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Exemplar-based approaches for dynamic hand gesture recognition usually require a large collection of ges-
tures to achieve high-quality performance. Efficient visual representation of the motion patterns hence is
very important to offer a scalable solution for gesture recognition when the databases are large. In this
paper, we propose a new visual representation for hand motions based on the motion divergence fields,
which can be normalized to gray-scale images. Salient regions such as Maximum Stable Extremal Regions
(MSER) are then detected on the motion divergence maps. From each detected region, a local descriptor is
extracted to capture local motion patterns. We further leverage indexing techniques from image search
into gesture recognition. The extracted descriptors are indexed using a pre-trained vocabulary. A new gesture
sample accordingly can be efficiently matched with database gestures through a term frequency-inverse doc-
ument frequency (TF-IDF) weighting scheme. We have collected a hand gesture database with 10 categories
and 1050 video samples for performance evaluation and further applications. The proposed method achieves
higher recognition accuracy than other state-of-the-art motion and spatio-temporal features on this data-
base. Besides, the average recognition time of our method for each gesture sequence is only 34.53 ms.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Hand gestures are frequently used as intuitive and convenient ways
of communications in our daily life, and the recognition of handgestures
can bewidely applied in human computer interfaces, robot control, and
augmented reality, etc.. Hand gestures can be conceptually divided into
static gestures and dynamic gestures. Dynamic hand gestures usually
provide a rich communication channel because of the incorporation of
motion information, and are therefore more thoroughly investigated.

The approaches to dynamic hand gesture recognition can be catego-
rized into model-basedmethods and exemplar-basedmethods. Model-
based approaches include the Hidden Markov Model and its variants
[1–5], Finite State Machines [6,7], dynamic Bayesian Networks [8], and
topology-preserving self-organizing networks [9]. All these approaches
assume that the hand has been detected and its articulated motion is
tracked. Although they have delivered promising results, the robustness
of these approaches is dependent on the prior success of (frequently
challenging) hand detection and motion tracking. Furthermore, it is
both data intensive and computationally difficult to train these models
before they can be applied in recognition.
Shen).
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Various exemplar-based methods are therefore proposed to circum-
vent the difficulties ofmodel learning, by leveraging invariant visual rep-
resentations and direct matching of example gestures. Among those
visual representations, local spatio-temporal features [10–12] are the
most widely exploited, though most of them are used in human action
recognition. Other descriptors include motion trajectories [13], spatio-
temporal gradients [14] and global histograms of optical flow [15].

However, most of these methods try to directly match the exem-
plars, without offering a scalable solution for efficient matching when
the exemplar database is large. A few others have adopted the bag-of-
features framework with local spatio-temporal features for human ac-
tion recognition [16,11]. Though they use a learned SVM classifier to
perform recognition, it nevertheless could be incorporated with image
indexing technique for scalable action recognition. However, those
spatio-temporal features are not suitable in our hand gesture recogni-
tion scenario, as the durations of gestures are much shorter than
human activities so that only limited spatio-temporal features can be
extracted, and their effectiveness is accordingly degraded. Meanwhile,
the extraction of these features is generally slow, though some efforts
toward real-time extraction and recognition are being made [17,18].
Therefore, an efficient visual representation for real-time feature ex-
traction and scalable hand gesture matching over large exemplar data-
bases is still highly desirable.
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Fig. 1. The pipeline of the proposed method.
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Toward this end, we propose a novel visual representation of dy-
namic hand gestures based on the divergence field of the hand flow
motions. Given a gesture sequence, we extract the optical flow be-
tween any two consecutive frames. Their divergence fields are de-
rived and normalized to gray-scale images, which transforms
gestural motion patterns into spatial image patterns. Salient regions
are then detected from the divergence field using a Maximally Stable
Extremal Regions (MSER) [19,20] feature detector. A descriptor is
subsequently extracted from each detected region to characterize
the local motion patterns. The database gesture sequences with
their descriptors are indexed by a pre-trained hierarchical vocabular-
y. A new gesture sequence is then recognized by matching against the
database with a term frequency-inverse document frequency (TF-IDF)
scheme [21], which is scalable to large databases. The pipeline of
our method is illustrated in Fig. 1.

We have collected a sizable database of dynamic hand gestures
with 10 categories and 1050 samples for evaluation, which will be
shared with the research community for further study. In this data-
base, gestures are performed on a two-dimensional static back-
ground, with a camera directly above the hand. Therefore the hand
is the only moving object in the sequence. However, the background
can be arbitrary, allowing background clutter. Meanwhile, the ges-
tures can be performed with varying speed. The setup of the database
simulates scenarios in which users make hand gestures in front of a
camera sitting on a tabletop, which can be applied in human interac-
tions with mobile devices.

Based on this setup, our method focuses on recognizing the ges-
tural motions. Even if the gestures are performed with different
poses, different speed, and on different background, as long as the
motion patterns are the same, they are considered in the same cate-
gory. We compared our method with state-of-the-art global motion
descriptors and local spatio-temporal features on this database. Ex-
periments show that the proposed approach outperforms both of
them. The recognition rate of our method is 97.62%, with average rec-
ognition time 34.53 ms. In other words, our proposed approach pre-
sents not only a novel approach to motion pattern analysis, but also
a scalable framework for dynamic hand gesture recognition over
large databases.

This paper is a substantial extension of our conference paper [22].
Compared with [22], further details of our method are presented, and
more extensive performance evaluation is conducted. We also give a
more comprehensive literature review to introduce the background
of our method and make the paper more self-contained. We further
propose that our method can serve the purposes of gesture design.
Therefore, this paper provides a more comprehensive and systematic
report of our work. The rest of the paper is organized as follows:
Section 2 introduces and discusses the related work. Section 3
presents our gestural pattern extraction approach based on motion
divergence fields. Gesture indexing and matching is then discussed
in Section 4. Section 5 gives extensive performance evaluation to val-
idate the efficacy of the proposed method, and Section 6 draws the
conclusion.

2. Related work

A comprehensive overview of recent gesture recognition methods
can be found in [23]. Here we only introduce those model-based and
exemplar-based methods that are closely related to our work, as well
as the indexing techniques for scalable recognition.

The Hidden Markov Model (HMM) has been frequently used for
gesture recognition. In [1], dynamic feature vectors are transformed
to symbolic sequences by vector quantization, and subsequently
modeled by a discrete HMM. Marcel et al. [2] train an Input–output
HMM using EM, and apply it to recognize gestures from hand silhou-
ettes extracted by segmentation and tracking. Some recent improve-
ments over traditional HMM include the semantic network model
(SNM) [3], the non-parametric HMM [4], and the Hidden Conditional
Random Field [5]. These variants either reduce training efforts, or im-
prove classification accuracy.

The Finite State Machine (FSM) is another popular model [6,7].
Davis and Shah [6] use a FSM to model four phases of a gesture, in
which fingertips are detected to extract feature vectors. In [7], the
states of the FSM are determined by the positions of detected head
and hands. Besides these models, Suk et al. [8] propose to use dynam-
ic Bayesian Networks to represent the relationship among gesture
features based on motion tracking, and Flórez et al. [9] use the topol-
ogy of a self-organizing neural network and its dynamics to deter-
mine hand postures and gestures.

Earlier exemplar-based methods use common motion features
such as optical flows [14] and motion trajectories [13] as visual rep-
resentations for gesture recognition. Kirishima et al. [24] extract
Gaussian Density Features in regions surrounding selected interest
points for learning and matching. Recently various spatio-temporal
features and descriptors are proposed [10,11,12,25,26,27,15]. Lap-
tev et al. [10] propose a method to detect Space-Time Interest
Points (STIP) and adopt Histogram of Oriented Gradients (HOG)
[28] and/or Histogram of Oriented Optical Flows (HOF) as descrip-
tors, which achieves the state-of-the-art performance on action
recognition [29]. Dollár et al. [10] extract the descriptors from
space-time cuboids based on temporal Gabor filters. In [12], Hes-
sian saliency measure for blob detection is extended to a spatio-
temporal version. Space-time templates and shape features are
also proposed in [26] and [25] respectively. Rodriguez et al. [27]
generalize the Maximum Average Correlation Height (MACH) filter
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to 3D spatio-temporal volumes. Chaudhryet al. [15] calculate a se-
quence of HOF and use Binet-Cauchy kernels on nonlinear dynam-
ical systems.

However, most of these methods perform recognition by tem-
plate matching or direct exemplar matching. Some of them [29]
adopt bag-of-features representations [30], but still use SVM or
nearest neighbor for classification, without using inverted files
and indexing techniques to accelerate recognition procedures.
Inverted index is the most popular data structure in document re-
trieval, and is further commonly used in large-scale image and ob-
ject retrieval [21,31]. In our work, we leverage this data structure to
our proposed motion patterns for hand gesture recognition over
large databases.

There are also some methods devoted to speeding up video pro-
cessing and feature extraction, by either designing fast online learn-
ing algorithms [32] or leveraging more powerful computing units
[33] such as a GPU. Our method also achieves that goal by estimating
optical flow on a GPU and fast feature extraction on the motion diver-
gence fields.

3. Visual patterns of gestural motion

In this section, we present the proposed visual representation of
gestural motions based on motion divergence fields. We first estimate
the optical flow between every two consecutive frames in the gesture
sequence. The divergence map of the optical flow field is then derived
and normalized to a gray-scale image. MSER regions are then
detected from the divergence map, and summary statistics are
extracted as local motion descriptors.

3.1. The divergence field of optical flow

In a vector field, divergence is an operator that measures the mag-
nitude of the source or sink of the field. Given a vector F=[F1,F2,⋯,
Fn]T in a n-dimensional Euclidean space, the divergence of F can be
calculated as:

divF ¼
Xn

i¼1

∂Fi
∂xi

; ð1Þ

where [x1,x2,⋯,xn]T are the Cartesian coordinates of the space where
the vector field is defined.
(a) (b)

(e) (f) (

Fig. 2. Gestural pattern extraction.(a) the first frame of an image pair, (b) the u component
gence field, (e) MSER detection on the divergence field in (d), (f) MSER detection directly on
optical flow orientations with 8 bins from MSER regions.
Accordingly for an optical flow vector field F(x,y)=[u(x,y),v(x,
y)]T, where u(x,y) and v(x,y) are respectively the horizontal and ver-
tical components of optical flow at position (x,y), the divergence of F
is:

divF ¼ ∂u
∂x þ ∂v

∂y : ð2Þ

Fig. 2 presents an example of transforming a flow motion field into a
divergence field. Fig. 2(a) is the first frame of an image pair, and
Fig. 2(b) and (c) are the visualizations of u and v respectively. The
corresponding divergence field after normalized to gray-scale is
shown in Fig. 2(d). We calculate the optical flow using the Lucas–
Kanade algorithm [34] and implement the algorithm on the GPU to
speed up the processing frame rate. Lucas–Kanade optical flow esti-
mation, as applied here, relies on local contrast and texture, and is
valid only for small motions. Since no multi-resolution estimation
is applied, the computed flow is not valid for large areas with little
texture, such as the interior of the hand region in the example. As a
result, the flows in these areas can hardly be estimated. However,
such estimation of optical flow proved a sound basis for discrimina-
tion in our experiments, even if the flow values are not absolutely ac-
curate. As we can see, the divergence field of optical flow has filtered
out most flow noise in the background and provides a clear shape of
the hand, which ensures that most MSER regions are located on the
hand, which we will discuss in the next section. We proceed to pre-
sent the extraction of the local motion descriptors.

3.2. Local descriptor extraction

Once we obtain the divergence field of optical flow, Maximally
Stable Extremal Regions (MSER) [19] are detected from the map.
The MSER region is defined exclusively by an extremal property of
the intensity function in the region and on its outer boundary, and
therefore has many useful properties, including invariance to affine
transformation of image intensities, stability, and allowing multi-
scale detection. MSER has been widely used in image matching and
object recognition, and has led to better recognition performance
[20] in several applications. In our proposed framework, each MSER
region is fitted by an ellipse, as shown in Fig. 2(e).

Because the background is static, most MSER regions detected in the
motion divergence field are on the boundary of the hand or within the
hand. The features extracted from these regions therefore are not
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of the estimated optical flow, (c) the v component of the estimated flow, (d) the diver-
the image in (a), (g) the detected STIP in the same frame, (h) calculating a histogram of



Fig. 3. A vocabulary tree with 6 branches and 3 levels.
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mixed with background clutter. As a comparison, Fig. 2(f) shows the
MSER regions detected directly from the image in Fig. 2(a), which are
as frequently detected in background regions as within the moving
hand. We also performed space-time interest points (STIP) detection on
the same frames, which is a state-of-the-art spatio-temporal feature.
The results are shown in Fig. 2(g). As we can see, STIP detection is also
distracted by background texture, which makes their detectors less dis-
criminative on hand motion.

In each detected MSER region, we calculate a histogram of the ori-
entations of the optical flow vectors. The orientations of optical flow
can be calculated from u(x,y) and v(x,y) and have a range of [0,2π].
All the orientations are then bi-linearly quantized and aggregated
into discrete bins with their magnitudes as weights. Fig. 2(h) provides
a simple illustration, in which the histogram has 8 bins. In practice we
set the bin number to be 80. The histogram is finally normalized to
have unit L1-norm.

By choosing histograms of flow orientations as our local descriptors,
we get rid of the magnitude of optical flows. That is because, the speed
of gestures varies widely, particularly among different users. A good ges-
ture recognition algorithm therefore should be relatively insensitive to
the speed with which a gesture is performed. This suggests orientations
of hand movement as significant measures for recognition. It is also vali-
dated by other action recognition methods using histograms of flow ori-
entations [29,15]. What we are seeking here is a set of discriminative
descriptors for each distinct gesture. We validate in our experiments
that such descriptors are already highly discriminative, irrespective of
the fact that we adopted a simple algorithm to estimate optical flow.

After local descriptor extraction, each divergence field is repre-
sented by a set of local descriptors, and a hand gesture is a sequence
of such descriptor sets. By such visual representation of the motion
patterns, we dispense with relatively complicated motion estimation
techniques such as segmentation and tracking. Meanwhile, MSER de-
tection, with linear time implementation [35], can be performed at
modest computational expense. As a result, the whole feature extrac-
tion process in our method is very efficient.

4. Motion gestural pattern indexing

Once we get the local descriptors for a gesture sequence, each de-
scriptor is quantized by a pre-trained vocabulary, and indexed using
inverted files. We then match a test gesture sequence with the data-
base using a term frequency-inverse document frequency (TF-IDF)
weighting scheme. This technique is widely adopted in large-scale vi-
sual search. We extend it to gestural motion pattern matching and
offer a scalable solution for gesture recognition.

4.1. Building a vocabulary

Before gesture indexing and matching, we need to build a vocab-
ulary for the descriptors first. In the context of image search and ob-
ject recognition, a vocabulary is a structure of cluster centers of a
set of training descriptors. Each cluster center is called a visual
word. The extracted features in the image are then quantized through
the vocabulary and assigned to their closest visual words for subse-
quent matching. There are several methods to build the vocabulary
[21,31]. Here we use hierarchical k-means clustering (HKM) [21] to
build a vocabulary tree, which is a hierarchical structure of visual
words. Fig. 3 shows a simple vocabulary tree with 6 branches and 3
levels. Each node in that tree represents a visual word.

Hierarchical k-means clustering is performed as follows. Given the
training dataset, a k-means clustering process is first performed to de-
termine k cluster centers, where k is the branch factor of the tree, i.e.,
the number of children of each node. In Fig. 3, k=6. These k centers rep-
resent the nodes in thefirst level of the tree. The training descriptors are
then branched to k groups according to their distances from the cluster
centers. In each group, k-means clustering is further performed to define
k new cluster centers, which are then the children of the original center.
The same process is carried out recursively until the tree achieves a pre-
defined maximum depth. For a vocabulary tree with k branches and l
levels, the total number of leaf nodes would be kl.

Once the vocabulary tree is built, the descriptors in an image can
be quantized by comparing with the descriptors of the k nodes at
each level, and associated with the closest one. Each descriptor thus
has a path from the root to a leaf in the tree. The red line in Fig. 3,
for example, is a path for one descriptor. Such a path can be encoded
by a single integer at the leaf, and used for indexing and matching, as
described in the following section. Therefore, after quantization, each
descriptor can be represented by a single integer, which significantly
reduce the memory cost, and make the subsequent matching more
efficient as well. Note that each quantization process for a descriptor
involves only k∗ l comparisons. The computational cost is logarithmic
in the number of leaf nodes, which is the principal advantage offered
by hierarchical structure.

4.2. Indexing a single image

After all the descriptors of a query image are quantized through
the vocabulary tree, the image can be matched with the database im-
ages by comparing the similarities of the paths of their descriptors.
Consider that ni and mi are the number of descriptors quantized to
the i-th node (visual word) in the query image and in a database
image respectively, the distance between the query image and the da-
tabase image can be defined as:

ai ¼ niwi; bi ¼ miwi

d a;bð Þ ¼ ‖
a
‖a‖

− b
‖b‖ ‖

p

p

¼ ∑
i

ai−bij jp ð3Þ

where wi is the weight of the i-th node in the vocabulary tree; p indi-
cates Lp-norm. We use L1-norm in our experiments. The weight wi

can be defined based on entropy:

wi ¼ log
N
Ni

ð4Þ

where N is the number of images in the database, and Ni is the num-
ber of images that have descriptors quantized to the i-th node, which
in text analysis is called inverse document frequency. It is found in
practice that leaf nodes contain the most information, and sometimes
only the leaf nodes are used in image matching for convenience.

Usually there are thousands of leaf nodes in a vocabulary tree,
with only hundreds or dozens of descriptors in an image. As a result,
a and b are both sparse vectors. After we normalize a and b to have
unit magnitude, the distance of a and b in Eq. (3) can be further re-
written as:

d a;bð Þ ¼ ∑i ai−bij jp ¼ ∑
bi¼0

aij jp þ∑
ai¼0

bij jp þ ∑
ai≠0;bi≠0

ai−bij jp

¼ ∑
i

aij jp þ∑
i

bij jp−∑
ai≠0;bi≠0

ai−bij jp þ aij jp þ bij jp� �

¼ 2−∑
ai≠0;bi≠0

ai−bij jp þ aij jp þ bij jp� �
ð5Þ



Fig. 4. Ten dynamic gestures: move right, move left, rotate up, rotate down, move down-right, move right-down, clockwise circle, counterclockwise circle, “Z”, and “cross”.
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Only the distances between the non-zero elements of the vectors are
calculated. This allows us to use inverted files to avoid direct match-
ing of the query vector with all the image vectors in the database.
An inverted file for each node is a file recording the number of images
that have at least one descriptor quantized to that node, and the IDs of
these images, along with the number of descriptors in these images
that are quantized to that node, which in text analysis is called term
frequency. Our distance measure incorporates a term frequency-
inverse document frequency (TF-IDF) weighting scheme. When the de-
scriptors of the query image are all quantized, only the inverted files
of the nodes corresponding to the non-zero elements of the query
vector are looked up. The distances of the query image to each of
the images recorded in the inverted files can be gradually accumulat-
ed using Eq. (5). By using inverted files for matching in the TF-IDF
scheme, the computational cost of image matching is significantly re-
duced. This approach enables efficient search even if there are mil-
lions of leaf nodes and database images.
4.3. Indexing a gestural motion sequence

The image indexing technique introduced in Section 4.2 only
works in single image search, while in Section 3 a hand gesture is
converted to a variable-length sequence of divergence images. In
this section, we will extend image indexing for gesture sequence
matching.

One straightforward solution is to uniformly sample frames from a
gesture sequence. Using the method in Section 4.2, each sampled
frame can be indexed to form a vector ai ¼ ai1; a

i
2; ⋯; aiM

� �T
, where i in-

dicates the i-th sampled frame, and M is the number of leaf nodes in
the vocabulary tree. We concatenate the vectors of all the sampled
frames to form a new vector, which represents the indexing results
Fig. 5. Seven postures: thumb, index finger, hand - fingers extended, “OK”(thumb and
of the entire gesture sequence. The distance of two gesture sequences
accordingly can be calculated as:

d a;bð Þ ¼
Xn

i¼1

d ai;bi
� �

¼
Xn

i¼1
∑

j

aij−bij
���

���p ð6Þ

where n is the total number of sampled frames.
This extension, though straightforward and simple, is very impor-

tant in our method for the following two reasons:

• It normalizes the gestures to vectors with the same length, which
removes the factor of gesture duration, and enables recognition of
gestures with substantial variation in speed;

• The direction of optical flow changes continually in some gestures
(e.g., drawing a circle). Experimental results have validated that by
sampling above a critical rate, the dynamic changes of the motion
patterns can be successfully preserved in the concatenated vectors.

In this matching scheme, the spatial information of the descriptors
is discarded in the quantization and indexing step. However, such in-
formation is usually quite useful. Therefore, a post-verification step
incorporating the spatial information is used to re-rank those top
returned candidates. This is a common step in image search and ob-
ject recognition [31].

We retain the top k candidate gestures after the indexing and match-
ing procedure. In the post-verification, we first estimate the geometric
center of the hand for each sampled frame according to the positions of
the detectedMSER regions. The centers in the query and those in the can-
didates are then compared to assign a score to each candidate. If the cen-
ters in a database sequence are closer to the centers in the query, its
corresponding scorewould be high, and vice versa. The aggregated scores
for each gesture category can then be obtained from these top k scores,
and the query gesture is assigned to the category with the highest score.
forefinger loop), fist, index finger with 90∘ rotation and hand with 90∘ rotation.

image of Fig.�4


Fig. 6. An example sequence in the collected database. The database has 10 categories of gestures and 1050 samples in total.
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5. Experiments

5.1. The database

The database contains 10 categories of dynamic hand gestures in
total: move right, move left, rotate up, rotate down, move down-
right, move right-down, clockwise circle, counterclockwise circle,
“Z”, and “cross”, as shown in Fig. 4. In the collection process, each
person is asked to perform these ten actions with seven postures as
illustrated in Fig. 5: thumb, index finger, hand - fingers extended,
“okay”(thumb and forefinger loop), fist, index finger with 90∘ rota-
tion and hand with extended fingers at 90∘ rotation. Each subject
contributes 70 gesture samples to our database. We collected 1050
sample gestures performed by 15 subjects. Fig. 6 provides some ex-
ample sequences. As we can see, the background as well as the skin
colors of the hands are very diverse, and the captured sequences con-
tain severe motion blurs. Both conditions are common in real appli-
cations. We consider this a representative database that is useful
not only for dynamic hand gesture recognition but also for static
hand pose estimation as well.

Since our method addresses dynamic hand gesture recognition,
we focus on recognizing the 10 dynamic gestures in our experiments.
Thus the samples with the same action in different hand postures are
considered as one category, and each category accordingly has 105
samples.

The evaluation is performed in a user-independent way, as leave-
one-subject-out cross-validation is used. That is, given a test gesture se-
quence, the gestures performed by the same subject are excluded from
the database. The test gesture is then matched with the remaining
0.96

0.98

1.00

0.90

0.92

0.94

512 729 1000 1331 1728 2401 4096 656110000

R
ec

og
ni

tio
n 

ra
te

Size of vocabulary trees

Fig. 7. Recognition performance with different sizes of vocabulary tree.
database gestures, and its category is collectively determined by its k-
nearest neighbors after indexing, matching and post-verification, as in-
troduced in Section 4.3.

5.2. Determining the parameters

There are two main parameters in our framework to be deter-
mined: the size of the vocabulary tree (the number of leaf nodes),
and the number of sampled frames in a gesture sequence for index-
ing, as described in Section 4.3.

We have collected 2257851 descriptors in total, and chose differ-
ent branch factors and levels to build the vocabulary tree. The recog-
nition performance with different tree sizes is shown in Fig. 7.
Contradicting the observation in [21] that a larger vocabulary tree
would improve performance, in our experiments the recognition
rate is already very high with only 512 leaf nodes. The performance
remains stable when the size is smaller than 2000, and drops slightly
when the size is larger. However, the recognition rate is still above
96% when the size is over 10,000. The vocabulary tree with 9
branches and 3 levels (729 leaf nodes) achieves the highest recogni-
tion rate, which is 97.62%. This tree will be used in the following
experiments.

We tried encoding sequences in different numbers of sampled
frames, and depict the results in Fig. 8. As shown by the red line in
Fig. 8, recognition performance is quite robust at different frame sam-
pling rates. Even if only 3 frames are sampled, the recognition rate has
already achieved nearly 96%. When the frame sampling rate is larger
than 7, the performance cannot be further improved. That is probably
because, for discriminating gestures in our database, dynamic
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Fig. 8. Recognition performance with different sampling rates.
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Fig. 9. Performance evaluation with different top k candidates. Our method consistent-
ly outperforms others.

Fig. 11. Confusion matrix of our recognition result. The order of gesture categories:
move right, move left, rotate up, rotate down, move down-right, move right-down,
clockwise circle, counterclockwise circle, “Z”, and “cross”. Each category contains 105
samples. Most misclassification are in Rotate Up and Rotate Down.
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information of the motion patterns has already been fully captured in
7 frames.

5.3. Comparisons

We compared our method with three other methods:

5.3.1. Image indexing
This is a baseline method in which MSER detection is directly per-

formed on the image sequences, without optical flow estimation. A
HOG descriptor is then extracted from each detected MSER region.
The image descriptors are then sampled and indexed using the meth-
od in Section 4. Compared with our method which indexes and
matches motion patterns from the divergence field, this baseline
method directly matches appearance patterns of the hand. Variations
in appearance would seem to necessitate a very large training set, and
matching is greatly influenced by features extracted from the back-
ground. The performance of this method is poor in our dataset, barely
above 50%, as shown in Figs. 9 and 10(a).

5.3.2. Global histograms of oriented optical flow
The second method is one adapted from Chaudhry et al. [15]. In

their original paper, they use a global histogram for the entire orient-
ed optical flow field and then extract the dynamics of the histograms
for periodic action recognition. However, since only the dynamics
(changes) in the histograms are used, this approach cannot be
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Fig. 10. Comparisons of all the methods on recognition performance and time. Our: the propo
136 samples, Sg: STIP-HOG+HOF, (1) without 136 samples, (2) with 136 samples, Im: ima
expected to discriminate some gestures in our database (e.g. constant
motions left or right, in which the histograms do not necessarily
change). To make their method work in our scenarios for a fair com-
parison, once we extract a sequence of global histograms, we also
resample frames to normalize sequence length, as proposed in
Section 4.3, and calculate the χ2 distance for the concatenated histo-
grams:

d a;bð Þ ¼ 1
2
∑
i

ai−bij j2
ai þ bi

: ð7Þ

The recognition result is then determined by a k-Nearest Neighbor
classifier (k-NN). The best recognition rate of this method is 94.38%,
which validates the discriminative power of histograms of oriented
optical flow. However, our method is more robust than the global his-
togram. Fig. 9 shows the recognition results with different numbers of
top k examples for classification. The recognition rate of our method
is always higher than the global histogram. Moreover, the global his-
togram method is more sensitive to the sampling rate. As shown in
Fig. 8, the classification performance of global histograms drops dra-
matically when the sampling rate is under 7. This strongly suggests
that the local descriptors for motion patterns in our method are
more robust than global flow histograms in capturing and discrimi-
nating the dynamics of hand gestures.

On the other hand, benefiting from the indexing scheme, the aver-
age recognition time of our method is 34.53 ms, which is only about
20% of the recognition time of global histogram matching, as shown
in Fig. 10(b). The recognition time of histogram matching is linear
in the number of gestures in the database. Given a database with
more than 10 thousand gestures, real-time recognition by nearest-
neighbor classification is not currently feasible, while our method is
readily scalable to large databases. Direct image indexing also takes
more recognition time than our method, which is probably because
160.64
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sed method, Gl: global flow histogram, Sf: STIP-HOF, (1) without 136 samples, (2) with
ge indexing. Our method achieves the best performance with very high speed.



Fig. 13. A snapshot of our prototype system.
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many more MSER regions are detected directly from the image se-
quences than from their optical flow divergence fields.

5.3.3. Space-time interest points (STIP)
STIP with HOG/HOF descriptors [10,16] is a representative local

spatio-temporal feature which achieves the state-of-the-art perfor-
mance in several action datasets [29]. We use their provided code
[36] to detect STIP and extract two types of descriptors in each
detected STIP: HOG+HOF, and HOF. Both of them are evaluated for
comparison. In their original paper, after the descriptors are quan-
tized through the vocabulary, a SVM is trained for classification. To
make the comparison fair, we adopt the indexing framework as intro-
duced in Section 4, which is the same as in our method, for gesture
matching. Since their features already consider the gesture sequences
as spatio-temporal volumes, no sampling is used for their method.

Unlike other human activities, hand gestures usually last a short
period of time. Some simple gestures, such as move left or right, can
even be finished within one second. This distinctive property of
hand gestures has largely lessened the efficacy of spatio-temporal
features. In our evaluation, only a limited number of STIP are detected
from some gesture sequences with short durations. Though we have
tuned the parameters trying to detect as many points as possible,
there are still 136 out of 1050 sequences that do not contain any
detected STIP, which therefore cannot be recognized.

If we consider these 136 samples as failure cases, then the best
recognition rates achieved are 75.52% with HOG+HOF descriptors
and 79.62% with HOF descriptors respectively. If we exclude all
these 136 samples without STIP, and evaluate their methods on the
remaining 914 samples, then their best recognition rates are 86.76%
with HOG+HOF and 91.47% with HOF. The results are also shown
in Figs. 9 and 10(a). Using HOF as descriptors achieves better perfor-
mance than combining HOG and HOF. That is because the appearance
information captured by HOG may reduce the distances between the
gesture sample to be recognized and those database samples with the
same pose but different motions, and accordingly weakens the power
of the descriptors in motion recognition.

We can observe from Fig. 9 that even if we exclude these 136 sam-
ples in the evaluation of their methods, their recognition rates are still
lower than ours. Despite the discriminative power of the features,
their feature points are distracted by background clutter, while in
our method the detected MSER regions are mainly located on the
moving hands, as illustrated in Fig. 2.

Since we adopted the same indexing framework for gesture
matching, the recognition time of using STIP is fast, as shown in
Fig. 10(b). However, the feature extraction procedure of STIP is far
from real-time. The average speed of extracting STIP on 320×240
video sequences is ∼2 fps, while our method can achieve ∼30 fps.
Considering the performance and the processing time, our method
is more suitable for recognition in this hand gesture dataset.

5.4. Failure cases and gesture design

Fig. 11 shows the confusion matrix of the recognition results of
our method. We can see that most of the misclassifications exist in
Rotate Up and Rotate down. Some misclassifications are due to the
similarities of these gestures with others such as Move Right and
Fig. 12. An example in which our method fails to recognize the gesture. In a Rotate Up gest
classifies the gesture as Move Right.
Move left, as well as the ambiguity when users perform these ges-
tures. For example, in Fig. 12, the user is doing the Rotate Up gesture.
However, the rotation of the hand is not sufficient, and our method
misclassifies the gesture as Move Right.

These gesture recognition results, from another perspective, could
provide guidance on hand gesture design. Given an efficient hand
gesture recognition method, by analyzing the misclassification sam-
ples, we can find out which gesture is easily confused with others,
such as Rotate Up vs. Move Right, and Rotate Down vs. Move Left.
These gestures then can be removed while more distinctive gestures
are retained. In application we need to develop a gesture recognition
system with very high accuracy, not only by using an efficient recog-
nition method but also by selecting discriminative gestures, and our
method can well serve the purpose of designing gestures.

5.5. Applications

We built a prototype system and applied our method for live hand
gesture recognition. Fig. 13 shows a snapshot of this system. Gesture
extraction, i.e., automatic detection of the start and end of the ges-
tures, is implemented in the system by a global motion threshold.
The system can recognize live hand gestures in real-time (∼30 fps)
for 320×240 video sequences, with high recognition quality.

6. Conclusions

In this paper we present a new visual presentation for hand ges-
ture motions. By calculating the divergence fields of optical flow, a
gestural motion sequence is converted to an image sequence encod-
ing themotion information. It allows us to usemodern image feature
detectors such as MSER to extract the salient regions and transform
motion patterns into discriminative spatial image patterns. We also
offer a scalable solution by extending the image indexing prototype
to hand gesture recognition. The proposed framework achieves high
recognition accuracy in our database, while scalable to larger
databases.
ure, the rotation of the hand is not great enough to be detected, and our method mis-

image of Fig.�13
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In our future work, we will design more meaningful gestures and
apply our method to larger-scale databases. We also believe that the
proposed approach is applicable to more general action/activity rec-
ognition tasks.
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