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About Me: http://users.eecs.northwestern.edu/~zli

• Bio:
– Media Analytics Group Lead, Core Networks R&D, Huawei Tech USA, 

2010.10~ to date

– Asst Prof,  HK Polytechnic Univ, 2008.04~2010.09
– Senior, Senior Staff, and then Principal Staff Researcher, Multimedia 

Research Lab, Motorola Labs, USA, 2000-08.
– Software Engineer, CDMA Network Software Group, Motorola CIG, USA, 

1998-2000. 
– PhD in Electrical & Computer Engineering, Northwestern University, 

USA, 2004.

• Research Interests:
– Large scale audio/visual data analysis, storage and indexing, search and 

mining. 
– Video Adaptation, Image/Video QoE Modelling, Very Low Bit Rate Video
– Optimization and distributed computing for Content Delivery Networks 

(CDN). 
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The Large Scale Visual Analytics Problems

• Face Recognition
– Identify face from 7 million HK ID face data set

• Image Search
– Find out the category of given images
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The Problem

• Identification
– Given a set of training image data and label{fk, lk}, and a probe p, 

identify the unique label associated with p. 

• Why is it difficult ?
– When the number of unique labels, m, and training data n are large.... 

X = f(I)
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Appearance Modeling

• Find a “good” f() 
– Such that after projecting the appearance onto the subspace, the 

data points belong to different classes are easily separable

X = f(I)
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Global Linear LPP Models: f(X) = AX
•  LPP (Xiaofei He, et.al): 

- Minimizing weighted distance (a graph) after projection

-Solve by:

- Embed a graph with pruned edges 
(
wj;k = e¡®jjxj¡xkjj; if jjxj ¡ xk jj · ²

0; else

min
A

X

j;k

wj;kjjAxj ¡Axkjj2

XLXTA = ¸XDXTA; s:t:L = D ¡W;Dk;k =
X

j

wj;k
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Global Linear LDA Models: f(X)=AX

• LDA: 
- Maximizing inter-class scatter over intra

     

 -Solve by:

 - Embedding a graph with no edges among inter-class points
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Graph Embedding Interpretation 

• Find the best embedding
– LDA: 

» preserve the affinity matrix that has zero affinity for data points pairs 
that are not belonging to the same class

– LPP: 
» Have more flexibility in modeling affinity wjk. 

LPP Affinity LDA Affinity
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Non-Linear Models

• Appearance manifolds are non-linear in nature
– Global linear models will suffer 

• Non-Linear Solutions:
– Kernel method: e.g K-PCA, K-LDA, K-LPP, SVM

» Evaluate inner product <xj,xk> with a kernel function k(xj, xk), which if satisfy the conditions 
in Mercer’s Theorem, implicitly maps data via a non-linear function. 

» Typically involves a QP problem with a Hessian of size n x n, when n is large, not solvable. 
– LLE /Graph Laplacian: 

» An algorithm that maps input data {xk} to {yk} that tries to preserve an embedded graph 
structure among data points. 

» The mapping is data dependent and has difficulty handling new data outside the training set, 
e.g., a new query point

• How to compromise ? 
– Piece-wise Linear Approximation
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Piece-wise Linear : Query Driven 

• Query-Driven Piece-wise Linear Model
– No pre-determined structure on the training data 
– Local neighborhood data patch identified from query point q,
– Local model built with local data, A(X, q)

q

+ Local data:
N(X, q)

X Local Graph 
Embedding Projection

A(X,q)

+

Y=A(X,q)X
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Local Model Discriminating Power Criteria

• What is a good N(X, q) ? 

• Model power:  
– A: Dxd, D=wxh

• Data Complexity:  Graph Embedding Interpretation:
–PCA: a fully connected graph
–LDA: a graph with edges pruned for intra-class points
–LPP/LEA;  k-nn/                pruned graph
–as number of edges/relationship among data points

• What is a good compromise of data complexity and model power ?

nn−ε
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Discriminant Power Co-efficient (DPC)
• Given the model power constraint: 

– w, h, appearance model luminance field size
– d, dimensionality of A(x, q)

• How to identify a  neighborhood to achieve a good balance of data 

complexity and model power ?

- DPC,   K(A(X,q)) = 

- Need to balance DPC with
   info loss in node/edge pruning

|)(| )(qXE

dhw ××
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Head Pose Recognition Performance

• Recognition rate is improved:
– W=18, h=18, K=30

• And the cost in computation is rather modest
– Matlab code, online local model A(X,q) learning and NN classification:
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Face Recognition Performance

• Local model combination in face recognition 
– Query point drives 3 local models, A1(X, q), A2(X, q), A3(X, q) 
– Local model classification error estimation, 
– Combining the results – weighted voting

ORL data set test: leave 1,2,3 out: 

Multiple face models with different area and scale:
 (a) Upper face model (18 × 16). 
(b) Lower face model (14 × 18). 

(c) Full face model (21 × 28).
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Query Driven Solution Problems

• Optimality of the Local Model is not established
– Parameters             , k-NN, and heat kernel size determines the 

number of non-zero affinity edges in local graph
– The choice is based on DPC, which is still heuristic 

• Computational Complexity
– Need to compute a nearest neighbor set and its affinity, as well as 

the local embedding model at run time.
– Need extra storage to store all training data, because the local NN 

data patch is generated at run time, as function of the query point.
– Indexing/Hashing scheme to support efficient access of training 

data. 

²¡NN  
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Stiefel and Grassmannian Manifolds

• Stiefel manifolds
– All possible p-dimensional subspaces in d-dimensional space, Apxd,  

spans Stiefel Manifold, S(p, d) in Rdxp, d > p. 

– The DoF  is not pxd, rather: pd – (1/2)d(d+1)

S(p; d) =
©
A 2 Rd£p; s:t:A0A = Id

ª

• Grassmannian manifolds
– G(p, d) identifies p-dimensional subspaces in d-dimensional space
– It is stiefel manifolds but with an equivalence constraint:

» A1 = A2, if span(A1) = span(A2), or
» Exist othonormal dxd matrix Rd, A1=A2Rd.

– The DoF: pd-d2. G(p, d) is the quotient space of S(p, d)/O(d) 
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Subspaces on Grassmannian Manifold

• The BEST subspace for identification ?
– All possible p-dimensional subspaces in d-dimensional space, Apxd,  

spans Grassmannian Manifold, G(p, d) in Rdxp, d > p. 
» eg., G(2, 3), biz card example

– The DoF of A is not pxd, as for,

– Face Appearance model, typically, d=400~500, p=10~30. 
– The BEST subspace A* is somewhere on G(p, d), therefore it is 

important to figure out a way to characterize the similarity between 
subspaces in G(p, d), and give a structure of all subspace w.r.t the 
task of identification. 

< aj ; ak >= 0; < aj ; aj >= 1; for A
T = [a1; a2; :::; ap];
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Grassmannian Manifold Visualization

• Consider a typical appearance modeling
– Image size 12x10 pel, appearance space dimension d=120, model 

dimension p=8. 
– 3D visualization of all S(8, 120) and their covariance eigenvalues”
– Grassmann Manifolds are quotient space S(8, 120)/O(8)

+
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Principle Angles 

• The principle angles between two subspaces:
– For Y1, and Y2 in G(p, d), their principle angles are defined as

– Where, {uk} and {vk} are called principle dimensions for span(A1) and 
span(A2).

span(A1) span(A2)cos(µk) = max
uk2span(A1);vk2span(A2)

u0kvk

s:t:

(
u0kuk = 1; v

0
kvk = 1

u0kui = 0; v
0
kvi = 0
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Principle Angles Computing 

• The principle angles between two subspaces:
– For A1, and A2 in G(p, d), their principle dimensions and angles are 

computed by SVD:

– Where, U=[u1, u2, …, up], and V=[v1, v2, …, vp] are the principle angles.
– The diagonal of S, [s1, s2,..., sp] are the cosine of principle angles,

sk = cos(µk)

[U;S; V ] = SVD(AT1 A2)
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Subspace Distance on Grassmannian Manifold

• Subspace distances [J. Hamm's Phd thesis]

– Projection Distance
 Def: 
 
Computing:

– Binet-Cauchy Distance
Def:

Computing:

d2prj(A1; A2) = p¡
pX

i=1

cos2µi = m¡ jjA01A2jj2F

dprj(A1; A2) = (

pX

i=1

sin2µi)
1=2

d2bc(A1; A2) = 1¡
Y

i

cos2µi = 1¡ det2(A01A2)

dbc(A1; A2) = (1¡
Y

i

cos2µi)
1=2
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Subspace Distance on Grassmannian Manifold

• Subspace distances
– Arc Distance

 Def: 
 
Also known as geodesic distance. It traverse the Grassmannian 
surface, and two subspace collapse into one, when all principle angles 
becomes zero. 

darc(A1; A2) = (
X

i

µ2i )
1=2
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Weighted Merging of two subspaces 

• What if we need merge two subspaces ?
– Motivation: 

» say if subspace A1 is best for data set S1, and subspace A2 is best for 
data set S2, can we find a subspace A3 that is good for both ?

– When two subspaces are sufficiently close on Grassmannian 
manifold, we can approximate this by, A3=[t1, t2, ….]

Where n1,2 are the size of data set S1,2

– The new sets of basis may not be orthogonal. Can be corrected by 
Gram-Schmidt orthogonalization. 
 

tk =
n1

n1 + n2
uk +

n2
n1 + n2

vk +
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Judicious Local Models

• Data Space Partition 
– Partition the training data set by kd-tree
– For the kd-tree height of h, we have 2h local data patch as leaf node
– For each leaf node data patch k, build a local LDA/LPP/PCA model Ak:
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Subspace Index

• Organizing the Subspace Models
– For data index of height of h, we have 2h local models Ak: k=1..2h. 
– For a given probe data point, find its leaf node and associated local 

model, do identification. Is this good ?
– No, because

» Could be over-fitting, not sure what is the right size local data patch.
» Improper neighborhood, probe data points falling on the boundary of leaf 

node:
– Build local models at each subtree ?

» No, the data partition does not reflect the smooth change of the local 
models. 
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Model Hierarchical Tree (MHT)

• Indexing Subspaces on Grassmannian manifold
– It is a VQ like process. 
– Start with a data partition kd-tree, their leaf nodes and associated  

subspaces {Ak}, k=1..2h

– Repeat
» Find  Ai and Aj, if darc(Ai, Aj) is the smallest among all, and the associated 

data patch are adjacent in the data space. 
» Delete Ai and Aj, replace with merged new subspace, and update 

associated data patch leaf nodes set. 
» Compute the empirical identification accuracy for the merged subspace
» Add parent pointer to the merged new subspace for  Ai and Aj .
» Stop if only 1 subspace left. 

– Benefit: 
» avoid forced merging of subspace models at data patches that are very 

different, though adjacent.
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MHT Based Identification 

• MHT operation 
– Organize the leaf nodes models into a new hierarchy, with new models 

and associated accuracy (error rate) estimation 
– When a probe point comes, first identify its leaf nodes from the data 

partition tree. 
– Then traverse the MHT from leaf nodes up, until it hits the root, 

which is the global model, and choose the best model along the path 
for identification 
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Simulation 

• The data set
– MSRA Multimedia data set, 65k images with class and relevance 

labels:  
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Simulation

• Data selection and features
– Selected 12 classes with 11k images and use the original combined 

889d features from color, shape and texture
– Performance compared  with PCA, LDA and LPP modeling
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Simulation

• Face data set
– Mixed data set of 242 individuals, and 4840 face images
– Performance compared  with PCA, LDA and LPP modeling
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Summary

• Contributions
– The work is a piece-wise linear approximation of non-linear 

appearance manifold
– Query driven provide suboptimal performance but still better than a 

global model.
– It offers best local models for identification by deriving the 

subspace structure/index with metrics on Grassmannian manifold 
– Guaranteed performance gains, and the root model degenerates into 

the global linear model

• Limitations
– Do not have a continuous characterization of Identification error 

function on the Grassmann manifold. 
– Still heavy on storage cost
– Need to get more large scale data set to test it. 
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Summary

• Future work
– Grassmann Hashing – Penalize projection selection with Grassmannian 

metric, offers performance gains over LSH and spectral hashing. 
– Gradient and Newtonian optimization on Grassmannian manifold. 
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Q&A

• Questions please......
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Thanks !
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