
Distributed Alternating Direction Method of Multipliers∗

Ermin Wei† and Asuman Ozdaglar†

Abstract— We consider a network of agents that are coop-
eratively solving a global unconstrained optimization problem,
where the objective function is the sum of privately known
local objective functions of the agents. Recent literature on dis-
tributed optimization methods for solving this problem focused
on subgradient based methods, which typically converge at the
rate O

(
1√
k

)
, where k is the number of iterations. In this paper,

we introduce a new distributed optimization algorithm based on
Alternating Direction Method of Multipliers (ADMM), which
is a classical method for sequentially decomposing optimization
problems with coupled constraints. We show that this algorithm
converges at the rate O

(
1
k

)
.

I. INTRODUCTION

Some of the problems in machine learning and statistical
inference, LASSO (least-absolute shrinkage and selection
operator) for instance, can be characterized by a network of
agents, where each of the agents is associated with a local
cost function and the system objective is to minimize the
sum of all local costs. The local cost functions are often
determined by a large private data set, which makes passing
information regarding the local cost function very difficult.
These problems motivated research interest in developing
distributed method for solving optimization problems [4],
[7], [12], [13], [15], [18], [19].

There are two general types of distributed algorithms.
The first type is (sub)gradient based, where at each step a
(sub)gradient related step is taken, followed by averaging
with neighbors. The computation at each step can be very
inexpensive and lead to distributed implementations [4], [9],
[8], [11], [13], [14]. The best known rate of convergence for
subgradient based distributed methods is O(1√

k
). The second

type of distributed algorithm is for solving constrained
problems and it relies on dual methods. In these methods,
at each step for a fixed dual variable, the primal variables
are solved to minimize some Lagrangian related function,
then the dual variables are updated accordingly [3], [6], [7],
[17]. This type of methods is preferred when each agent
can solve the local optimization problem efficiently. One of
the well known method of this kind is the Alternating Di-
rection Method of Multipliers (ADMM), which decomposes
the original problem into two sub-problems, sequentially
solves them and updates the dual variables associated with
a coupling constraint at each iteration. The best known rate
of convergence for the classic ADMM algorithm is O(1

k).

This work was supported by National Science Foundation under Career
grant DMI-0545910 and AFOSR MURI FA9550-09-1-0538.

†Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology

The drawback of the standard ADMM method is that it
partitions the problem into only two subproblems and thus
cannot be implemented in a distributed way for a larger
network. In recent works [5], [16] and [10], distributed
ADMM algorithms tailored for specific machine learning
problems and parameter estimation in wireless sensor net-
works have been proposed without convergence rate analysis.
In this work, we propose a distributed ADMM algorithm for
an unconstrained general optimization problem over an N -
agent network. We first transform the problem into one with
constraints and then distribute the problem to N agents. Each
agent implements the algorithm using local cost functions
and information obtained via communication with neighbors.
We also establish that the proposed algorithm has O(1

k) rate
of convergence.

In the distributed ADMM algorithm, the updates of the
agents are done in a sequential order.1 In this sense, our
proposed method is closely related to incremental distributed
algorithms studied in the literature [2], [15], where each
agent takes turn to update the system wide decision vari-
able and passes the updated variable to the network. The
difference here is that each agent maintains and updates its
local estimate. The analysis in this paper is related to [3] and
[6]. In both of the works, convergence analysis are done to
the standard ADMM algorithm. One of our contributions is
to extend the analysis to the distributed ADMM algorithm
with N agents.

The rest of the paper is organized as follows. Section
II defines the problem formulation and equivalent
transformation. In Section III, we review the standard
ADMM algorithm and develop the distributed ADMM
method. In Section IV, we present the convergence analysis
of the distributed ADMM algorithm. Section V contains our
concluding remarks.

Basic Notation and Notions:
A vector is viewed as a column vector, unless clearly stated

otherwise. For a matrix A, we write Aij to denote the matrix
entry in the ith row and jth column, and [A]i to denote the
ith column of the matrix A, and [A]j to denote the jth row of
the matrix A. For a vector x, xi denotes the ith component
of the vector. We use x′ and A′ to denote the transpose
of a vector x and a matrix A respectively. For a real-valued
function f : X → R, where X is a subset of Rn, the gradient

1In the working paper [20], we relax this assumption and the update is
determined randomly in a distributed way.

vector of f at x in X are denoted by∇f(x). We use standard
Euclidean norm unless otherwise noted, i.e., for a vector x
in Rn, ||x|| =

(∑n
i=1 x

2
i

) 1
2 .

II. FORMULATION

We consider a network, represented by an undirected
connected simple graph with N nodes and M edges, G =
{V,E}, where the set V denotes the set of nodes and the
set E denotes the set of undirected edges. The nodes can
be considered as agents in many applications, we will use
the two terms interchangeably. We assume that nodes are
ordered from 1 to N and use eij to denote the edge between
nodes i and j with i < j.

Each node is associated with a cost function fi : R →
R, which is not necessarily differentiable. The nodes in the
network are collectively solving the following unconstrained
optimization problem

min
y∈R

N∑
i=1

fi(y). (1)

We assume that each fi is locally known by agent i only.2

We next consider a reformulation of problem (1) which
will be used in the development of our distributed algorithm.
In particular, we will introduce a separate decision variable
xi for each of the nodes and impose the constraint xi = xj
for all pairs (i, j) with eij in set E, which guarantees that the
node decision variables are equal, i.e., xi = x̄ for all nodes i
for some x̄. We write the transformed problem compactly by
introducing the edge-node incidence matrix, which represents
the network topology. The edge-node incidence matrix of
network G, denoted by A, has dimension M × N . Each
row of matrix A corresponds to an edge in the graph and
each column represent an agent. The row corresponding to
the edge eij , which we denote by [A]eij , has 1 in the ith

column, −1 in the jth column and 0 in the other columns,
i.e., 3

[A]
eij
k =

 1 if k = i,
−1 if k = j,
0 otherwise.

For instance, the edge-node incidence matrix for the network
in Figure 1 is given by

A =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
1 0 0 −1 0
0 1 0 0 −1
0 0 1 0 −1

 .

2The analysis in this paper can be extended to the case when the fi
are multi-dimensional functions. To highlight the main ideas, we restrict
attention to the case where the fi are one-dimensional here.

3We adopt the convention that the smaller column has entry 1 and the
larger one has −1. The analysis holds for other consistent way of writing
the edge-node incidence matrix, for example, with −1 at ith column and
1 at jth column.

1

2

5

4

3

Fig. 1. Sample network topology.

With the edge-node incidence matrix, we can now rewrite
problem (1) as

min
x

N∑
i=1

fi(xi) (2)

s.t. Ax = 0,

where x is the vector [x1, x2, . . . , xN]′. The constraint Ax =
0 is a compact way of writing xi = xj for nodes i and j
which are connected by an edge. For the rest of the paper,
we will focus on solving problem (2). We denote the optimal
value of problem (2) by F ∗.

For notational convenience, we define the function F :
RN → R as

F (x) =

N∑
i=1

fi(xi), (3)

where x = [x1 . . . , xN]′. We denote by L : RN × RM → R
the Lagrangian function given by

L(x, λ) = F (x)− λ′Ax, (4)

where λ in RM is the Lagrange multiplier vector associated
with the constraint Ax = 0.

We impose the following standard assumptions on the
optimization problem.

Assumption 1: (Convexity) Each of the cost function fi :
R→ R is closed, proper and strictly convex.

Assumption 2: (Existence of a Saddle Point) The La-
grangian L(x, λ) = F (x) − λ′Ax has a saddle point, i.e.,
there exists a solution, multiplier pair (x∗, λ∗) with

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) (5)

for all x in RN and λ in RM .
Assumption 1 implies that F (x) [cf. Eq. (3)] and therefore

L(x, λ∗) is strictly convex in x. This assumption will be
used in our convergence analysis. Assumption 2 implies that
problem (2) has an optimal solution, which we denote by
x∗.

III. ALGORITHM

In this section, we develop our distributed optimization
algorithm, which is a primal dual algorithm motivated by

the alternating direction method of multipliers (ADMM) (see
[3] for a recent survey on ADMM). The standard ADMM
algorithm involves decomposing the decision vector into
subvectors, updating each subvector sequentially (using the
most recent value for the rest of the subvectors) by minimiz-
ing an augmented Lagrangian function, and finally updating
the Lagrange multiplier corresponding to the constraint that
couples the subvectors using a dual subgradient method.
The ADMM algorithm has typically been used for solving
problems in which the decision variable is decomposed into
two subvectors, which are coupled with a linear constraint.
Hence, it can be viewed as solving a 2-agent special case of
problem (2). Here we extend the formulation to N subvectors
(each corresponding to an agent) and develop an ADMM
that can be implemented in a distributed manner over the
connected network in which the agents are situated. We first
present the standard ADMM formulation and algorithm and
then present our distributed ADMM algorithm.

A. Preliminaries: Standard ADMM Algorithm

The standard ADMM algorithm solves the following prob-
lem4

min
y,z

f(y) + g(z) (6)

s.t. Fy +Dz = c,

for variables y in Rn, z in Rm, matrices F in Rp×n, D
in Rp×m and vector c in Rp. We consider the augmented
Lagrangian function given by

Lρ(y, z, µ) = f(y) + g(z)− µ′(Fy +Dz − c) (7)

+
ρ

2
||Fy +Dz − c||2 ,

where µ is the Lagrange multiplier corresponding to the
constraint Fy + Dz = c and ρ is a positive scalar. The
ADMM algorithm updates the primal variables y and z and
the Lagrange multiplier µ as follows: Starting from some
initial vector (y0, x0, µ0)5, at iteration k ≥ 0, the variables
are updated as

yk+1 = argmin
y

Lρ(y, z
k, µk), (8)

zk+1 = argmin
z

Lρ(y
k+1, z, µk), (9)

µk+1 = µk − ρ(Fyk+1 +Dzk+1 − c). (10)

Note that stepsize used in updating the Lagrange multiplier
vector is the same as the augmented Lagrangian function
parameter ρ.

The ADMM algorithm has an equivalent representation,
which we will use to develop our distributed ADMM al-
gorithm. The equivalent representation is based on the fol-
lowing transformation. The last two terms in the augmented
Lagrangian function [cf. Eq. (7)] satisfy µ′(Fy+Dz− c) +

4This subsection follows closely the development in [3]
5We use superscripts to denote the iteration number

ρ
2 ||Fy +Dz − c||2 = ρ

2

∣∣∣∣∣∣ 1ρµ+ Fy +Dz − c
∣∣∣∣∣∣2− 1

2ρ ||µ||
2,

where we used the identity 2a′b+ ||b||2 = ||a+ b||2 − ||a||2
replacing a = µ and b = Fy+Dz−c. Therefore, by ignoring
terms which are independent of the minimization variables,
updates (8) and (9) can be expressed as

yk+1 = argmin
y

f(y) +
ρ

2

∣∣∣∣∣∣∣∣Fy +Dzk − c+
1

ρ
µk
∣∣∣∣∣∣∣∣2 ,

(11)

zk+1 = argmin
z

g(z) +
ρ

2

∣∣∣∣∣∣∣∣Fyk+1 +Dz − c+
1

ρ
µk
∣∣∣∣∣∣∣∣2 .

(12)

We will now use updates (11), (12) and (10) to develop the
distributed ADMM algorithm.

B. Distributed ADMM Algorithm

In the distributed ADMM algorithm, we associate a dual
variable λij with the constraint xi = xj on edge eij , and
denote by λ the vector of dual variables, i.e., [λij]ij,eij∈E .
Each agent i keeps a local decision estimate xi in R and a
vector of dual variables λki with k < i. We say agent i owns
the dual variable λki for k < i and agent i updates the dual
variable.

To facilitate the development of our algorithm, we in-
troduce the following notation. We partition the neighbors
of a node i into two sets, which we call predecessors and
successors of node i, denoted by P (i) and S(i). The set
of the predecessors of i consists of neighbors whose index
is smaller than i, i.e., P (i) = {j | eji ∈ E, j < i}, and
successors of i are the neighbors with index larger than i,
i.e., S(i) = {j | eij ∈ E, i < j}. Since the graph G is a
simple graph, i.e., no edge of the type eii, the set P (i)∪S(i)
includes all neighbors of node i.

Following the development of ADMM described in the
previous section, we use an augmented Lagrangian approach
to solve problem (2) and use scalar β > 0 as the penalty
parameter. We note that each row of the constraint Ax = 0
corresponds to xi−xj = 0 for some i < j with eij in the set
E and the distributed ADMM algorithm for solving problem
(2) is given as follows:

A Initialization: choose some arbitrary x0i in R for i =
1, . . . , N , which are not necessarily all equal.

B For k ≥ 0,
a Each agent i updates its estimate xki in a sequential

order with

xk+1
i = argmin

xi

fi(xi) (13)

+
β

2

∑
j∈P (i)

∣∣∣∣∣∣∣∣xk+1
j − xi −

1

β
λkji

∣∣∣∣∣∣∣∣2

+
β

2

∑
j∈S(i)

∣∣∣∣∣∣∣∣xi − xkj − 1

β
λkij

∣∣∣∣∣∣∣∣2

xk+11

xk+12

xk5

xk4

xk3

Fig. 2. Sample algorithm evolution.

b Each agent updates λji that he owns, for all j in
P (i),

λk+1
ji = λkji − β(xk+1

j − xk+1
i). (14)

Remarks: We assume that the nodes are ordered. In the
above algorithm, at each iteration, the agents update in a
sequential way, i.e., at iteration k agent i updates before
agent j if i < j. In [20] we relax this assumption and the
node update is determined randomly in a distributed manner.

We assume that as soon as the variables xki and λkji are
available to agent i, all of its neighbors can also access the
data by local information exchange. The above algorithm is
well defined, since the step B.a and B.b are implemented
in a sequential way, the value of xk+1

j for j in P (i) and
xkj for j in S(i) are available for agent i during its turn to
update. The algorithm can be implemented in a distributed
way, since the only communication (of scalar information xkj
and λkji) is with immediate neighbors at each step.

This method is related to incremental methods, where each
of the agents take turn to update the system wide decision
variable and passes the updated variable to the network. The
major difference here is that each agent has a local copy of
the decision variable, which is not publicly accessible by all
the other agents.

For illustration purposes, in Figure 2, we show a snapshot
of the distributed ADMM algorithm applied to the network
in Figure 1. In the figure, nodes 1 and 2 have completed
the (k + 1)th updates, and node 3 (highlighted in yellow)
is the next one to update. The predecessor of node 3, i.e.,
P (3) = {2}, is colored in blue and the successors of node
3, i.e., S(3) = {4, 5}, are colored in red. Node 3 will use
xk+1
2 , xk4 and xk5 to implement update steps B.a and B.b.

IV. CONVERGENCE ANALYSIS

In this section, we present our analysis of the convergence
properties of the distributed ADMM algorithm presented
in the last section and show that it has a O(1

k) rate of
convergence, where we count the updates (13) and (14) for
all i as one iteration. The analysis here is inspired by the
work in [6] and [3], both of which analyzed the standard

ADMM algorithm applicable to the special case of a 2-
node network. We will first introduce some notation for
representational convenience, and derive three lemmas, all
of which will then be used to establish the convergence
properties of the algorithm.

We denote by B, a matrix B in RM ×RN given by B =
min{0, A}, where the maximization is taken element-wise.
For example, the B matrix for the network given in Figure
1 has the following form,

B =


0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 −1

 .

From the definition of matrix B, it follows that each row
of matrix B corresponds to one edge (i, j) with i < j and
consists of exactly one entry of −1 at position j. We denote
by [B]eij the row of B corresponding to the edge eij .

Our analysis of the convergence relies on a key relation
derived from the optimality of xki at each iteration. This is
established in the following lemma.

Lemma 4.1: Let {xk, λk} be the iterates generated by our
distributed ADMM algorithm for problem (2), with vector
xk = [xk1 , x

k
2 , . . . , x

k
N]′ and vector λk = [λkij]ij,eij∈E . Then

the following relation holds for all k,

F (x)− F (xk+1) + (x− xk+1)′
(
−A′λk+1 (15)

−βA′B(xk+1 − xk) + βB′B(xk+1 − xk)
)
≥ 0,

for any x in RN , where matrix A is the edge-node incidence
matrix of the network and matrix B = min{0, A}.

Proof: We denote by gi : R→ R the function

gki (xi) =
β

2

∑
j∈P (i)

∣∣∣∣∣∣∣∣xk+1
j − xi −

1

β
λkji

∣∣∣∣∣∣∣∣2 (16)

+
β

2

∑
j∈S(i)

∣∣∣∣∣∣∣∣xi − xkj − 1

β
λkij

∣∣∣∣∣∣∣∣2 ,
and from update (13), we have xk+1

i is the optimizer of
gki +fi. The optimality implies there exists some subgradient
h(xk+1

i) in ∂fi(xk+1
i) such that h(xk+1

i) +∇gki (xk+1
i) = 0

[1], and thus (xi − xk+1
i)′[h(xk+1

i) + ∇gki (xk+1
i)] = 0 for

all xi in R. By definition of subgadient, we have

fi(xi) ≥ fi(xk+1
i) + (x− xk+1

i)′h(xk+1
i).

The above two relations yield

fi(xi)− fi(xk+1
i) + (x− xk+1

i)′∇gki (xk+1
i) ≥ 0.

We then substitute ∇gki using the definition
of function g [cf. Eq. (16)] into the above
relation and obtain, fi(xi) − fi(x

k+1
i) +

(xi − xk+1
i)′

(
−β
∑
j∈P (i)(x

k+1
j − xk+1

i − 1
βλ

k
ji)

+β
∑
j∈S(i)(x

k+1
i − xkj − 1

βλ
k
ij)
)
≥ 0. Using relation (14),

we have fi(xi) − fi(xk+1
i) + (xi − xk+1

i)′
(∑

j∈P (i) λ
k+1
ji

+
∑
j∈S(i)−λ

k+1
ij +

∑
j∈S(i) β(xk+1

j − xkj)
)
≥ 0. By

using the definition of the matrix A, we can rewrite
the preceding inequality as fi(xi) − fi(x

k+1
i) + (xi −

xk+1
i)′

(
−[A]′iλ

k+1 +
∑
j∈S(i) β(xk+1

j − xkj)
)

≥ 0.

We then sum the above relation over i = 1, . . . , N ,
and obtain

∑N
i=1 fi(xi) −

∑N
i=1 fi(x

k
i) +

∑N
i=1(xi −

xk+1
i)′

(
−[A]′iλ

k+1 +
∑
j∈S(i) β(−[B]eij)(xk+1 − xk)

)
≥

0. By using the definition of matrices A and B, we can
rewrite the terms compactly in matrix representation as
−
∑N
i=1(xi − xk+1

i)′[A]′iλ
k+1 = −(x − xk+1)′A′λk+1,

and
∑N
i=1(xi − xk+1

i)′
(∑

j∈S(i) β(xk+1
j − xkj)

)
=

β(x− xk+1)′(−A+B)′B(xk+1− xk). The preceding three
relations can be combined to establish the desired relation.

We next relate the terms on the left hand side of relation
(15) to a combination of vector norms. This is important
since we can bound each of the norm term as nonnegative,
which will then be used to establish convergence properties
by forming a telescoping series.

Lemma 4.2: Let {xk, λk} be the iterates generated by our
distributed ADMM algorithm for problem (2), with vector
xk = [xk1 , x

k
2 , . . . , x

k
N]′ and vector λk = [λkij]ij,eij∈E . Let

matrix A be the edge-node incidence matrix of the network
and matrix B satisfy B = min{0, A}. Then the following
relation holds for all k,

2(xk+1)′A′(λk+1 − λ∗) + 2β(xk+1)′A′B(xk+1 − xk)

+ 2β(x∗ − xk+1)′B′B(xk+1 − xk) =

1

β

(∣∣∣∣λk − λ∗∣∣∣∣2 − ∣∣∣∣λk+1 − λ∗
∣∣∣∣2)

+ β
(∣∣∣∣B(xk − x∗)

∣∣∣∣2 − ∣∣∣∣B(xk+1 − x∗)
∣∣∣∣2)

− β
∣∣∣∣B(xk+1 − xk)−Axk+1

∣∣∣∣2 . (17)
Proof: The proof relies on rewriting the terms on the

left hand side of (17), using algebraic manipulation and
techniques similar to the appendix of [3]. Most of the manip-
ulation are based on two observations: λk+1 = λk−βAxk+1

and ||a+ b||2 = ||a||2 + ||b||2 + 2a′b for arbitrary vectors a
and b. Due to space constraints, we omit the proof here,
interested readers can find the full proof in [20].

We now present a simple lemma based on saddle point
properties of the Lagrangian function.

Lemma 4.3: Let (x∗, λ∗) be a saddle point of the La-
grangian function defined as in Eq. (4). Then

Ax∗ = 0 (18)
Proof: From the definition of a saddle point [cf. Eq.

(5)] we have for any variable, multiplier pair (x, λ), where
x is in RN and λ is in RM , the following relation holds

F (x∗)− λ′Ax∗ ≤ F (x∗)− (λ∗)′Ax∗.

The above relation holds for all λ and thus Ax∗ = 0.

With the three preceding lemmas, we can now establish the
main result of the paper, i.e., the O(1

k) rate of convergence
of the distributed ADMM algorithm.

Theorem 4.4: Let {xk, λk} be the iterates generated by
our distributed ADMM algorithm for problem (2), with
vector xk = [xk1 , x

k
2 , . . . , x

k
N]′ and vector λk = [λkij]ij,eij∈E .

Let matrix A be the edge-node incidence matrix of the
network and matrix B satisfy B = min{0, A}. Let yk =
1
k

∑k−1
s=0 x

s be the ergodic average of xk up to time t, then
the following relation holds for all t,

0 ≤ L(yk, λ∗)−L(x∗, λ∗) ≤ (19)
1

k

(
1

2β

∣∣∣∣λ0 − λ∗∣∣∣∣2 +
β

2

∣∣∣∣B(x0 − x∗)
∣∣∣∣2) .

Proof: The first inequality follows immediately from
definition of the saddle point of the Lagrangian function [cf.
relation (5)].

We now prove the second inequality in Eq. (19). By setting
x = x∗ in relation (15) from Lemma 4.1, we obtain for all
iteration s,

F (x∗)− F (xs+1) + (x∗ − xs+1)′
(
−A′λs+1

−βA′B(xs+1 − xs) + βB′B(xs+1 − xs)
)
≥ 0.

Due to feasibility of the optimal solution x∗, we have
Ax∗ = 0, and the above relation is equivalent to

F (x∗)− F (xs+1) + (xs+1)′A′λs+1

+
(
(xs+1)′A′βB + (x∗ − xs+1)′βB′B

)
(xs+1 − xs) ≥ 0.

By adding and subtracting the term (λ∗)′Axs+1 from the
right hand side of the preceding relation, we have

F (x∗)− F (xs+1) + (xs+1)′A′λ∗

(xs+1)′A′(λs+1 − λ∗) + β(xs+1)′A′B(xs+1 − xs)
+ β(x∗ − xs+1)′B′B(xs+1 − xs) ≥ 0,

where we used the identity a′ = a for a scalar a. We now use
Lemma 4.2 to equivalently express the preceding inequality
as,

F (x∗)− F (xs+1) + (λ∗)′Axs+1 +
1

2β
||λs − λ∗||2

+
β

2
||B(xs − x∗)||2 ≥ 1

2β

∣∣∣∣λs+1 − λ∗
∣∣∣∣2

+
β

2

∣∣∣∣B(xs+1 − x∗)
∣∣∣∣2

+
β

2

∣∣∣∣B(xs+1 − xs)−Axs+1
∣∣∣∣2

which holds true for all s. We sum the preceding inequality
over s = 0, 1, . . . , k − 1 and after telescoping cancelation,

we obtain

kF (x∗)−
k−1∑
s=0

F (xs+1) + (λ∗)′A

k−1∑
s=0

xs+1

+
1

2β

∣∣∣∣λ0 − λ∗∣∣∣∣2 +
β

2

∣∣∣∣B(x0 − x∗)
∣∣∣∣2

≥ 1

2β

∣∣∣∣λk − λ∗∣∣∣∣2 +
β

2

∣∣∣∣B(xk − x∗)
∣∣∣∣2

+

k−1∑
s=0

β

2

∣∣∣∣B(xs+1 − xs)−Axs+1
∣∣∣∣2 ≥ 0.

Due to the convexity of function F , we have
∑k−1
s=0 F (xs) ≥

kF (yk), and thus using the definition for yk, we have

kF (x∗)− kF (yk) + (λ∗)′Ayk

+
1

2β

∣∣∣∣λ0 − λ∗∣∣∣∣2 +
β

2

∣∣∣∣B(x0 − x∗)
∣∣∣∣2 ≥ 0.

By multiplying both sides by −k, we have established the
desired relation.

F (yk)− (λ∗)′Ayk − F (x∗) ≤
1

t

(
1

2β

∣∣∣∣λ0 − λ∗∣∣∣∣2 +
β

2

∣∣∣∣B(x0 − x∗)
∣∣∣∣2) .

The above relation combined with the definition of the
Lagrangian function [cf. Eq. (4)] and Eq. (18) yield the
desired relation.

Due to strict convexity of the function F [cf. Assumption
1] and linearity of the term λ∗Ax, we have the function
L(x, λ∗) is strictly convex in x. Therefore we conclude that
the function L(x, λ∗) has a unique minimizer, i.e., x∗ in
Assumption 2. Hence Theorem 4.4 guarantees that the value
of the Lagrangian function obtained by the ergodic average
sequence yk, i.e., L(yk, λ∗), converges to L(x∗, λ∗) = F ∗

at the rate of O(1
k). In practice, one might implement the

algorithm with one additional variable yki to keep the ergodic
average of xki to achieve the O(1

k) rate of convergence.6

V. CONCLUSIONS

In this paper, we develop a distributed ADMM algorithm
for an N -agent network, where each agent takes turn to up-
date its local variable. We show that the proposed algorithm
achieves a rate of O(1

k) rate of convergence, which is the best
known rate for dual methods based distributed algorithms. In
ongoing work, we are extending this analysis to the algorithm
when agents update asynchronously (in some randomized
order) and for constrained optimization problems [20].

REFERENCES

[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[2] D. P. Bertsekas. Incremental Gradient, Subgradient, and Proximal

Methods for Convex Optimization: A Survey. Laboratory for Infor-
mation and Decision Systems Report LIDS-P-2848, 2010.

6Note that in each iteration, all agents 1, 2, . . . , N updates. Hence large
systems will have slower convergence speeds.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers, volume 3(1). Foundations and Trends in
Machine Learning, 2010.

[4] J. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for
distributed optimization: Convergence and network scaling. to appear
in IEEE Transactions on Automatic Control, 2012.

[5] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based
distributed support vector machines. Journal of Machine Learning
Research, 11:1663–1707, 2010.

[6] B. He and X. Yuan. On the O(1/t) convergence rate of alternating
direction method. Optimization Online, 2011.

[7] D. Jakovetic, J. Xavier, and J. M. F. Moura. Cooperative convex
optimization in networked systems: Augmented Lagrangian algorithms
with directed gossip communication. IEEE Transactions on Signal
Processing, 59(8):3889–3902, 2011.

[8] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson.
Subgradient methods and consensus algorithms for solving separable
distributed control problems. Proceedings of the 47th IEEE Confer-
ence on Decision and Control, pages 4185–4190, 2008.

[9] I. Lobel and A. Ozdaglar. Convergence analysis of distributed subgra-
dient methods over random networks. Proceedings of 46th Annual
Allerton Conference on Communication, Control, and Computing,
pages 353–360, 2008.

[10] G. Mateos and G. B. Giannakis. Distributed recursive least-squares:
Stability and performance analysis. IEEE Transactions on Signal
Processing, 60(7):3740 –3754, 2012.

[11] A. Nedic, Ozdaglar A., and P. Parrilo. Constrained consensus and
optimization in multi-agent networks. IEEE Transactions on Automatic
Control, 55(4):922–938, 2010.

[12] A. Nedic and A. Ozdaglar. Convex Optimization in Signal Process-
ing and Communications, chapter Cooperative distributed multi-agent
optimization. Eds., Eldar, Y. and Palomar, D., Cambridge University
Press, 2008.

[13] A. Nedic and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.

[14] S. S. Ram, A. Nedich, and V. V. Veeravalli. Asynchronous gossip algo-
rithms for stochastic optimization. Proceedings of IEEE Interanational
Conference on Decision and Control, pages 3581–3586, 2009.

[15] S. S. Ram, A. Nedich, and V. V. Veeravalli. Incremental stochastic
subgradient algorithms for convex optimization. SIAM Journal on
Optimization, 20(2):691–717, 2009.

[16] I. D. Schizas, R. Ribeiro, and G. B. Giannakis. Consensus in
Ad Hoc WSNs with Noisy Links - Part I: Distributed Estimation
of Deterministic Signals. IEEE Transactions on Singal Processing,
56:350–364, 2008.

[17] H. Terelius, U. Topcu, and M. Murray. Decentralized multi-agent opti-
mization via dual decomposition. World Congress of the International
Federation of Automatic Control (IFAC), 2011.

[18] K. Tsianos and M. Rabbat. Distributed consensus and optimization
under communication delays. to appear in Proceedings 49th Allerton
Conference on Communication, Control and Computing, 2011.

[19] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Com-
putation. PhD thesis, Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1984.

[20] E. Wei and A. Ozdaglar. Distributed Alternating Direction Method of
Multipliers. Working Paper, 2012.

