relation (2.20).

Using Eq. (2.12), the above relation implies that ((Bk+Dk)w(t))l =
∑

i∈S(l) Πi(t).

We next show that the value (B̄k)ll can be computed at link l in a decentralized way.

Using the fact that w(0) = [1, 1 . . . , 1]′, we have

(AH−1
k A′w(0))l = ((Bk +Dk)w(0))l =

L∑
j=1

(Bk)lj + (Dk)ll.

Since (Dk)ll is known to the lth link, it can compute the value (B̄k)ll, by definition of

B̄k [cf. Eq. (2.13)] and relation (2.21) we have

(B̄k)ll =
L∑
j=1

(Bk)lj = (AH−1
k A′w(0))l − (Dk)ll

=
∑
i∈S(l)

Πi(0) + (H−1
k )(S+l)(S+l)wl(t)− (Dk)ll,

where the last equality follows from relation (2.21). This calculation can further be

simplified using relation (2.19), and we obtain Eq. (2.17) in step 1.c, i.e.,

(B̄k)ll =
∑
i∈S(l)

Πi(t)−
∑
i∈S(l)

(Hk)
−1
ii .

Following the same procedure, the value (Bkw(t))l can be written as

(Bkw(t))l = (AH−1
k A′w(t))l − (Dkw(t))l

=
S∑
i=1

Πi(t) + (H−1
k )(S+l)(S+l)wl(t)− (Dk)llwl(t)

=
S∑
i=1

Πi(t)−
∑
i∈S(l)

(Hk)
−1
ii wl(t),

where the first equality follows from Eq. (2.13), the second equality follows from Eq.

(2.21), and the last equality follows from Eq. (2.19).
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We can write (AH−1
k ∇f(xk))l as,

(AH−1
k ∇f(xk))l =

∑
i∈S(l)

(H−1
k )ii∇if(xk) + (H−1

k )(S+l)(S+l)∇S+lf(xk).

By substituting the previous two relations into iteration (2.14) we obtain the desired

iteration, i.e., iteration (2.18). Q.E.D.

The above lemma, together with Theorem 2.4.3 guarantees the dual variable com-

putation procedure generates the desired solution to Eq. (2.8).

Remarks:

1. The sources only need to send their computed gradient and Hessian information

once per dual variable calculation, since those values are constant during the

iterations. This can be seen from the fact that the computations done in the

initialization phase only needs to be executed once.

2. This algorithm has comparable level of information exchange with the existing

subgradient based algorithms applied to the NUM problem (2.2) (see [6], [27],

[30], [31] for more details). In both types of algorithms, only the sum of dual

variables of links along a source path is fed back to the source, and the link

updates the price based on some aggregate information from all the sources that

use the particular link. The above procedure is designed for the Newton-type

algorithm, admittedly the computation here is more complicated than simply

summing up, since it involves multiplication and division. However since all

operations are scalar-based, the computation complexity should not impose

degradation on the performance of the algorithm given today’s technology.

3. The initialization phase was not present in the existing first order algorithm,

however this extra 3 rounds of information exchange enables the implementation

of Newton-type method, and speeds up the algorithm significantly, as we show

in Section 2.5.

4. The dual iterations can use the pilot signal wl(0) = 1 as initialization in step
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1.d, however if the links can each store the value of the dual variable from

the previous primal iteration wk−1
l , then simulation results suggest the dual

iteration converges faster.

2.4.3 Distributed Computation of the Newton Primal Direc-

tion

Once the dual variables are obtained, the primal Newton direction can be solved

according to (2.7), with

(∆xk)i = −(Hk)
−1
ii (∇if(xk) + (A′wk)i) = −(Hk)

−1
ii (∇if(xk) + πi),

where πi is the last price of the route computed from the dual variable computation

procedure, and hence the primal direction can be calculated in a distributed way

also. However, because our distributed dual variable computation involves an iterative

scheme, the exact value for wk is not available. Hence, the resulting Newton direction

may violate the equality constraint in problem (2.4). Therefore, the calculation for

the inexact Newton direction, which we denote by ∆x̃k, is separated into two stages

to maintain feasibility.

In the first stage, the first S components of ∆x̃k is computed via Eq. (2.7) using

the dual variables obtained in the preceding section. Then in the second stage, the

last L components of ∆x̃k, corresponding to the slack variables, are solved explicitly

by the links to guarantee the condition

A∆x̃k = 0

is satisfied. This calculation can be easily performed due to the nature of slack

variables and the system is guaranteed to have a solution because the matrix A has

full row rank and ∆x̃k can be negative.

Our distributed Newton-type algorithm is defined as: starting from an initial
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feasible vector x0, the primal solution x is updated as follows,

xk+1 = xk + sk∆x̃k, (2.22)

where sk is a positive stepsize, and ∆x̃k is the inexact Newton direction at the kth

iteration. As we will show in Theorem 2.4.6, we can choose our stepsize to ensure the

primal variables xk > 0 for all k, and hence all the logarithmic barrier functions in

the objective function of problem (2.4) are well defined.

We refer to the exact solution to the system of equations (2.6) the exact Newton

direction, denoted by ∆xk. The inexact Newton direction ∆x̃k from our algorithm is

a feasible estimate of ∆xk. At a given primal vector xk, we define the exact Newton

decrement λ(xk) as

λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. (2.23)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′∇2f(xk)∆x̃k. (2.24)

Observe that both λ(xk) and λ̃(xk) are nonnegative and well defined, due to the fact

that the matrix ∇2f(xk) is positive definite.

Our stepsize choice will be based on the inexact Newton decrement λ̃(xk), as we

will show in Section 2.5, this choice can ensure rate of convergence of our algorithm.

Therefore, we first need to compute λ̃(xk) in a distributed way. Notice that the inexact

Newton decrement can be viewed as the norm of inexact Newton direction ∆x̃k,

weighted by the Hessian matrix ∇2f(xk). Therefore, the inexact Newton decrement

λ̃(xk) can be computed via a distributed iterative averaging consensus-based scheme.

Due to space constraints, we omit the details of the consensus algorithm, interested

readers should refer to [40], [22], [36] for further information. We denote the computed

value for λ̃(xk) from consensus algorithm as θk. The stepsize in our algorithm is given
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by

sk =

 c
θk+1

if θk ≥ 1
4
,

1 otherwise,
(2.25)

where c is some positive scalar that satisfies 5
6
< c < 1. The lower bound 5

6
is chosen

here to guarantee xk > 0 for all k, and also convergence of the algorithm, as will show

in Theorem 2.4.6 and Section 2.5.2 respectively.

Due to the iterative nature of our algorithm in both primal and dual domains, in

practice infinite precision of the dual variable vector wk, primal direction ∆xk and

stepsize choice sk cannot be achieved. There are three sources of inexactness in the

algorithm. First is the iterative computation of the dual variable wk, which in turn

affects the primal Newton direction. Second source of error stems from the way we

maintain feasibility in the algorithm. Finally, stepsize sk depends on the value of θk,

which is an estimate for λ̃(xk) obtained via an iterative scheme, which also introduces

inexactness to the algorithm. We quantify the bounds on these errors as follows.

Assumption 2. For all k, the inexact Newton direction ∆x̃k produced by our algo-

rithm can be written as

∆xk = ∆x̃k + γ, (2.26)

where γ is bounded by

|γ′∇2f(xk)γ| ≤ p2(∆x̃k)′∇2f(xk)∆x̃k + ε. (2.27)

for some positive scalars p < 1 and ε.

This assumption imposes a bound on the weighted norm of the Newton direction

error γ as a function of the weighted norm of ∆x̃k and a constant ε. Note that

without the constant ε, we would require the error to vanish when xk is close to the

optimal solution, i.e. when ∆x̃k is very small, which is impractical for implementation

purpose.

We bound the error in the inexact Newton decrement calculation as follows.
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Assumption 3. Denote the error in the Newton decrement calculation as τ k, i.e.,

τ k = λ̃(xk)− θk, (2.28)

then for all k, τ k satisfies

|τ k| ≤
(

1

c
− 1

)
5

4
.

The constant 5
4

is chosen here to ensure our objective function f is well defined

throughout the algorithm, as we will show in Lemma 2.4.5 and Theorem 2.4.6. For

the rest of the chapter, we assume the conditions in Assumptions 1-3 hold.

We now show that the stepsize choice in (2.25) will guarantee positivity of the

primal variable, i.e., xk > 0, which in turn ensures that the logarithmic barrier

functions in the objective function of problem (2.4) are well defined. We proceed by

first establishing a bound on the error in the stepsize calculation.

Lemma 2.4.5. Let λ̃(xk) be the inexact Newton decrement defined in (2.24), θk be

the computed value of λ̃(xk) and c, satisfying 5
6
< c < 1, be the constant used in

stepsize choice (2.25). For θk ≥ 1
4
, the following relation holds

(2c− 1)/(λ̃(xk) + 1) ≤ c

θk + 1
≤ 1/(λ̃(xk) + 1). (2.29)

Proof. By Assumption 3 and the fact that θk ≥ 1
4

we have

|λ̃(xk)− θk| ≤
(

1

c
− 1

)
5

4
≤
(

1

c
− 1

)
(1 + θk). (2.30)

By multiplying both sides by the positive scalar c, the above relation implies

cθk − cλ̃(xk) ≤ (1− c)(1 + θk),
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which further implies,

(2c− 1)θk + (2c− 1) ≤ cλ̃(xk) + c.

By dividing both sides of the above relation by the positive scalar (θk +1)(λ̃(xk)+1),

we obtain the first inequality in relation (2.29).

Similarly, using relation (2.30) we can also establish

cλ̃(xk)− cθk ≤ (1− c)(1 + θk),

which can be rewritten as,

cλ̃(xk) + c ≤ θk + 1.

After dividing both sides of the preceding relation by the positive scalar (θk+1)(λ̃(xk)+

1), we obtain the second inequality in relation (2.29). Q.E.D.

With this bound on the error in the stepsize calculation, we can show that start-

ing with a positive feasible solution, the primal variable generated by our algorithm

remains positive for all k, i.e., xk > 0.

Theorem 2.4.6. Let x0 be a positive feasible primal variable, xk be the sequence of

primal variables updated using iteration (2.22), i.e., xk+1 = xk+sk∆x̃k, where ∆x̃k be

the inexact Newton direction defined in Section 2.4.3, and sk is defined as in (2.25).

Then for all k, the primal variable satisfies xk > 0.

Proof. We will prove this claim by induction. The base case of x0 > 0 holds by the

assumption of the theorem. At a primal solution xk, by Assumption 1, the utility

functions Ui are strictly concave, hence −∂2Ui

∂x2
i

(xki ) ≥ 0. Given the form of the Hessian

matrix,

(Hk)ii =

 −
∂2Ui

∂x2
i

(xki ) + µ
(xk

i )2
≥ µ

(xk
i )2

1 ≤ i ≤ S,

µ
(xk

i )2
S + 1 ≤ i ≤ S + L,
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we have

λ̃(xk) =

(
S+L∑
i=1

(∆x̃ki )
2(Hk)ii

) 1
2

≥

(
S+L∑
i=1

µ

(
∆x̃ki
xki

)2
) 1

2

≥ maxi

∣∣∣∣√µ∆x̃ki
xki

∣∣∣∣ ,
where the last inequality follows from the nonnegativity of the terms µ

(
∆̃xk

i

xk
i

)2

. By

taking the reciprocal on both sides, the above relation implies

1

λ̃(xk)
≤ 1

maxi

∣∣∣√µ∆x̃k
i

xk
i

∣∣∣ =
1
√
µ

mini

∣∣∣∣ xki∆x̃ki

∣∣∣∣ ≤ mini

∣∣∣∣ xki∆x̃ki

∣∣∣∣ , (2.31)

where the last inequality follows from the fact that µ ≥ 1.

We show the inductive step by considering two cases.

� Case i: θk ≥ 1
4

By Lemma 2.4.5, we have the stepsize sk satisfies, sk ≤ 1/(1+λ̃(xk)) < 1/λ̃(xk).

Thus using relation (2.31), we obtain sk < mini

∣∣∣ xk
i

∆x̃k
i

∣∣∣, and hence if xk > 0, then

xk+1 = xk + sk∆x̃k > 0.

� Case ii: θk < 1
4

By Assumption 3, we have λ̃(xk) < 1
4

+
(

1
c
− 1
)

5
4
. Using the fact that c > 5

6
,

we obtain

λ̃(xk) <
1

4
+

(
1

c
− 1

)
5

4
<

1

4
+

(
6

5
− 1

)
5

4
< 1.

Hence we have sk = 1 < 1
λ̃(xk)

≤ mini| x
k
i

∆̃xk
i

|, where the last inequality follows

from relation (2.31). Once again, if xk > 0, then xk+1 = xk + sk∆x̃k > 0.

Therefore in both cases we have xk+1 = xk+sk∆x̃k > 0, which completes the induction

proof. Q.E.D.

Therefore our algorithm guarantees the objective function of problem (2.4) is well

defined throughout.
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2.5 Convergence Analysis

We next present our analysis for convergence results in both each primal and dual

iterations. We first establish convergence for the dual iterations.

2.5.1 Convergence in Dual Iterations

We present an explicit rate of convergence for the iterations in our dual variable

computation procedure described in Section 2.4.2. We need the following lemma.

Lemma 2.5.1. Let M be an n × n matrix, and assume that its spectral radius,

denoted by ρ(M) satisfies ρ(M) < 1. Let λi denote the set of eigenvalues of M , with

1 > |λ1| ≥ |λ2| ≥ . . . ≥ |λn| and let vi denote the set of corresponding unit length right

eigenvectors. Assume the matrix has n linearly independent eigenvectors 3 .Then for

the sequence w(t) generated by the following iteration

w(t+ q) = M qw(t), (2.32)

we have

||w(t)− w∗|| ≤ λt1α, (2.33)

for some positive scalar α, where w∗ is the limit of iteration (2.32) as t→∞.

Proof. We let V denote the n × n matrix, whose columns are the n eigenvectors of

matrix M , i.e., [V ]i = vi. Let D be the diagonal matrix, with Dii = λi. Since the

matrix M has n linearly independent eigenvectors, which span Rn. Then using basic

linear algebra 4, we can show that

MV = V D. (2.34)

Using the columns in V as a basis, we perform a change of basis and w(t) can be

3An alternative assumption is that the algebraic multiplicity of each λi is equal to its correspond-
ing geometric multiplicity, since eigenvectors associated with different eigenvalues are independent
[29].

4A review of such material can be found in [29], [21], [5] and [18].
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written as w(t) = V w̄(t) for some w̄(t). Hence the iteration (2.32) implies

w(t+ 1) = MV w̄(t) = V Dw̄(t).

By applying relation (2.34) to the above relation iteratively, we obtain

w(t+ q) = V Dqw̄(t). (2.35)

Since the matrix D is diagonal, and Dii < 1 for all i, we have limq→∞D
q = 0, and

therefore

w∗ = lim
q→∞

V Dqw̄(t) = 0.

The above relation, combined with relation (2.35), implies with some arbitrary initial

vector w(0), we have

||w(t)− w∗|| =
∣∣∣∣V Dtw̄(0)

∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Dt
iiw̄i(0)vi

∣∣∣∣∣
∣∣∣∣∣ .

We next apply triangle inequality and obtain

||w(t)− w∗|| ≤
n∑
i=1

∣∣∣∣Dt
iiw̄i(0)vi

∣∣∣∣ =
n∑
i=1

|Dt
iiw̄i(0)| ≤ λt1

n∑
i=1

|w̄i(0)|,

where the equality follows from the fact that the eigenvectors, vi, are all unit length,

and the last inequality follows by the fact that λ1 is the eigenvalue with largest

magnitude. By setting α =
∑n

i=1 |w̄i(0)| we have shown the desired relation (2.33).

Q.E.D.

As Lemma 2.4.4 shows, our dual variable computation algorithm implements it-

eration (2.14). For notational simplicity, let M by the L × L matrix with M =

(Dk + B̄k)
−1(B̄k − Bk), and z = (Dk + B̄k)

−1(−AH−1
k ∇f(xk)), then iteration (2.14)
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can be written as w(t+ 1) = Mw(t) + z, which implies

w(t+ q) = M qw(t) +

q−1∑
i=0

M iz = M qw(t) + (I −M q+1)(I −M)−1z.

This representation is possible due to the fact that ρ(M) < 1, which is immediate

from the proof of Theorem 2.4.3. After rearranging the terms, we obtain

w(t+ q) = M q(w(t)−M(I −M)−1z) + (I −M)−1z.

Therefore starting from some arbitrary initial vector w(0), the convergence properties

of the sequence w(t) coincides with a sequence u(t), generated by u(t+ q) = M qu(0),

where u(0) = w(0) −M(I −M)−1z. We first assume the matrix M has L linearly

independent eigenvectors, then by applying the preceding lemma, we have

||w(t)− w∗|| = ||u(t)− u∗|| ≤ λt1α,

where λ1 is the eigenvalue of M with largest magnitude, and α is a constant depending

on the initial vector u(0) = w(0) −M(I −M)−1z. Hence number of iteration our

procedure takes to reach desired level of precision depends on the eigenvalue with

the largest magnitude of the matrix M = (Dk + B̄k)
−1(B̄k − Bk). The smaller the

magnitude is, the faster the iterations converge. The rate of convergence for the dual

iteration is linear.

For completeness, we next examine the case when the matrix M has less than L

linearly independent eigenvectors, even though this set of matrices M has measure

zero. By Jordan normal form, we have for some invertible matrix V and block diagonal

matrix J , MV = V J . The similar arguments applies as in Lemma 2.5.1, we have the

w(t+ q) = V Jqw̄(t),

for some w̄(t), which is the representation for the vector w(t) under the basis formed

by the columns of V . Hence the rate of convergence of w(t) depends on how fast the

40



matrix J t diminishes to 0. Let J(λ) denote the Jordan block corresponding to the

eigenvalue λ. Then J(λ) = λI(k + 1) + N(k + 1), where k is the difference between

algebraic and geometric multiplicity of eigenvalue λ, and N(k + 1) is a matrix of

dimension (k + 1)× (k + 1), with

N(k + 1) =



0 1 . . . 0

0 0 1
. . . . . .

0 . . . 0 1

0 . . . 0 0


,

which is nilpotent. For each Jordan block, by binomial formula, we have

(J(λ))q = (λI(k + 1) +N(k + 1))q = λqI(k + 1) +

q∑
i=1

 q

i

λq−i(N(k + 1))i.

Due to the fact that N j(k+ 1) = 0 for j > k+ 1, the above relation can be simplified

to

(J(λ))q = λqI(k + 1) +

q+1∑
i=1

 q

i

λq−i(N(k + 1))i

≤ λqI(k + 1) +
k+1∑
i=1

qi

i!
λq−i(N(k + 1))i,

where the inequality follows from expansion of the binomial coefficient. Recall that

by Theorem 2.4.3, we have the spectral radius of M satisfying ρ(M) < 1, and hence

|λ| < 1, the above matrix (J(λ))q converges to 0. The rate of convergence is, however,

slower than before, due to the effect of the second term. We can observe that the

larger k is, the slower the convergence is. Also the smaller |λ| is, the faster the

exponential λq−i in the second term dominates the polynomial term qi, and hence the

faster it converges to 0.

41



2.5.2 Convergence in Primal Iterations

We next present our convergence analysis for the primal solution generated by the

inexact Newton algorithm defined in Eq. (2.22). For the kth iteration, we define the

function f̃k : R→ R as

f̃k(t) = f(xk + t∆x̃k), (2.36)

which is self-concordant, because the objective function f is self-concordant. Note

that the value f̃k(0) and f̃k(s
k) are the objective function values at xk and xk+1

respectively. Therefore f̃k(s
k) − f̃k(0) measures the decrease in objective function

value at the kth iteration. Before proceeding further, we first introduce some relevant

background information on self-concordant functions and properties of the Newton

decrement, both of which will be used extensively in our convergence analysis.

Preliminaries

Using the definition of a self-concordant function, we can obtain the following result

(see [13] for the proof).

Lemma 2.5.2. Let f̃ : R → R be a self-concordant function. Then for all t ≥ 0 in

the domain of the function f̃ with tf̃ ′′(0)
1
2 < 1, the following inequality holds:

f̃(t) ≤ f̃(0) + tf̃ ′(0)− tf̃ ′′(0)
1
2 − log(1− tf̃ ′′(0)

1
2 ). (2.37)

We will use the preceding lemma to prove a key relation in analyzing convergence

properties of our algorithm [cf. Lemma 2.5.7]. The next lemma will be used to relate

the weighted norms of a vector z, with weights ∇2f(x) and ∇2f(y) for some x and y.

This lemma plays an essential role in establishing properties for the Newton decrement

(see [25], [34] for more details).

Lemma 2.5.3. Let f : Rn → R be self-concordant. Suppose vectors x and y are in

the domain of f and λ̃ = ((x − y)′∇2f(x)(x − y))
1
2 < 1, then for any z ∈ Rn, the

42



following inequality holds:

(1− λ̃)2z′∇2f(x)z ≤ z′∇2f(y)z ≤ 1

(1− λ̃)2
z′∇2f(x)z. (2.38)

Using the above lemma we relate the Newton decrement at the current step and

the next step in an unconstrained Newton method through the following lemma. This

lemma extends results in [25] and [34] to allow inexactness in the Newton direction

and reflects the effect of the error at the current step at the Newton decrement of the

next step.

Lemma 2.5.4. Let f : Rn → R be a self-concordant convex function. Consider the

unconstrained optimization problem

minimizex∈Rnf(x).

Let ∆x be the exact Newton direction at x. Let ∆x̃ denote any direction with γ =

∆x −∆x̃, and x(t) = x + t∆x̃ for t ∈ [0, 1]. Let z be the exact Newton direction at

x+ ∆x̃. If λ̃ = (∆x̃′∇2f(x)∆x̃)
1
2 < 1, then we have the following relation,

z∇2f(x+ ∆x̃)′z ≤ λ̃2

1− λ̃

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

Proof. For any t < 1, (x−x(t))′∇2f(x)(x−x(t)) = t2λ̃2 < 1 and by Lemma 2.5.3 for

any z, we have

(1− tλ̃)2z′∇2f(x)z ≤ z′∇2f(x(t))z ≤ 1

(1− tλ̃)2
z′∇2f(x)z

which implies

z′(∇2f(x(t))−∇2f(x))z ≤
(

1

(1− tλ̃)2
− 1

)
z′∇2f(x)z, (2.39)

and

z′(∇2f(x)−∇2f(x(t)))z ≤
(

1− (1− tλ̃)2
)
z′∇2f(x)z.
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Using the fact that 1− (1− tλ̃)2 ≤ 1
(1−tλ̃)2

−1, the preceding relation can be rewritten

as

z′(∇2f(x)−∇2f(x(t)))z ≤
(

1

(1− tλ̃)2
− 1

)
z′∇2f(x)z. (2.40)

Combining relations (2.39) and (2.40) yields

∣∣z′(∇2f(x)−∇2f(x(t)))z
∣∣ ≤ ( 1

(1− tλ̃)2
− 1

)
z′∇2f(x)z. (2.41)

Since the function f is convex, the Hessian matrix ∇2f(x) is positive semidefinite.

We can therefore apply the generalized Cauchy-Schwarz inequality and obtain

∣∣(∆x̃)′(∇2f(x(t))−∇2f(x))z
∣∣ (2.42)

≤
√

(∆x̃)′(∇2f(x(t))−∇2f(x))∆x̃′
√
z′(∇2f(x(t))−∇2f(x))z

≤
(

1

(1− tλ̃)2
− 1

)√
(∆x̃)′∇2f(x)∆x̃

√
z′∇2f(x)z

=

(
1

(1− tλ̃)2
− 1

)
λ̃
√
z′∇2f(x)z,

where the second inequality follows from relation (2.41), and the equality follows from

definition of λ̃.

Define the function κ : R→ R, as κ(t) = ∇f(x(t))′z+ (1− t)(∆x̃)′∇2f(x)′z, then∣∣∣∣ ddtκ(t)

∣∣∣∣ =
∣∣(∆x̃)′∇2f(x(t))′z − (∆x̃)′∇2f(x)z

∣∣ =
∣∣(∆x̃)′(∇2f(x(t))−∇2f(x))z

∣∣ ,
which is the left hand side of (2.42).

The exact Newton direction ∆x satisfies ∆x = −∇2f(x)−1∇f(x) and hence

∆x′∇2f(x) = −∇f(x)′. Using the fact that ∆x = ∆x̃+ γ, we obtain

κ(0) = ∇f(x)′z + (∆x̃)′∇2f(x)′z = ∇f(x)′z −∇f(x)′z + γ′∇2f(x)′z = γ′∇2f(x)′z.
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Hence by integration we obtain the bound

|κ(t)| ≤ λ̃
√
z′∇2f(x)z

∫ t

0

(
1

(1− sλ̃)2
− 1

)
ds+ |γ′∇2f(x)′z|

=
λ̃2t2

1− λ̃t

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

For t = 1, x(t) = x+ ∆x̃, above equation implies

|κ(1)| = |∇f(x+ ∆x̃)′z| ≤ λ̃2

1− λ̃

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

Finally since z is the exact Newton direction at x+ ∆x̃, z satisfies z∇2f(x+ ∆x̃)′z =

|∇f(x+ ∆x̃)′z|, which proves the desired relation. Q.E.D.

The above lemma will be used to guarantee quadratic rate of convergence for

our distributed inexact Newton method [cf. Section 2.5.2]. The next lemma plays a

central role in relating the suboptimality gap in the objective function value and the

exact Newton decrement (see [13] for more details).

Lemma 2.5.5. Let f : Rn → R be a self-concordant function, and assume that ∆xk

is the exact Newton direction at xk. Let λ(xk) be the exact Newton decrement, defined

as λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. Let f ∗ denote the optimal objective function value.

If λ(xk) ≤ 0.68, then the following relation holds,

f ∗ ≥ f(xk)− λ(xk)2. (2.43)

The number 0.68 is obtained based on numerical simulation by [13]. The above

lemmas are established for the unconstrained Newton method. However as shown in

[13], for each equality constrained optimization problem, via elimination technique

we can construct an unconstrained problem, such that both the Newton decrement

and the Newton primal direction coincide in both problems. Hence the above lemmas

can be applied for the constrained Newton method also. We will use extensively these

lemmas in the subsequent sections for rate of convergence analysis for our algorithm,
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which comprises of two parts. The first part is the damped convergent phase, in

which improvement in the objective function value at each step is bounded below

by a constant. The second part is the quadratically convergent phase, in which the

suboptimality in the objective function value, i.e., f(xk)−f ∗, diminishes quadratically

to an error neighborhood of 0.

Basic Relations

We first introduce some key relations, which provides a bound on the error in the

Newton direction computation. This will be used for both phases of the convergence

analysis.

Lemma 2.5.6. Let λ̃(xk) be the inexact Newton decrement defined in Eq. (2.24).

Then the following relation holds for all k:

|γ′∇2f(xk)∆x̃k| ≤ pλ̃(xk)2 + λ̃(xk)
√
ε,

where γ, p, and ε are the nonnegative scalars defined in Assumption 2.

Proof. By Assumption 1, the Hessian matrix ∇2f(xk) is positive definite for all xk.

We therefore can apply the generalized Cauchy-Schwarz inequality and obtain

|γ′∇2f(xk)∆x̃k| ≤
√

(γ′∇2f(xk)γ)((∆x̃k)′∇2f(xk)∆x̃k) (2.44)

≤
√

(p2λ̃(xk)2 + ε)λ̃(xk)2

≤
√

(p2λ̃(xk)2 + ε+ 2pλ̃(xk)
√
ε)λ̃(xk)2,

where the second inequality follows from Assumption 2 and definition of λ̃(xk), and

the third inequality follows by adding the nonnegative term 2p
√
ελ̃(xk)3 to the right

hand side. By the nonnegativity of the inexact Newton decrement λ̃(xk), it can be

seen that relation (2.44) implies

|γ′∇2f(xk)∆x̃k| ≤ λ̃(xk)(pλ̃(xk) +
√
ε) = pλ̃(xk)2 + λ̃(xk)

√
ε,
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which proves the desired relation. Q.E.D.

Using the preceding lemma, the following basic relation can be established, which

will be used to measure the improvement in the objective function value.

Lemma 2.5.7. Let f̃k(t) and λ̃(xk) be the functions defined in Eqs. (2.36) and (2.24)

respectively. Then the following relation holds for all k with 0 ≤ t < 1/λ̃(xk),

f̃k(t) ≤ f̃k(0)− t(1− p)λ̃(xk)2 − (1−
√
ε)tλ̃(xk)− log(1− tλ̃(xk)), (2.45)

where p, and ε are the nonnegative scalars defined in Assumption 2.

Proof. Recall that ∆xk is the exact Newton direction, which solves the system (2.6).

Therefore for some wk, the following equation is satisfied,

∇2f(xk)∆xk + A′wk = −∇f(xk).

By left multiplying the above relation by (∆x̃k)′, we obtain

(∆x̃k)′∇2f(xk)∆xk + (∆x̃k)′A′wk = −(∆x̃k)′∇f(xk).

Using the facts that ∆xk = ∆x̃k +γ from Assumption 2 and A∆x̃k = 0 by the design

of our algorithm, the above relation yields

(∆x̃k)′∇2f(x)∆x̃k + (∆x̃k)′∇2f(xk)γ = −(∆x̃k)′∇f(xk).

By Lemma 2.5.6, we can bound (∆x̃k)′∇2f(xk)γ by,

pλ̃(xk)2 + λ̃(xk)
√
ε ≥ (∆x̃k)′∇2f(xk)γ ≥ −pλ̃(xk)2 − λ̃(xk)

√
ε.

Using the definition of λ̃(xk) [cf. Eq. (2.24)] and the preceding two relations, we obtain

the following bounds on (∆x̃k)′∇f(xk):

−(1 + p)λ̃(xk)2 − λ̃(xk)
√
ε ≤ (∆x̃k)′∇f(xk) ≤ −(1− p)λ̃(xk)2 + λ̃(xk)

√
ε.
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By differentiating the function f̃k(t), and using the preceding relation, this yields,

f̃ ′k(0) = ∇f(xk)′∆x̃k (2.46)

≤ −(1− p)λ̃(xk)2 + λ̃(xk)
√
ε.

Moreover, we have

f̃ ′′k (0) = (∆x̃k)′∇2f(xk)∆x̃k (2.47)

= λ̃(xk)2.

The function f̃k(t) is self-concordant for all k, therefore by Lemma 2.5.2, for 0 ≤ t <

1/λ̃(xk), the following relations hold:

f̃k(t) ≤ f̃k(0) + tf̃ ′k(0)− tf̃ ′′k (0)
1
2 − log(1− tf ′′k (0)

1
2 )

≤ f̃k(0)− t(1− p)λ̃(xk)2 + tλ̃(xk)
√
ε− tλ̃(xk)− log(1− tλ̃(xk))

= f̃k(0)− t(1− p)λ̃(xk)2 − (1−
√
ε)tλ̃(xk)− log(1− tλ̃(xk)),

where the second inequality follows by Eqs. (2.46) and (2.47). This proves relation

(2.45). Q.E.D.

By choosing the stepsize t carefully, the preceding lemma can guarantee a constant

lower bound in the improvement in the objective function value at each iteration. We

present the convergence properties of our algorithm in the following two sections.

Damped Convergent Phase

In this section, we consider the case when θk ≥ 1
4

and stepsize sk = c
θk+1

[cf. Eq.

(2.25)]. We will prove the improvement in the objective function value is lower

bounded by a constant. To this end, we first establish the improvement bound for

the exact stepsize choice of t = 1/(λ̃(xk) + 1).

Theorem 2.5.8. Let f̃k be the function defined in Eq. (2.36), and λ̃(xk) be the in-

exact Newton decrement defined in Eq. (2.24). Let p and ε be the scalars defined in
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Assumption 2. Assume that 0 < p < 1
2

and 0 < ε <
(

(0.5−p)(6c−5)
4c

)2

, where c is the

constant in stepsize choice [cf. Eq. (2.25)]. Then for θk ≥ 1
4

and t = 1/(λ̃(xk) + 1),

there exist a scalar α > 0, such that the following relation holds,

f̃k(t)− f̃k(0) ≤ −α(1 + p)

(
6c− 5

4c

)2

/

(
1 +

6c− 5

4c

)
(2.48)

Proof. For notational simplicity, let y = λ̃(xk) in this proof. We will show that for

any positive scalar α, such that 0 < α ≤ (1
2
− p− 4c

√
ε

6c−5
)/(p+ 1), relation (2.48) holds.

Such α exists by the fact that ε < ( (0.5−p)(6c−5)
4c

)2.

Using the facts that α ≤ (1
2
−p− 4c

√
ε

6c−5
)/(p+ 1) and c > 5

6
, the following inequality

is satisfied

√
ε ≤ 6c− 5

4c
(
1

2
− p− α(1 + p)).

Also by Assumption 3, we have for θk ≥ 1
4
,

y ≥ θk − (
1

c
− 1)

5

4
≥ 1

4
− (

1

c
− 1)

5

4
=

6c− 5

5c
> 0, (2.49)

where the strict inequality follows from the fact that c > 5
6
. Hence the preceding two

relations imply

√
ε ≤ y(

1

2
− p− α(1 + p)).

Using algebraic manipulation, this yields,

−(1− p)y − (1−
√
ε) + (1 + y)− y

2
≤ −α(1 + p)y.

From relation (2.49), we have y > 0. We can therefore multiply by y and divide by

1 + y both sides of the above inequality to obtain

−1− p
1 + y

y2 − 1−
√
ε

1 + y
y + y − y2

2(1 + y)
≤ −α(1 + p)y2

1 + y
(2.50)

49



Using second order Taylor expansion on log(1 + y), we have for y ≥ 0

log(1 + y) ≤ y − y2

2(1 + y)
.

Using this relation in Eq. (2.50) yields,

−1− p
1 + y

y2 − 1−
√
ε

1 + y
y + log(1 + y) ≤ −α(1 + p)y2

1 + y
.

Substituting the value of t = 1/(y + 1), the above relation can be rewritten as

−(1− p)ty2 − (1−
√
ε)ty − log(1− ty) ≤ −α(1 + p)y2

1 + y
.

Using relation (2.45) from Lemma 2.5.7 and definition of y, the preceding relation

implies

f̃k(t)− f̃k(0) ≤ −α(1 + p)
y2

y + 1
.

Observe that the function h(y) = y2

y+1
is monotonically increasing in y, and for θk ≥ 1

4

by relation (2.49) we have y ≥ 6c−5
4c

. Therefore

−α(1 + p)
y2

y + 1
≤ −α(1 + p)(

6c− 5

4c
)2/(1 +

6c− 5

4c
).

The preceding two relations shows the desired relation, Eq. (2.48). Q.E.D.

Note that our algorithm uses the stepsize sk = c
θk+1

for this damped convergent

phase, which is an approximation to the stepsize t = 1/(λ̃(xk) + 1) in the previous

theorem. The error between the two is bounded by relation (2.29) as shown in Lemma

2.4.5. We next show that with this error in the stepsize computation, the improvement

in the objective function value in the inexact algorithm is still lower bounded at each

iteration.

Recall that f̃k(t) = f(xk + t∆x̃k), where the function f is convex. Let β = sk

t
,
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where t = 1/(λ̃(xk) + 1), then we have the following relation,

f(xk + βt∆xk) = f(β(xk + t∆xk) + (1− β)(xk)) ≤ βf(xk + t∆xk) + (1− β)f(xk),

where the last inequality follows from convexity of the function f . Therefore the

objective function value improvement is bounded by

f(x+ βt∆xk)− f(xk) ≤ βf(xk + t∆xk) + (1− β)f(xk)− f(xk)

= β(f(xk + t∆xk)− f(xk))

= β(f̃k(t)− f̃k(0)),

where the inequality follows from the relation above, and the last equality follows from

the definition of f̃k(t). Using Lemma 2.4.5, we obtain bounds on β as 2c−1 ≤ β ≤ 1.

Hence combining this bound with Theorem 2.5.8, we obtain

f(xk+1)− f(xk) ≤ −(2c− 1)α(1 + p)(
6c− 5

4c
)2/(1 +

6c− 5

4c
). (2.51)

Hence in the damped convergent phase we can guarantee a lower bound on the object

function value improvement at each iteration. This bound is monotonically increas-

ing in c, therefore the closer the scalar c is to 1, the faster the objective function

value improves, however this also requires the error in the inexact Newton decrement

calculation, i.e., λ̃(xk)− θk, diminishes to 0 [cf. Assumption 3].

Quadratically Convergent Phase

In the phase when θk < 1
4
, we show that the suboptimality diminishes quadratically

to a neighborhood of optimal solution. We proceed by first establishing the following

lemma for relating the exact and the inexact Newton decrement.

Lemma 2.5.9. Let p and ε be the nonnegative scalars defined in Assumption 2. Let

functions λ and λ̃ be the exact and inexact Newton decrement defined in Eqs. (2.23)
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and (2.24) respectively. Then the following relation holds:

(1− p)λ̃(xk)−
√
ε ≤ λ(xk) ≤ (1 + p)λ̃(xk) +

√
ε, (2.52)

for all xk in the domain of the objective function f .

Proof. By Assumption 1, for all k, ∇2f(xk) is positive definite. We therefore can

apply the generalized Cauchy-Schwarz inequality and obtain

|(∆xk)′∇2f(xk)∆x̃k| ≤
√

((∆xk)′∇2f(xk)∆xk)((∆x̃k)′∇2f(xk)∆x̃k) (2.53)

= λ(xk)λ̃(xk),

where the equality follows from definition of λ(xk) and λ̃(xk) [cf. Eqs. (2.23) and

(2.24)]. Note that by Assumption 2, we have ∆xk = ∆x̃k + γ, and hence

|(∆xk)′∇2f(xk)∆x̃k| = |(∆x̃k + γ)′∇2f(xk)∆x̃k| (2.54)

≥ (∆x̃k)′∇2f(xk)∆x̃k − |γ′∇2f(xk)∆x̃k|

≥ λ̃(xk)2 − pλ̃(xk)2 − λ̃(xk)
√
ε,

where the first inequality follows from a variation of triangle inequality, and the last

inequality follows from Lemma 2.5.7. Combining the two inequalities (2.53) and

(2.54), we obtain

λ(xk)λ̃(xk) ≥ λ̃(xk)2 − pλ̃(xk)2 −
√
ελ̃(xk),

By canceling a nonnegative term λ̃(xk) on both sides, we have

λ(xk) ≥ λ̃(xk)− pλ̃(xk)−
√
ε.

This shows the first half of the relation (2.52). For the second half, using the definition
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of λ(xk), we have

λ(xk)2 = (∆xk)′∇2f(xk)∆xk

= (∆x̃k + γ)′∇2f(xk)(∆x̃k + γ)

= (∆x̃k)′∇2f(xk)∆x̃k + γ′∇2f(xk)γ + 2(∆x̃k)′∇2f(xk)γ,

where the second equality follows from the definition of γ [cf. Eq. (2.26)]. By using the

definition of λ̃(xk), Assumption 2 and Lemma 2.5.6, the preceding relation implies,

λ(xk)2 ≤ λ̃(xk)2 + p2λ̃(xk)2 + ε+ 2pλ̃(xk)2 + 2
√
ελ̃(xk)

≤ λ̃(xk)2 + p2λ̃(xk)2 + 2pλ̃(xk)2 + 2
√
ε(1 + p)λ̃(xk) + ε

= ((1 + p)λ̃(xk) +
√
ε)2,

where the second inequality follows by adding a nonnegative term of 2
√
εpλ̃(xk) to

the right hand side. By nonnegativity of p, ε, λ and λ̃(xk), we can take the square

root of both sides and this completes the proof for relation (2.52). Q.E.D.

We impose the following bound on the errors in our algorithm when θk < 1
4
.

Assumption 4. In the quadratic convergence phase, i.e., when θk < 1
4
, there exists

a positive scalar φ, such that φ ≤ 0.267 and the following relations hold for all k,

(1 + p)(θk + τ) +
√
ε ≤ φ (2.55)

p+
√
ε ≤ 1− (4φ2)

1
4 − φ, (2.56)

where τ > 0 is a bound on the error in the Newton decrement calculation, i.e., for all

k, |τ k| = |λ̃(xk)− θk| ≤ τ , and p and ε are the scalars defined in Assumption 2.

The upper bound of 0.267 on φ is necessary here to guarantee relation (2.56) can

be satisfied by some positive scalars p and ε. Relation (2.55) will be used to guarantee

the condition λ(xk) ≤ 0.68 is satisfied, so that we can use Lemma 2.5.5 to relate the

suboptimality bound with the Newton decrement. Relation (2.56) will be used for
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establishing the quadratic rate of convergence of the objective function value, as we

will show in Theorem 2.5.11.

By Assumption 4, we have λ̃(xk) = θk+τ k ≤ θk+τ . Therefore, by relation (2.52),

we have

λ(xk) ≤ (1 + p)λ̃(xk) +
√
ε ≤ φ ≤ 0.267. (2.57)

Thus the condition λ(xk) ≤ 0.68 for Lemma 2.5.5 is satisfied. We can therefore apply

relation (2.43) to bound suboptimality in our algorithm, i.e., f(xk) − f ∗, using the

exact Newton decrement. We next show that under this assumption, the objective

function value f(xk) generated by our algorithm converges quadratically to an error

neighborhood of the optimal value f ∗, we will also characterize explicitly the size of

the neighborhood. We will need the following lemma, which relates the exact Newton

decrement at the current and the next step.

Lemma 2.5.10. Let xk be the iterates generated by the inexact Newton method [cf.

Section 2.4]. Let λ and λ̃ be the exact and inexact Newton decrement defined in Eqs.

(2.23) and (2.24) respectively. Let θk be the computed inexact value of λ̃ and let

Assumption 4 hold. Then for all k with θk < 1
4
, we have

λ(xk+1) ≤ vλ(xk)2 + ξ, (2.58)

where ξ = φp+
√
ε

1−p−φ−
√
ε
+ 2φ

√
ε+ε

(1−p−φ−
√
ε)2

, v = 1
(1−p−φ−

√
ε)2

and p and ε are the scalars defined

in Assumption 2.

Proof. Due to the fact that θk < 1
4
, by stepsize rule in Eq. (2.25) we have stepsize

sk = 1, and therefore xk+1 = xk + ∆x̃. Let ∆xk+1 denote the exact Newton direction

54



at primal solution xk+1, then in view of Lemma 2.5.4 by letting z = ∆xk+1, we have

λ(xk+1)2 = (∆xk+1)′∇f 2(x+ ∆x̃)∆xk+1

≤ λ̃(xk)2

1− λ̃(xk)

√
(∆xk+1)′∇2f(x)∆xk+1 +

∣∣γ′∇2f(x)′∆xk+1
∣∣

≤ λ̃(xk)2

1− λ̃(xk)

√
(∆xk+1)′∇2f(x)∆xk+1 +

√
γ′∇2f(x)γ

√
(∆xk+1)′∇2f(x)∆xk+1,

where the last inequality follows from the generalized Cauchy-Schwarz inequality.

Using Assumption 2, the above relation implies,

λ(xk+1)2 ≤

(
λ̃(xk)2

1− λ̃(xk)
+

√
p2λ̃(xk)2 + ε

)√
(∆xk+1)′∇2f(x)∆xk+1.

By the fact that λ̃(xk) ≤ θk + τ ≤ φ < 1, we can apply Lemma 2.5.3 and obtain,

λ(xk+1)2 ≤ 1

1− λ̃(xk)

(
λ̃(xk)2

1− λ̃(xk)
+

√
p2λ̃(xk)2 + ε

)√
(∆xk+1)′∇2f(x+ ∆x̃)∆xk+1

=

 λ̃(xk)2

(1− λ̃(xk))2
+

√
p2λ̃(xk)2 + ε

1− λ̃(xk)

λ(xk+1).

By dividing the last line by λ(xk+1), we obtain

λ(xk+1) ≤ λ̃(xk)2

(1− λ̃(xk))2
+

√
p2λ̃(xk)2 + ε

1− λ̃(xk)
≤ λ̃(xk)2

(1− λ̃(xk))2
+
pλ̃(xk) +

√
ε

1− λ̃(xk)
.

From Eq. (2.52), we have λ̃(xk) ≤ λ(xk)+
√
ε

1−p . Therefore the above relation implies,

λ(xk+1) ≤
(

λ(xk) +
√
ε

1− p− λ(xk)−
√
ε

)2

+
pλ(xk) +

√
ε

1− p− λ(xk)−
√
ε
.

By relation (2.57), we have λ(xk) ≤ φ, the above relation can be relaxed to be

λ(xk+1) ≤
(

λ(xk)

1− p− φ−
√
ε

)2

+
φp+

√
ε

1− p− φ−
√
ε

+
2φ
√
ε+ ε

(1− p− φ−
√
ε)2
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Hence, by definition of ξ and v, we have

λ(xk+1) ≤ vλ(xk)2 + ξ.

Q.E.D.

The above lemma can then be used to show that our algorithm converges quadrat-

ically to an error neighborhood of optimality, with the error quantified as in the next

theorem.

Theorem 2.5.11. Let λ and λ̃ be the exact and inexact Newton decrement defined

in Eqs. (2.23) and (2.24) respectively. Let f(xk) be the objective function value at kth

iteration for the algorithm defined in Section 2.4 and f ∗ be the optimal objective func-

tion value for problem (2.4). Let Assumption 4 hold. Let ξ = φp+
√
ε

1−p−φ−
√
ε
+ 2φ

√
ε+ε

(1−p−φ−
√
ε)2

,

v = 1
(1−p−φ−

√
ε)2

. Assume that for some δ ∈ [0, 1/2),

ξ + vξ ≤ δ

4v
.

Then for all k with θk < 1
4
, we have for m > 0,

λ(xk+m) ≤ 1

22mv
+ ξ +

δ

v

22m−1 − 1

22m , (2.59)

and

limsupm→∞f(xk+m)− f ∗ ≤ ξ +
δ

2v
.

Proof. We prove relation (2.59) by induction. First for m = 1, by relation (2.56), we

obtain

(1− p− φ−
√
ε)4 ≥ 4φ2.

Using the definition of v, i.e., v = 1
(1−p−φ−

√
ε)2

, the above relation implies vφ2 ≤ 1
4v

.
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Using relation (2.58) and (2.57), we have

λ(xk+1) ≤ vλ(xk)2 + ξ ≤ vφ2 + ξ ≤ 1

4v
+ ξ.

This establishes relation (2.59) for m = 1.

We next assume that relation (2.59) holds for some some m > 0, and show that

it also holds for m+ 1. By relation (2.58), we have

λ(xk+m+1) ≤ vλ(xk+m)2 + ξ

≤ v

(
1

22mv
+ ξ +

δ

v

22m−1 − 1

22m

)2

+ ξ

=
1

22m+1v
+

ξ

22m−1
+
δ

v

22m−1 − 1

22m+1−1
+ v

(
ξ +

δ

v

22m−1 − 1

22m

)2

+ ξ,

where the second inequality follows by the assumption that relation (2.59) holds for

m. Using algebraic manipulations and the assumption that ξ + vξ ≤ δ
4v

, this yields

λ(xk+m+1) ≤ 1

22m+1v
+ ξ +

δ

v

22m+1−1 − 1

22m+1 ,

completing the induction and therefore the proof of relation (2.59).

Using relation (2.57), we have λ(xk) ≤ φ ≤ 0.68, we can therefore apply Lemma

2.5.5, and obtain an upper bound on suboptimality as follows,

f(xk+m)− f ∗ ≤
(
λ(xk+m)

)2 ≤ λ(xk+m).

Combine this with relation (2.59), we obtain

f(xk+m)− f ∗ ≤ 1

22mv
+ ξ +

δ

v

22m−1 − 1

22m .

Taking limit superior on both sides of the preceding relation establishes the final

result. Q.E.D.

The above theorem shows that the objective function value f(xk) generated by
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our algorithm converges quadratically to a neighborhood of the optimal value f ∗, with

the neighborhood of size ξ + δ
2v

, where ξ = φp+
√
ε

1−p−φ−
√
ε

+ 2φ
√
ε+ε

(1−p−φ−
√
ε)2

, v = 1
(1−p−φ−

√
ε)2

,

and the condition ξ + vξ ≤ δ
4v

is satisfied. Note that with exact Newton algorithm,

we have p = ε = 0, which implies ξ = 0 and we can choose δ = 0, which in turn leads

to the size of the error neighborhood being 0. This confirms with the fact that exact

Newton algorithm converges quadratically to the optimal objective function value.

2.5.3 Convergence with respect to Design Parameter µ

So far, we restricted attention to develop an algorithm for a fixed logarithm barrier

coefficient µ. We next study the convergence property of the optimal object function

value as a function of µ. We utilize the following result from [34].

Lemma 2.5.12. Let G be a closed convex domain, and function g be a self-concordant

barrier function for G, then for any x, y ∈ int G, we have (y − x)′∇g(x) ≤ 1.

Using this lemma, we can establish the following result, which bounds the sub-

optimality as a function of µ.

Theorem 2.5.13. For the constrained optimization problem (2.4) and a given µ,

denote the optimal solution as x(µ), and h(µ) =
∑S

i=1−Ui(xi(µ)) . Similarly, denote

the optimal solution for the inequality constrained problem (2.2) together with corre-

sponding slack variables as defined in Eq. (2.3) as x∗, and h∗ =
∑S

i=1−Ui(x∗i ). Then

the following relation holds,

h(µ)− h∗ ≤ µ.

Proof. For notational simplicity, we write h(x) =
∑S

i=1−Ui(xi(µ)), and g(x) =

−
∑S+L

i=1 log (xi). Therefore the objective function for problem (2.4) can be written

as h(x) + µg(x).

By Assumption 1, we have that the utility functions are concave, therefore the neg-

ative objective functions in the minimization problems are convex. From convexity,
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we obtain

h(x∗) ≥ h(x(µ)) + (x∗ − x(µ))′∇h(x). (2.60)

By optimality condition for x(µ), we have,

(∇h(x(µ)) + µ∇g(x(µ)))′(x− x(µ)) ≥ 0,

for any feasible x. Since x∗ is feasible, we have

(∇h(x(µ)) + µ∇g(x(µ)))′(x∗ − x(µ)) ≥ 0,

which implies

∇h(x(µ))′(x∗ − x(µ)) ≥ −µ∇g(x(µ))′(x∗ − x(µ)).

For any µ, we have x(µ) belong to the interior of the feasible set, and by Lemma

2.5.12, we have for all µ̃, g(x(µ))′(x(µ̃) − x(µ)) ≤ 1. By continuity of x(µ) and

closedness of the convex set Ax ≤ c, for A and c defined in problem (2.4), we have

x∗ = limµ→0 x(µ), and hence

g(x(µ))′(x∗ − x(µ)) = lim
µ̃→0

g(x(µ))′(x(µ̃)− x(µ)) ≤ 1.

The preceding two relations imply

∇h(x(µ))′(x∗ − x(µ)) ≥ −µ.

In view of relation (2.60), this establishes the desired result, i.e.,

h(µ)− h∗ ≤ µ.

Q.E.D.

This theorem suggests that as the barrier function coefficient µ approaches 1,
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the sub-optimality between the objective function value our algorithm provides for

problem (2.4) and the exact optimal objective function value for problem (2.2) can be

bounded by 1, i.e., h(x(1))− h∗ ≤ 1 following the notation in the preceding theorem.

The effect of this constant 1 vanishes when we scale the original problem objective

function by a large constant, implying the solution of the two problems coincide.

2.6 Simulation Results

Our simulation results demonstrate that the decentralized Newton method signifi-

cantly outperforms the existing methods in terms of number of iterations. For a

comprehensive comparison, we count both the primal and dual iterations for our dis-

tributed Newton method. In what follows, when we refer to the number of iterations

of our Newton method, we are referring to the number iterations for the dual variable

computation procedure, i.e., the inner loop. In the simulation results, we compare

our distributed Newton method performance against both distributed subgradient

method [30] and also the Newton-type diagonal scaling dual method developed in [6].

To test the performances of the methods over general networks, we generated

50 random networks. The number of links L in the network is a random variable

with the mean of 40, and number of sources S is a random varible with the mean

of 10. Each routing matrix consists of L × R Bernoulli random variables. All three

methods are implemented over the 50 networks. We record the number of iterations

upon termination for all 3 methods, and results are shown in Figure 2-3 and Figure

2-4. Figure Figure 2-3 shows the number until termination on a log scale. We can

see that overall distributed Newton method is about much faster than subgradient

methods, and the diagonal-scaling method’s performance lies between the other two,

with a tendency to be closer to the first order subgradient method. Figure 2-4 shows

the histogram for the same set of data. This figure shows on average our method

is about 100 times faster for these relatively small networks, for larger networks the

performance is even more dramatic. Diagonal scaling method has performance on the
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Figure 2-3: Log scaled iteration count for the 3 methods implemented over 50 ran-
domly generated networks .
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Figure 2-5: One sample simulation of the 3 methods, running average of objective
function value after each iteration against log scaled iteration count

same order of magnitude as the subgradient method, but slightly faster.

A typical output for running average of objective function value after each itera-

tion against log scaled iteration count is presented in Figure 2-5. The results shows

newly developed method exhibits significant advantage over the traditional first or-

der ones. In this particular example, our distributed Newton algorithm terminated

after 12 iterations with a objective function value of 15.27, the Newton-like diagonal

scaling method took 1435 iterations with a objective function value of 15.77, and the

subgradient method finished after 5725 iterations with a objective function value of

15.43.

2.7 Conclusions

This chapter develops a distributed Newton-type second order algorithm for net-

work utility maximization problems that can achieve the superlinear convergence rate

within some error neighborhood. We show that the computation of the dual Newton
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step can be implemented in a decentralized manner using matrix splitting technique.

We show that even when the Newton direction and stepsize are computed with some

error, the method achieves superlinear convergence rate to an error neighborhood.

Simulation results also indicates significant improvement over traditional distributed

algorithms for network utility maximization problems. Possible future directions in-

clude to analyze the relationship between the rate of converge and the underlying

topology and analyze the rate of convergence for the consensus-based schemes when

computing the errors.
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Chapter 3

A Distributed Newton Method for

Network Flow Cost Minimization

Problems

3.1 Introduction

In this chapter, we propose an alternative approach based on using Newton-type (or

second-order) methods for network flow cost minimization problems. We show that

the proposed method can be implemented in a distributed manner and has faster

convergence properties.

Consider a network represented by a directed graph G = (N , E). Each edge e

in the network has a convex cost function φe(x
e), which captures the cost due to

congestion effects as a function of the flow xe on this edge. The total cost of a flow

vector x = [xe]e∈E is given by the sum of the edge costs, i.e.,
∑

e∈E φe(x
e). Given an

external supply bi for each node i ∈ N , the network flow cost minimization problem

is to find a minimum cost flow allocation vector that satisfies the flow conservation

constraint at each node.1

This problem can be formulated as a convex optimization problem with linear

1We focus on feasible problems, i.e., we assume that the total in-flow to the network is equal to
the total out-flow,

∑
i∈N bi = 0.
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equality constraints. The application of dual decomposition together with a dual

subgradient algorithm then yields a distributed iterative solution method. Instead,

we propose a distributed primal-dual Newton-type method that achieves a superlinear

convergence rate (to an error neighborhood).

The challenges in using Newton-type methods in this context are twofold. First,

the superlinear convergence rate of this type of methods is achieved by using a back-

tracking stepsize rule, which relies on global information in the computation of the

norm of a residual function (used in defining the stepsize). We solve this problem by

using a consensus-based local averaging scheme for estimating the norm of the resid-

ual function. Second, the computation of the dual Newton step involves a matrix

inversion, which requires global information. Our main contribution in this regard is

to develop a distributed iterative scheme for the computation of the dual Newton step.

The key idea is to recognize that the dual Newton step can be solved via an iterative

scheme, which involves the Laplacian of the graph, and therefore can be solved using

a consensus-based scheme in a distributed manner. We show that the convergence

rate of this scheme is governed by the spectral properties of the underlying graph.

Hence, for fast-mixing graphs (i.e., those with large spectral gaps), the dual Newton

step can be computed efficiently using only local information.

Since our method uses consensus-based schemes to compute the stepsize and the

Newton direction in each iteration, exact computation is not feasible. Another ma-

jor contribution of this thesis is to consider truncated versions of these consensus-

schemes at each iteration and present convergence rate analysis of the constrained

Newton method when the stepsize and the direction are estimated with some error.

We show that when these errors are sufficiently small, the value of the residual func-

tion converges superlinearly to a neighborhood of the origin, whose size is explicitly

quantified as a function of the errors and the parameters of the objective function

and the constraints of the network flow cost minimization problem.

The rest of the chapter is organized as follows: Section 3.2 defines the network

flow cost minimization problem and shows that the dual decomposition and subgra-

dient method can be implemented in a distributed manner. This section also presents
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the constrained primal-dual Newton method for this problem and introduces a dis-

tributed iterative scheme for computing the dual Newton step. Section 3.3 presents

a convergence rate analysis for an inexact Newton method, for which there are errors

associated with computation of the step and the stepsize. In section 3.4, simulations

demonstrate that the Newton’s method outperforms the subgradient method with

respect to runtime. Section 3.5 contains our concluding remarks.

Basic Notation and Notions:

A vector is viewed as a column vector, unless clearly stated otherwise. We denote

by xi the i-th component of a vector x. When xi ≥ 0 for all components i of a vector

x, we write x ≥ 0. For a matrix A, we write Aij or [A]ij to denote the matrix entry in

the i-th row and j-th column. We write x′ to denote the transpose of a vector x. The

scalar product of two vectors x, y ∈ Rm is denoted by x′y. We use ‖x‖ to denote the

standard Euclidean norm, ‖x‖ =
√
x′x. For a vector-valued function f : Rn → Rm,

the gradient matrix of f at x ∈ Rn is denoted by ∇f(x).

A vector a ∈ Rm is said to be a stochastic vector when its components ai, i =

1, . . . ,m, are nonnegative and their sum is equal to 1, i.e.,
∑m

i=1 ai = 1. A square m×

m matrix A is said to be a stochastic matrix when each row of A is a stochastic vector.

A stochastic matrix is called irreducible and aperiodic (also known as primitive) if all

eigenvalues (except the trivial eigenvalue at 1) are subunit.

One can associate a discrete-time Markov chain with a stochastic matrix and a

graph G as follows: The state of the chain at time k ∈ {1, 2, · · · }, denoted by X(k),

is a node in N (the node set of the graph) and the weight associated to each edge in

the graph is the probability with which X makes a transition between two adjacent

nodes. In other words, the transition from state i to state j happens with probability

pij, the weight of edge (i, j). If π(k) with elements defined as πi(k) = P(X(k) = i) is

the probability distribution of the state at time k, the state distribution satisfies the

recursion π(k + 1)T = π(k)TP . If the chain is irreducible and aperiodic then for all

initial distributions, π converges to the unique stationary distribution π∗ [7].
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3.2 Network Flow Cost Minimization Problem

We consider a network represented by a directed graph G = (N , E) with node set

N = {1, . . . , N}, and edge set E = {1, . . . , E}. We denote the flow vector by x =

[xe]e∈E , where xe denotes the flow on edge e. The flow conservation conditions at the

nodes can be compactly expressed as

Ax = b,

where A is the N × E node-edge incidence matrix of the graph, i.e.,

Aij =


1 if edge j leaves node i

−1 if edge j enters node i

0 otherwise,

and the vector b denotes the external sources, i.e., bi > 0 (or bi < 0) indicates bi units

of external flow enters (or exits) node i.

We associate a cost function φe : R→ R with each edge e, i.e., φe(x
e) denotes the

cost on edge e as a function of the edge flow xe. We assume that the cost functions

φe are strictly convex and twice continuously differentiable.

The network flow cost miminzation problem can be written as

minimize
E∑
e=1

φe(x
e) (3.1)

subject to Ax = b.

In this chapter, our goal is to investigate iterative distributed methods for solving

problem (3.1). In particular, we focus on two methods: first relies on solving the

dual of problem (3.1) using a subgradient method; second uses a constrained Newton

method, where, at each iteration, the Newton direction is computed iteratively using

an averaging method.
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3.2.1 Dual Subgradient Method

We first consider solving problem (3.1) using a dual subgradient method. To define

the dual problem, we form the Lagrangian function of problem (3.1) L : RE×RN → R

given by

L(x, λ) =
E∑
e=1

φe(x
e)− λ′(Ax− b).

The dual function q(λ) is then given by

q(λ) = inf
x∈RE

L(x, λ)

= inf
x∈RE

(
E∑
e=1

φe(x
e)− λ′Ax

)
+ λ′b

=
E∑
e=1

inf
xe∈R

(
φe(x

e)− (λ′A)exe
)

+ λ′b.

Hence, in view of the fact that the objective function and the constraints of problem

(3.1) are separable in the decision variables xe, the evaluation of the dual function

decomposes into one-dimensional optimization problems. We assume that each of

these optimization problems has an optimal solution, which is unique by the strict

convexity of the functions φe and is denoted by xe(λ). Using the first order optimality

conditions, it can be seen that for each e, xe(λ) is given by

xe(λ) = (φ′e)
−1(λi − λj), (3.2)

where i, j ∈ N denote the end nodes of edge e. Thus, for each edge e, the evaluation

of xe(λ) can be done based on local information about the edge cost function φe and

the dual variables of the incident nodes i and j.

We can write the dual problem as

maximizeλ∈RN q(λ).

The dual problem can be solved by using a subgradient method: given an initial
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vector λ0, the iterates are generated by

λk+1 = λk − αkgk for all k ≥ 0,

where gk is a subgradient of the dual function q(λ) at λ = λk given by

gk = Ax(λk)− b, x(λk) = argmin
x∈RE

L(x, λk),

i.e., for all e ∈ E , xe(λk) is given by Eq. (3.2) with λ = λk.

This method naturally lends itself to a distributed implementation: each node i

updates its dual variable λi using local (subgradient) information gi obtained from

edges e incident to that node, which in turn updates its primal variables xe(λ) using

dual variables of the incident nodes. Despite its simplicity and distributed nature,

however, it is well-known that the dual subgradient method suffers from slow rate of

convergence (see [32] and [33] for rate analysis and construction of primal solutions

for dual subgradient methods), which motivates us to consider a Newton method for

solving problem (3.1).

3.2.2 Equality-Constrained Newton Method

We next consider solving problem (3.1) using an (infeasible start) equality-constrained

Newton method (see [13], Chapter 10). We let f(x) =
∑E

e=1 φe(x
e) for notational

simplicity. Given an initial primal vector x0, the iterates are generated by

xk+1 = xk + αkvk

where vk is the Newton step given as the solution to the following system of linear

equations:2  ∇2f(xk) A′

A 0

 vk

wk

 = −

 ∇f(xk)

Axk − b

 .

2This is essentially a primal-dual method with the vectors vk and wk acting as primal and dual
steps; see Section 3.3.
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We let Hk = ∇2f(xk) and hk = Axk − b for notational convenience. Solving for vk

and wk in the preceding yields

vk = −H−1
k (∇f(xk) + A′wk), and

(AH−1
k A′)wk = hk − AH−1

k ∇f(xk). (3.3)

Since the matrix H−1
k is a diagonal matrix with entries [H−1

k ]ee = ( ∂2φe

(∂xe)2
)−1, given the

vector wk, the Newton step vk can be computed using local information. However,

the computation of the vector wk at a given primal vector xk cannot be implemented

in a decentralized manner in view of the fact that solving equation (3.3) (AH−1
k A′)−1

requires global information. The following section provides an iterative scheme to

compute the vector wk using local information.

Distributed Computation of the Newton Direction

Consider the vector wk defined in Eq. (3.3). The key step in developing a decentralized

iterative scheme for the computation of the vector wk is to recognize that the matrix

AH−1
k A′ is the weighted Laplacian of the underlying graph G = (N , E), denoted by

Lk. Hence, Lk can be written as

Lk = AH−1
k A′ = Dk −Bk.

Here Bk is an N ×N matrix with entries

(Bk)ij =


(

∂2φe

(∂xe)2

)−1

if e = (i, j) ∈ E ,

0 otherwise,

and Dk is an N ×N diagonal matrix with entries

(Dk)ii =
∑
j∈Ni

(Bk)ij,
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where Ni denotes the set of neighbors of node i, i.e., Ni = {j ∈ N | (i, j) ∈ E}.

Letting sk = hk − AH−1
k ∇f(xk) for notational convenience, Eq. (3.3) can be then

rewritten as

(I − (Dk + I)−1(Bk + I))wk = (Dk + I)−1sk.

This motivates the following iterative scheme (known as splitting) to solve for wk.

For any t ≥ 0, the iterates are generated by

w(t+ 1) = (Dk + I)−1(Bk + I)w(t) + (Dk + I)−1s. (3.4)

The ith row of both matrices Bk and Dk can be computed at the node i using

the local neighborhood information, therefore the above iteration shows that the

dual Newton step can be computed in a decentralized fashion. Since our distributed

solution involves an iterative scheme, exact computation is not feasible. In what

follows, we show that the Newton method has desirable convergence properties even

when the Newton direction is computed with some error provided that the errors are

sufficiently small.

3.3 Inexact Newton Method

In this section, we consider the following convex optimization problem with equality

constraints:

minimize f(x) (3.5)

subject to Ax = b,

where f : Rn → R is a twice continuously differentiable convex function, and A is an

m × n matrix. The network flow cost minimization problem (3.1) is a special case

of this problem with f(x) =
∑E

e=1 φe(x
e) and A is the N × E node-edge incidence

matrix. We denote the optimal value of this problem by f ∗. Throughout this section,

we assume that the value f ∗ is finite and problem (3.5) has an optimal solution, which
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we denote by x∗.

We consider an inexact (infeasible start) Newton method for solving problem (3.5)

(see [13]). In particular, we let y = (x, ν) ∈ Rn × Rm, where x is the primal variable

and ν is the dual variable, and study a primal-dual method which updates the vector

y at iteration k as follows:

yk+1 = yk + αkdk, (3.6)

where αk is a positive stepsize, and the vector dk is an approximate constrained Newton

direction given by

Dr(yk)dk = −r(yk) + εk. (3.7)

Here, the residual function r : Rn × Rm → Rn × Rm is defined as

r(x, ν) = (rdual(x, ν), rpri(x, ν)), (3.8)

where

rdual(x, ν) = ∇f(x) + A′ν, (3.9)

and

rpri(x, ν)) = Ax− b. (3.10)

Moreover, Dr(y) ∈ R(n+m)×(n+m) is the gradient matrix of r evaluated at y, and the

vector εk is an error vector at iteration k. We assume that the error sequence {εk} is

uniformly bounded from above, i.e., there exists a scalar ε ≥ 0 such that

‖εk‖ ≤ ε for all k ≥ 0. (3.11)

We adopt the following standard assumption:

Assumption 5. Let r : Rn×Rm → Rn×Rm be the residual function defined in Eqs.

(3.8)-(3.10). Then, we have:

(a) (Lipschitz Condition) There exists some constant L > 0 such that

‖Dr(y)−Dr(ȳ)‖ ≤ L‖y − ȳ‖ ∀y, ȳ ∈ Rn × Rm.
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(b) There exists some constant M > 0 such that

‖Dr(y)−1‖ ≤M ∀y ∈ Rn × Rm.

3.3.1 Basic Relation

We use the norm of the residual vector ‖r(y)‖ to measure the progress of the algo-

rithm. In the next proposition, we present a relation between the iterates ‖r(yk)‖,

which holds for any stepsize rule. The proposition follows from a multi-dimensional

extension of the descent lemma (see [9]).

Proposition 1. Let Assumption 5 hold. Let {yk} be a sequence generated by the

method (3.6). For any stepsize rule αk, we have

‖r(yk+1)‖ ≤ (1− αk)‖r(yk)‖+M2Lα2
k‖r(yk)‖2

+αk‖εk‖+M2Lα2
k‖εk‖2.

Proof. We consider two vectors w ∈ Rn×Rm and z ∈ Rn×Rm. We let ξ be a scalar

parameter and define the function g(ξ) = r(w + ξz). From the chain rule, it follows

that ∇g(ξ) = Dr(w + ξz)z. Using the Lipschitz continuity of the residual function

gradient [cf. Assumption 5(a)], we obtain:
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r(w + z)− r(w) = g(1)− g(0)

=

∫ 1

0

∇g(ξ)dξ

=

∫ 1

0

Dr(w + ξz)zdξ

≤
∣∣∣∣∫ 1

0

(Dr(w + ξz)−Dr(w))zdξ

∣∣∣∣+

∫ 1

0

Dr(w)zdξ

≤
∫ 1

0

‖Dr(w + ξz)−Dr(w)‖ ‖z‖dξ +Dr(w)z

≤ ‖z‖
∫ 1

0

Lξ‖z‖dξ +Dr(w)z

=
L

2
‖z‖2 +Dr(w)z.

We apply the preceding relation with w = yk and z = αkdk and obtain

r(yk + αkdk)− r(yk) ≤ αkDr(yk)dk +
L

2
α2
k‖dk‖2.

By Eq. (3.7), we have Dr(yk)dk = −r(yk) + εk. Substituting this in the previous

relation, this yields

r(yk + αkdk) ≤ (1− αk)r(yk) + αkεk +
L

2
α2
k‖dk‖2.

Moreover, using Assumption 5(b), we have

‖dk‖2 = ‖Dr(yk)−1(−r(yk) + εk)‖2

≤ ‖Dr(yk)−1‖2 ‖ − r(yk) + εk‖2

≤ M2
(

2‖r(yk)‖2 + 2‖εk‖2
)
.

Combining the above relations, we obtain ‖r(yk+1)‖ ≤ (1−αk)‖r(yk)‖+M2Lα2
k‖r(yk)‖2+

αk‖εk‖+M2Lα2
k‖εk‖2, establishing the desired relation. Q.E.D.
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3.3.2 Inexact Backtracking Stepsize Rule

We use a backtracking stepsize rule in our method to achieve the superlinear local

convergence properties of the Newton method. However, this requires computation

of the norm of the residual function ‖r(y)‖. In view of the distributed nature of the

residual vector r(y) [cf. Eq. (3.8)], this norm can be computed using a distributed

consensus-based scheme. Since this scheme is iterative, in practice the residual norm

can only be estimated with some error.

Let {yk} be a sequence generated by the inexact Newton method (3.6). At each

iteration k, we assume that we can compute the norm ‖r(yk)‖ with some error, i.e.,

we can compute a scalar nk ≥ 0 that satisfies

∣∣∣nk − ‖r(yk)‖∣∣∣ ≤ γ/2, (3.12)

for some constant γ ≥ 0. Hence, nk is an approximate version of ‖r(yk)‖, which

can be computed for example using distributed iterative methods. For fixed scalars

σ ∈ (0, 1/2) and β ∈ (0, 1), we set the stepsize αk equal to αk = βmk , where mk is

the smallest nonnegative integer that satisfies

nk+1 ≤ (1− σβm)nk +B + γ. (3.13)

Here, γ is the maximum error in the residual function norm [cf. Eq. (3.12)], and B is

a constant given by

B = ε+M2Lε2, (3.14)

where ε is the upper bound on the error sequence in the constrained Newton direction

[cf. Eq. (3.11)] and M and L are the constants in Assumption 5.

Convergence Properties for Consensus Algorithms

In this section, we analyze the rate of convergence for the consensus algorithm, be-

cause it is used to calculate the norm of the residual function, ‖r(y)‖. One possible

way to implement the consensus scheme is to have each node simply iteratively taking
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average over their local neighborhoods including the value itself has (for more details

on consensus, we refer the readers to [22], [24], [36], [40], [41], [2], [1]). Let z(0)

denote the vector of initial values the nodes have, then the consensus update rule can

be written as

z(t+ 1) = Pz(t) = P t+1z(0),

where the matrix P is nonnegative and row stochastic, with positive diagonal ele-

ments. The same iteration can be also obtained as a result of random walk Markov

chain process over a graph, where each node has a self-arc. Hence the time it takes to

reach consensus coincides with the mixing time for the Markov chain with transition

matrix P . This Markov chain is known to be a reversible one [12], therefore we resort

to Markov chain theories to characterize the speed of convergence.

It is well known that the rate of convergence to the stationary distribution of a

Markov chain is governed by the second largest eigenvalue magnitude of matrix P

defined as µ(P ) = maxi=2,··· ,n{|λi(P )|} [19]. To make this statement more precise, let

i be the initial state and define the total variation distance between the distribution

at time k and the stationary distribution π∗ as

∆i(k) =
1

2

∑
j∈V

|P k
ij − π∗j |.

The rate of convergence to the stationary distribution is measured using the following

quantity known as the mixing time:

Tmix = max
i

min{k : ∆i(k
′) < e−1 for all k′ ≥ k}.

The following theorem indicates the relationship between the mixing time of a

Markov chain and the second largest eigenvalue magnitude of its probability transition

matrix [38], [4].

Theorem 3.3.1. The mixing time of a reversible Markov chain with transition prob-
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ability matrix W and second largest eigenvalue magnitude µ satisfies

µ

2(1− µ)
(1− ln 2) ≤ Tmix ≤

1 + log n

1− µ
.

Therefore, the speed of convergence of the Markov chain to its stationary distri-

bution is determined by the value of 1− µ known as the spectral gap; the larger the

spectral gap, the faster the convergence. This suggests that the consensus can be

reached faster on graphs with large spectral gap.

3.3.3 Global Convergence of the Inexact Newton Method

We next present our analysis for convergence results in both primal and dual itera-

tions. We first establish convergence results for the dual iterations.

Convergence Properties for Dual Iteration

We will show the sequence w(t) generated by the iteration (3.4), i.e.

w(t+ 1) = (Dk + I)−1(Bk + I)w(t) + (Dk + I)−1s,

converges as t goes to infinity and analyze its rate of convergence.

Recall that the matrix A is the N×E node-edge incidence matrix, and the matrix

Hk is the Hessian matrix at kth iteration. The graph Laplacian at kth step can be

written as,

Lk = Dk −Bk,

where Bk is an N × N symmetric nonegative matrix and Dk is an N × N diagonal

matrix with entries

(Dk)ii =
∑
j∈Ni

(Bk)ij, (3.15)

where Ni denotes the set of neighbors of node i.

We prove convergence using change of basis technique. Let the matrix V =
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[v1v2 . . . vn], where vi denotes the ith column of V , be a N ×N orthonormal matrix,

whose first column is the unit vector in the direction of (Dk+I)e, i.e. v1 = (Dk+I)e
||(Dk+I)e|| =

c(Dk + I)e, for some scalar c 6= 0. Since V is orthonormal, we have V V ′ = I. Using

columns of V as the new basis, w(t) can be written as w̄(t) = V ′w(t) and hence

w(t) = V w̄(t). Under this bijection change of basis, the sequence w(t) converges if

and only if the sequence w̄(t) converges, where the iteration on w̄(t) is given as

w̄(t+ 1) = V ′(Dk + I)−1(Bk + I)V w̄(t) + V ′(Dk + I)−1sk. (3.16)

We will next show that the sequence w̄(t + 1) converges as t goes to infinity, by

showing that the first component of w̄(t) stays constant throughout the iterations

and the rest of the component converges to a vector.

For notational simplicity, we denote Pk = (Dk + I)−1(Bk + I). Let U denote the

N × (N − 1) matrix, obtained by removing the first column of V , i.e. U = [v2 . . . vn].

Let a(t) denote the first component of w̄(t) and y(t) denote the rest, i.e. y(t) =

[w̄(t)]2...N . Then iteration (3.16) can be written as

 a(t+ 1)

y(t+ 1)

 =

 v′1

U ′

Pk (v1 U)

 a(t)

y(t)

+

 v′1

U ′

 (Dk + I)−1sk (3.17)

=

 v′1(a(t)Pkv1 + PkUy(t))

U ′(a(t)Pkv1 + PkUy(t))

+

 v′1(Dk + I)−1sk

U ′(Dk + I)−1sk


=

 a(t)v′1Pkv1 + v′1PkUy(t) + v′1(Dk + I)−1sk

U ′PkUy(t) + a(t)U ′Pkv1 + U ′(Dk + I)−1sk


To show a(t) is constant, we first establish the following two simple lemmas. The

first one explores the structure of the node-edge incidence matrix, and the second one

characterizes one left eigenvalue of the matrix Pk.

Lemma 3.3.2. Let the matrices A and Hk be the node-edge incidence matrix and

the Hessian matrix at kth step respectively. Let vectors ∇f(xk) and b be the gradient

vector of the cost function and the external sources respectively. Assume the problem
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Ax = b has a feasible solution, then for all k, the vector sk = Axk−b−AH−1
k ∇f(xk),

satisfies

e′sk = 0.

Proof. Each column of the node-edge incidence matrix A consists of exactly two

nonzero elements 1 and −1, hence the column sum is 0, i.e. (e′A)i = 0 for all i. By

the feasibility assumption, we have for some vector x, e′b = e′Ax = 0. Therefore

e′sk = e′(Axk − b− AH−1
k ∇f(xk)) = (e′A)xk − e′b− (e′A)H−1

k ∇f(xk) = 0.

Q.E.D.

Lemma 3.3.3. Let the matrix Pk be Pk = (Dk + I)−1(Bk + I), where the matrices Bk

and Dk are defined as above. Then for all k, the vector v1 = (Dk+I)e
||(Dk+I)e|| = c(Dk + I)e

for some scalar c 6= 0 is a left eigenvector of Pk with corresponding eigenvalue 1.

Proof. Applying definition of v1 and Pk, we obtain

v′1Pk = ce′(Dk + I)′(Dk + I)−1(Bk + I) = ce′(Bk + I) = ce′(Dk + I),

where the second equality follows because the matrix Dk is diagonal, and the last

equality follows from the fact that the matrix Bk is symmetric, and relation (3.15).

Using the definition of v1 again, we conclude the desired relation

v′1Pk = v′1. (3.18)

Q.E.D.

We will show now that a(t) = a for some constant a, for all t. From iteration

(3.17), we have a(t + 1) = a(t)v′1Pkv1 + v′1PkUy(t) + v′1(Dk + I)−1sk, using Lemma
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3.3.3 and definition of v1 we have

a(t+ 1) = a(t)v′1v1 + v′1Uy(t) + ce′(Dk + I)′(Dk + I)−1sk (3.19)

= a(t) + ce′sk

= a(t),

where the second equality follows from the fact that v1 is a unit vector, orthogonal to

the column space of the matrix U and the symmetry of the matrix Dk, and the last

equality follows from Lemma 3.3.2. Hence the first component of w̄(t) stays constant

throughout the iterations, we can rewrite the relation (3.17) as

 a(t+ 1)

y(t+ 1)

 =

 a

U ′PkUy(t) + aU ′Pkv1 + U ′(Dk + I)−1sk


Hence the iteration on y(t) can be written as

y(t) = U ′PkUy(t) + z, (3.20)

where z = aU ′Pkv1+U ′(Dk+I)−1sk is a constant vector independent of t. To establish

convergence of the sequence y(t) we will use the following theorem.

Theorem 3.3.4. Let the matrix U ′PkU be as defined above, where U is the last

N − 1 orthonormal columns of the N × N square matrix V , whose first column is

v1 = (Dk+I)e
||(Dk+I)e|| = c(Dk + I)e for some scalar c 6= 0. Let the underlying graph of

the network be strongly connected, then all the eigenvalues of the matrix U ′PkU are

subunit.

Proof. We will prove this theorem by associating the eigenvalues of the matrix U ′PkU

with those of the matrix P , then provide a range for the eigenvalues of the matrix P ,

and lastly show all the eigenvalues of the matrix U ′PkU are subunit.

(1) The set of eigenvalues of the matrix U ′PkU is a subset of the eigenvalues of the

matrix P .
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Let x be an eigenvector associated with eigenvalue λ for the matrix U ′PkU , then

we have

U ′PkUx = λx. (3.21)

Since U has orthornomal columns, we have U ′U = I. Also for the orthonormal

square matrix V , we have V V ′ =
(
v1 U

) v′1

U ′

 = v1v
′
1 + UU ′ = I, and

hence

UU ′ = I − v1v
′
1. (3.22)

Therefore, let y = Ux, then x = U ′y and the relation (3.21) can be written as

U ′Pky = λU ′y.

By multiplying both sides by the matrix U and relation (3.22), we obtain

Pky − v1v
′
1Pky = λ(y − v1v

′
1y).

From Lemma 3.3.3, we have v′1P = v′1. Hence the proceeding relation can be

written as

Pky − v1v
′
1y = λy − λv1v

′
1y.

Using the definition of y, it is in the columns space of U , which is orthogonal

to v1, i.e. v′1y = v′1Ux = 0. Therefore the above relation reduces Pky = λy, and

hence λ is an eigenvalue of the matrix P .

(2) The spectral radius of the matrix P , ρ(P ), satisfies ρ(P ) = 1, with exactly one

eigenvalue whose magnitude is 1.

The matrix Pk is nonnegative and row stochastic, and when the underlying

graph of the network is strongly connected, the matrix Pk is irreducible [7]. By

Perron-Frobenius theorem, the spectral radius of Pk is 1, and its eigenvalues

satisfy

1 = λ1(P ) > λ2(P ) ≥ . . . ≥ λn(P ) > −1. (3.23)
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Since the positive vector consisting of all 1, i.e. e = (1, 1...1)′, is an eigenvector

of Pk with corresponding eigenvalue 1, i.e. Pke = e, and the eigenvalue 1 has

multiplicity of 1, all eigenvectors of Pk corresponding to the eigenvalue 1 are

along the direction of e.

(3) Eigenvalue of the matrix U ′PkU cannot be 1.

We show this by contradiction. Assume there exist a vector x 6= 0, such that

U ′PkUx = x. Then we have

V ′PkV

 0

x

 =

 v′1

U ′

Pk

(
v1 U

) 0

x


=

 v′1PkUx

U ′PkUx


=

 0

x

 ,

where the last equality follows from Lemma 3.3.3 the fact the v1 is orthogonal

to the columns of the matrix U and the assumption that x satisfies U ′PkUx =

x. Therefore

 0

x

 is an eigenvector to the matrix V ′PkV with associated

eigenvalue 1.

By multiplying the proceeding eigenvalue relation by V and use the relation

V V ′ = I, we obtain

PkV

 0

x

 = V

 0

x

 , (3.24)

which implies V

 0

x

 is an eigenvector of the matrix Pk, with associated

eigenvalue 1. In step (2), we showed that any eigenvector for Pk associated with

eigenvalue 1 is along the direction of the vector e, therefore there exists a scalar

d 6= 0, such that V

 0

x

 = de, by multiplying both sides by the matrix V ′,
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we have

 0

x

 = cV ′e. However 0 = c(V ′e)1 = dv′1e = dce′(I +D)e 6= 0, since

D is a nonnegative, which leads to a contradiction. Therefore 1 cannot be an

eigenvalue of the matrix U ′PkU .

Combining the 3 steps above, we conclude all eigenvalues of the matrix U ′PkU

are subunit.

Q.E.D.

Using the same idea of the proof, one can show the next lemma.

Lemma 3.3.5. Let the matrix U ′PkU be as defined above, where U is the last N − 1

orthonormal columns of the N × N square matrix V , whose first column is v1 =

(Dk+I)e
||(Dk+I)e|| = c(Dk +I)e for some scalar c 6= 0. Let the underlying graph of the network

be strongly connected, then any eigenvalue other than 1 for the matrix Pk is also an

eigenvalue of the matrix U ′PkU .

Proof. If a nonzero scalar λ 6= 1 is an eigenvalue of the matrix Pk with corresponding

eigenvector x, then we have Pkx = λx, and since I = UU ′ + v1v
′
1, we obtain

U ′PkUU
′x+ U ′Pkv1v

′
1x = λU ′x. (3.25)

Next we show that v′1x = 0. Because v1 is the left eigenvector corresponding to

the eigenvalue, we have v′1x = v′1Pkx = λv′1x, where the last equality follows from the

assumption that x is a right eigenvector of Pk with corresponding eigenvalue λ, since

λ 6= 1, we have v′1x = 0. Hence relation (3.25) implies U ′PkUy = λy, where y = U ′x,

and therefore λ is an eigenvalue for the matrix U ′PkU . Q.E.D.

By using Theorem 3.3.4, we have the infinite sum of
∑∞

i=0(U ′PkU)i = (I−U ′PkU)

is well defined, and (U ′PkU)q goes to 0 as q goes to infinity. Therefore the iteration
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(3.20) can be solved iteratively as

y(t+ q) = (U ′PkU)qy(t) +

q−1∑
i=0

(U ′PkU)iz

= (U ′PkU)qy(t) + (I − (U ′PkU)q+1)(I − U ′PkU)−1z

= (U ′PkU)q(y(t)− U ′PkU(I − U ′PkU)−1z) + (I − U ′PkU)−1z,

Taking limit over q we have shown the convergence of the sequence y(t),

lim
q→∞

y(t+ q) = (I − U ′PkU)−1z.

We next analyze the speed of convergence for the iteration (3.4). Using the fact

that orthonormal change of basis preserve norms, we have the following relation hold,

||w(t)− w∗|| = ||w̄(t)− w̄∗|| = ||y(t)− y∗|| ,

where the first equality holds due to the fact that w(t) = V w̄(t) and columns of the

matrix V are orthonormal, the second equality follow from the established fact that

the first component of w̄(t) stays constant [cf. Eq. (3.19)], so that the norm of the

difference only depends on the other N − 1 components.

For the rest of the convergence rate analysis, we restrict our attention to the

case when the (N − 1) × (N − 1) matrix U ′PkU has N − 1 linearly independent

eigenvectors (for the other case, see Section 2.5.1 for more details). By applying

Lemma 2.5.1, we have that the rate of convergence of y(t) depends on the largest

eigenvalue magnitude of the matrix U ′PkU , which by Lemma 3.3.5 is the same as the

second largest eigenvalue magnitude of the matrix P . Let λ denote the eigenvalue of

the matrix P , which has the second largest magnitude, then from Lemma 2.5.1, we

have

||y(t)− y∗|| =
∣∣∣∣(U ′PkU)t(y(0)− U ′PkU(I − U ′PkU)−1z)

∣∣∣∣ ≤ λtα,
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where α is a positive scalar depends on y(0)− U ′PkU(I − U ′PkU)−1z. Therefore

||w(t)− w∗|| ≤ λtα,

where α depends on the initial vector w(0). Hence the larger the spectral gap, i.e.

1−|λ|, the matrix P has, the faster the dual iteration converges, and the convergence

rate is linear.

The next two sections provide convergence rate estimates for the damped Newton

phase and the local convergence phase of the inexact Newton method in the primal

domain when there are errors in the Newton direction and the backtracking stepsize.

Convergence Rate for Damped Newton Phase

We first show a strict decrease in the norm of the residual function if the errors ε and

γ are sufficiently small, as quantified in the following assumption.

Assumption 6. The errors B and e [cf. Eqs. (3.14) and (3.12)] satisfy

B + 2γ ≤ β

16M2L
,

where β is the constant used in the inexact backtracking stepsize rule, and M and L

are the constants defined in Assumption 5.

Under this assumption, the next proposition establishes a strict decrease in the

norm of the residual function as long as ‖r(y)‖ > 1
2M2L

.

Proposition 2. Let Assumptions 5 and 6 hold. Let {yk} be a sequence generated

by the method (3.6) when the stepsize sequence {αk} is selected using the inexact

backtracking stepsize rule [cf. Eq. (3.13)]. Assume that ‖r(yk)‖ > 1
2M2L

. Then, we

have

‖r(yk+1)‖ ≤ ‖r(yk)‖ −
β

16M2L
.

Proof. For any k ≥ 0, we define

ᾱk =
1

2M2L(nk + γ/2)
.
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In view of the condition on nk [cf. Eq. (3.12)], we have

1

2M2L(‖r(yk)‖+ γ)
≤ ᾱk ≤

1

2M2L‖r(yk)‖
< 1, (3.26)

where the last inequality follows by the assumption ‖r(yk)‖ > 1
2M2L

. Using the

preceding relation and substituting αk = ᾱk in the basic relation in Proposition 3.12,

we obtain:

‖r(yk+1)‖ ≤ ‖r(yk)‖+ ᾱk‖εk‖+M2Lᾱ2
k‖εk‖2

−ᾱk‖r(yk)‖
(

1−M2Lᾱk‖r(yk)‖
)

≤ ‖r(yk)‖+ ᾱk‖εk‖+M2Lᾱ2
k‖εk‖2

−ᾱk‖r(yk)‖
(

1−M2L
‖r(yk)‖

2M2L‖r(yk)‖

)
≤ ᾱk‖εk‖+M2Lᾱ2

k‖εk‖2 +
(

1− ᾱk
2

)
‖r(yk)‖

≤ B +
(

1− ᾱk
2

)
‖r(yk)‖,

where the second inequality follows from the definition of ᾱk and the third inequality

follows by combining the facts ᾱk < 1, ‖εk‖ ≤ ε for all k, and the definition of B.

The constant σ used in the definition of the inexact backtracking line search satisfies

σ ∈ (0, 1/2), therefore, it follows from the preceding relation that

‖r(yk+1)‖ ≤ (1− σᾱk)‖r(yk)‖+B.

Using condition (3.12) once again, this implies

nk+1 ≤ (1− σᾱk)nk +B + γ,

showing that the steplength αk selected by the inexact backtracking line search sat-

87



isfies αk ≥ βᾱk. From condition (3.13), we have

nk+1 ≤ (1− σαk)nk +B + γ,

which implies

‖r(yk+1)‖ ≤ (1− σβᾱk)‖r(yk)‖+B + 2γ.

Combined with Eq. (3.26), this yields

‖r(yk+1)‖ ≤
(

1− σβ

2M2L(‖r(yk)‖+ γ)

)
‖r(yk)‖+B + 2γ.

By Assumption 6, we also have

γ ≤ B + 2γ ≤ β

16M2L
,

which in view of the assumption ‖r(yk)‖ > 1
2M2L

implies that γ ≤ ‖r(yk)‖. Substi-

tuting this in the preceding relation and using the fact α ∈ (0, 1/2), we obtain

‖r(yk+1)‖ ≤ ‖r(yk)‖ −
β

8M2L
+B + 2γ.

Combined with Assumption 6, this yields the desired result. Q.E.D.

The preceding proposition shows that, under the assumptions on the size of the

errors, at each iteration, we obtain a minimum decrease (in the norm of the residual

function) of β
16M2L

, as long as ‖r(yk)‖ > 1/2M2L. This establishes that we need at

most
16‖r(y0)‖M2L

β
,

iterations until we obtain ‖r(yk)‖ ≤ 1/2M2L.

Convergence Rate for Local Convergence Phase

In this section, we show that when ‖r(yk)‖ ≤ 1/2M2L, the inexact backtracking

stepsize rule selects a full step αk = 1 and the norm of the residual function ‖r(yk)‖
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converges quadratically within an error neighborhood, which is a function of the

parameters of the problem (as given in Assumption 5) and the error level in the

constrained Newton direction.

Proposition 3. Let Assumption 5 hold. Let {yk} be a sequence generated by the

method (3.6) when the stepsize sequence {αk} is selected using the inexact backtrack-

ing stepsize rule [cf. Eq. (3.13)]. Assume that there exists some k such that

‖r(yk)‖ ≤
1

2M2L
.

Then, the inexact backtracking stepsize rule selects αk = 1. We further assume that

for some δ ∈ (0, 1/2),

B +M2LB2 ≤ δ

4M2L
,

where B is the constant defined in Eq. (3.14). Then, we have

‖r(yk+m)‖ ≤ 1

22mM2L
+B +

δ

M2L

(22m−1 − 1)

22m (3.27)

for all m > 0. As a particular consequence, we obtain

lim sup
m→∞

‖r(ym)‖ ≤ B +
δ

2M2L
.

Proof. We first show that if ‖r(yk)‖ ≤ 1
2M2L

for some k > 0, then the inexact back-

tracking stepsize rule selects αk = 1. Replacing αk = 1 in the basic relation of

Proposition 3.12 and using the definition of the constant B, we obtain

‖r(yk+1)‖ ≤ M2L‖r(yk)‖2 +B

≤ 1

2
‖r(yk)‖+B

≤ (1− σ)‖r(yk)‖+B,

where to get the last inequality, we used the fact that the constant σ used in the

inexact backtracking stepsize rule satisfies σ ∈ (0, 1/2). Using the condition on nk
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[cf. Eq. (3.12)], this yields

nk+1 ≤ (1− σ)nk +B + γ,

showing that the steplength αk = 1 satisfies condition (3.13) in the inexact back-

tracking stepsize rule.

We next show Eq. (3.27) using induction on the iteration m. Using αk = 1 in the

basic relation of Proposition 3.12, we obtain

‖r(yk+1)‖ ≤ 1

2
‖r(yk)‖+B ≤ 1

4M2L
+B,

where the second inequality follows from the assumption ‖r(yk)‖ ≤ 1
2M2L

. This

establishes relation (3.27) for m = 1.

We next assume that (3.27) holds for some m > 0, and show that it also holds for

m+ 1. Eq. (3.27) implies that

‖r(yk+m)‖ ≤ 1

4M2L
+B +

δ

4M2L
.

Using the assumption B +M2LB2 ≤ δ
4M2L

, this yields

‖r(yk+m)‖ ≤ 1 + 2δ

4M2L
<

1

2M2L
,

where the strict inequality follows from δ ∈ (0, 1/2). Hence, the inexact backtracking

stepsize rule selects αk+m = 1. Using αk+m = 1 in the basic relation, we obtain

M2L‖r(yk+m+1)‖ ≤
(
M2L‖r(yk+m)‖

)2

+B.

Using Eq. (3.27), this implies that
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M2L‖r(yk+m+1)‖

≤
(

1

22m +M2LB +
δ(22m−1 − 1)

22m

)2

+M2LB

=
1

22m+1 +
M2LB

22m−1
+ δ

22m−1 − 1

22m+1−1

+M2L

(
B +

δ

M2L

(22m−1 − 1)

22m

)2

+M2LB.

Using algebraic manipulations and the assumption B +M2LB2 ≤ δ
4M2L

, this yields

‖r(yk+m+1)‖ ≤ 1

22m+1M2L
+B +

δ

M2L

(22m+1−1 − 1)

22m+1 ,

completing the induction and therefore the proof of relation (3.27). Taking the limit

superior in Eq. (3.27) establishes the final result. Q.E.D.

3.4 Simulation Results

Our simulation results demonstrate that the decentralized Newton significantly out-

performs the dual subgradient method algorithm in terms of runtime. Simulations

were conducted as follows: Network flow problems with conservation constraints and

the cost function Φ(x) =
∑E

e=1 φe(x
e) where φe(x

e) = 1−
√

1− (xe)2 3 were generated

on Erdös-Rényi random graphs with n = 10, 20, 80, and 160 nodes and an expected

node degree, np = 5. We limit the simulations to optimization problems which are

well behaved in the sense that the Hessian matrix remains well conditioned, defined

as λmax

λmin
≤ 200. For this subclass of problem, the runtime of the Newton’s method

algorithm is significantly less than the subgradient method for all trials. Note that

the stopping criterion is also tested in a distributed manner for both algorithms.

In any particular experiment the Newton’s method algorithm discovers the feasible

direction in one iteration and proceeds to find the optimal solution in two to four

additional iterations. One such experiment is shown in Figure 3-1. A sample runtime

distribution for 150 trials is presented in Figure 3-2. The fact that of course Newton’s

3the cost function is motivated by the Kuramoto model of coupled nonlinear oscillators [23].
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Figure 3-1: Sample convergence trajectory for a random graph with 80 nodes and
mean node degree 5.

method outperform the subgradient scheme is not surprising. Perhaps the surprising

fact is that Newton’s method outperforms subgradient scheme, despite the fact the

computation of the dual Newton step is based on an iterative scheme.

On average the Newton’s method terminates in less than half of the subgradient

runtime and exhibits a tighter variance. This is a representative sample with respect

to varying the number of nodes. As shown in Figure 3-3, the Newton’s method algo-

rithm completes in significantly less time on average for all of the graphs evaluated.

We also tested the performance of the proposed method on graphs with different

connectivity properties. In particular, we considered a complete (fully connected)

graph and a sparse graph. Figures 3-4 and 3-5 compare the performance of the sub-

gradient scheme with the Newton method. The Newton method outperforms the

subgradient scheme in both cases. As expected, the performance gains are more sig-

nificant for the complete graph since the dual Newton step can be computed efficiently

on graphs with large spectral gap.
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Figure 3-2: Runtime Histogram, 160 node graphs with mean node degree 5

Figure 3-3: Average Runtime, 150 samples each
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Figure 3-4: Sample convergence trajectory for a complete graph

Figure 3-5: Sample convergence trajectory for a sparse graph
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3.5 Conclusions

This chapter develops a distributed Newton-type method for solving network flow

cost minimization problems that can achieve the superlinear convergence rate within

some error neighborhood. We show that due to the sparsity structure of the incidence

matrix of a network, the computation of the dual Newton step can be performed

using iterative scheme in a distributed way. This enables using distributed consensus

schemes to compute the dual Newton direction. We show that even when the Newton

direction and stepsize are computed with some error, the method achieves superlinear

convergence rate to an error neighborhood. Our simulation experiments on different

graphs suggested the superiority of the proposed Newton scheme to standard dual

subgradient methods. For future works, we believe new results in [16] will enable us

to solve the dual Newton step using modified PageRank algorithms in a more scalable

fashion [15].
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Chapter 4

Conclusions

This thesis develops and analyzes Newton-type distributed algorithms for two par-

ticular network resource allocation problems: Network Utility Maximization (NUM)

problems, and network flow cost minimization problems. The existing methods for

both problems rely on dual decomposition and subgradient methods, which is scalable

but slow in convergence. Our algorithms uses consensus-based schemes, are both fast

and can be implemented in a distributed way. For both problems we show even when

the Newton direction and stepsize are computed within some error (due to finite trun-

cation of the iterative schemes), the resulting objective function value still converges

superlinearly to an explicitly characterized error neighborhood. We provide simula-

tion results for both problems to reflect significant convergence speed improvements

over the existing methods. In particular, even for relatively small networks, our al-

gorithms improve dramatically in the runtime over existing distributed ones, without

significant increase in the information exchange overhead. For larger networks, this

improvement is expected to scale with the size and be more striking.

Separately, for the NUM problem, we use novel matrix splitting techniques, so that

both primal and dual updates for the Newton step can be computed using iterative

schemes in a decentralized manner with limited information exchange. Specifically,

the information exchange in the new algorithm is comparable with that of the existing

algorithms. We utilize properties of self-concordant utility functions, because due to

the inequality constraint structure and usage of barrier functions, Lipschitz-based
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results cannot be applied.

For the network flow optimization problem, the key component of our method is

to represent the dual Newton direction as the limit of an iterative procedure involving

the graph Laplacian, which can be implemented based only on local information. We

are able to use Liptschitz-based analysis in this problem, due to the favorable equality

constraint structure.

Future work includes the analysis of the relationship between the rate of con-

verge and the underlying topology. Our simulation result from Section 2.6 suggests

some correlation in the performance across the 3 methods, i.e. subgradient method,

diagonal scaled Newton-type method and our distributed Newton algorithm, which

illuminates the possible relation between the algorithms and the network topology.

This relation can potentially be universal for a broader class of algorithms.
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