
Complementary Hashing for Approximate Nearest Neighbor Search

Hao Xu† Jingdong Wang‡ Zhu Li§ Gang Zeng¶ Shipeng Li‡ Nenghai Yu†

†MOE-MS KeyLab of MCC, University of Science and Technology of China, P. R. China
‡Microsoft Research Asia, P. R. China

§Core Networks Research, Huawei Technology, USA
¶Key Laboratory of Machine Perception, Peking University, P. R. China

xuhao657@ustc.edu, {jingdw, spli}@microsoft.com, zhu.li@ieee.org, gang.zeng@pku.edu.cn, ynh@ustc.edu.cn

Abstract

Recently, hashing based Approximate Nearest Neighbor
(ANN) techniques have been attracting lots of attention in
computer vision. The data-dependent hashing methods,
e.g., Spectral Hashing, expects better performance than
the data-blind counterparts, e.g., Locality Sensitive Hash-
ing (LSH). However, most data-dependent hashing methods
only employ a single hash table. When higher recall is de-
sired, they have to retrieve exponentially growing number of
hash buckets around the bucket containing the query, which
may drag down the precision rapidly. In this paper, we pro-
pose a so-called complementary hashing approach, which
is able to balance the precision and recall in a more effec-
tive way. The key idea is to employ multiple complementary
hash tables, which are learned sequentially in a boosting
manner, so that, given a query, its true nearest neighbors
missed from the active bucket of one hash table are more
likely to be found in the active bucket of the next hash table.
Compared with LSH that also can exploit multiple hash ta-
bles, our approach is more effective to find true NNs, thanks
to the complementarity property of the hash tables from our
approach. Experimental results on large scale ANN search
show that the proposed method significantly improves the
performance and outperforms the state-of-the-art.

1. Introduction
Similarity search, also known as nearest neighbor search,

addresses the problem of, given a query point, finding
its most similar points from the database. It is a funda-
mental problem in many practical applications, such as k-
nearest neighbor classification, Content Based Image Re-
trieval (CBIR) and so on. With the growth of the size of
the database, the naive approach adopting linear scan be-
comes impractical. Therefore, recently a lot of research ef-
forts have been devoted to investigate the alternative solu-
tion - Approximate Nearest Neighbor (ANN) search, which

trades off a little search accuracy to greatly speed up the
search process.

Among existing ANN methods, hashing based methods
have demonstrated promising performances [1, 8, 19, 20,
21]. The basic idea is to construct hash functions to map
the data points to finite number of hash codes, so that sim-
ilar data points have larger probability of collision, i.e.,
having the same hash code. Without loss of generality, a
hash code is considered to be made of a group of hash
bits in this paper. Hashing based methods can be roughly
divided into two categories, data-blind hashing and data-
dependent hashing, according to whether they make use of
the database to construct the hash functions.

Locality Sensitive Hashing (LSH) [1, 3, 7] is one of the
best known methods in the first category. It produces each
hash bit typically by projecting the data point to a random
hyperplane and then conducting random thresholding. Mul-
tiple hash tables are independently constructed, aiming to
enlarge the probability that similar data points are mapped
to similar hash codes. In practice, due to the data-blindness
and independence, LSH suffers from severe redundancy of
the hash bits as well as redundancy of the hash tables. Con-
sequently, on the one hand, LSH may need very long hash
codes to encourage only similar points to be projected to
similar hash codes, and on the other hand, lots of hash ta-
bles are needed to access enough points for the satisfactory
recall. This leads to many practical problems, such as the
increase of the query time and the big storage overhead for
the large number of hash tables.

A representative method in the second category is Spec-
tral Hashing (SH) [21]. It can produce very compact hash
codes by thresholding with nonlinear functions along the
principal directions of the data. Given a query, it retrieves
all the points whose hash codes fall within a Hamming ball
centered at the query’s hash code, i.e., the Hamming dis-
tances between the retrieved points and the query are not
larger than the radius of the ball. When higher recall is de-
sired, they usually have to increase the radius of the Ham-
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Figure 1. Illustration of the differences using (a) single hash table (e.g., spectral hashing), (b) multiple random hash tables (LSH), and (c)
multiple learned hash tables (our approach). Suppose the true neighbors of the query (the red bullet •) distribute in the shaded area. To
cover the shaded region, (a) requires a big Hamming ball, (b) needs many small balls, while fewer small balls are enough shown in (c). We
illustrate the inverse projection of the Hamming ball as the ball in the data space centered at the star, and the balls with R = 0 corresponds
to the active hash buckets hit by the query in different hash tables.

ming ball to retrieve more points. We visually illustrate the
arising problem in Fig. 1(a). A big Hamming ball with ra-
dius 2 is needed to cover the shaded region, which contains
the true near neighbors. Since the ball grows homogenously
and explosively, a large piece of unshaded area, which con-
tains many irrelevant points, is also covered by the ball.
This may drag down the precision rapidly.

In this paper, we present the complementary hashing,
which indexes data points with multiple complementary
hash tables and is able to balance the precision and recall
in a more effective way. The hash tables are sequentially
learned from the data in a boosting manner, so that, given
a query, its true nearest neighbors missed from the active
bucket of one hash table are very likely to be found in the
active bucket of the subsequent hash table. Different from
LSH, which employs multiple independent hash tables, the
proposed method constructs the hash functions in a comple-
mentary manner. Compared with the methods adopting a
single hash table (e.g., spectral hashing), employing mul-
tiple hash tables is more helpful to balance the precision
and recall. Taking Fig. 1(c) as an example, where the query
falls in three hash buckets belong to three different hash ta-
bles, indicated by three small balls. If we properly learn the
hash tables from the data, the shaded area, which contains
the true near neighbors, will be covered by a smaller num-
ber of small Hamming balls. Thus many irrelevant points
are avoided and accordingly the search performance is im-
proved. In contrast, LSH adopts the scheme, illustrated
in Fig. 1(b), which is not as efficient as our method and
results in requiring more hash tables to guarantee the recall.

We summarize the contributions in this paper as follows.
We propose the complementary hashing approach to effec-
tively balance the precision and the recall, and then present
a boosting algorithm to effectively learn the multiple hash

tables in a sequential order. Moreover, an incremental in-
dexing scheme is proposed, so that only a fraction of data
points are needed to be indexed by the subsequent hash ta-
bles. This from another point of view means the points can
be assigned with hash codes of various length, so that we are
able to trade off the search efficiency and storage cost. We
experimentally illustrate the advantages of adopting multi-
ple hash tables. Experimental results justify the superiority
of our approach over existing representative methods.

2. Related Work
We first introduce some annotations for later conve-

nience. Suppose the database X consists of N data points
{xi}Ni=1, xi ∈ Rd. A is the similarity matrix and aij de-
notes the similarity of xi and xj . A hashing method adopts
K hash functions to map a data point x to a K-bit hash
code H(x) = [h1(x), . . . , hK(x)], where each hash func-
tion maps the data point to a single bit hk(x) ∈ {−1, 1}.
A hash code is also referred as a hash bucket, which con-
tains the points being mapped to it. We define the com-
bination of the K hash functions as a hash projection, de-
noted as H . Recently, many ANN search methods, e.g.,
kd-trees [2, 9] are proposed. In the following, we mainly
review the closely-related hashing based methods.

2.1. Locality Sensitive Hashing and Extensions

Locality Sensitive Hashing (LSH) constructs L hash ta-
bles using the hash projections {Hl}Ll=1. The k-th hash
function of the l-th hash projection is in the form of:

hl
k(x) = sgn((wl

k)
Tx+ blk), (1)

where wl
k is a random hyperplane and blk is a random

threshold. With these hash projections, LSH projects each



data point in the database to L K-bit hash codes. To per-
form search, a query is mapped to L hash codes in the
same way and data points having the same hash codes are
retrieved from each hash table. In practice, because LSH
suffers from severe redundancy of the hash bits, K has to
be sufficiently large to achieve satisfactory precision, which
requires large L to maintain reasonable probability of colli-
sion (projected to the same hash code) for the similar points.
This leads to the big storage burden of holding the the hash
tables and high computational cost of projecting the query
to the hash codes.

There are some works extending LSH from different per-
spectives. [4, 13, 16] try to reduce the number of desired
hash tables of LSH without lost of the search accuracy. [8]
presents a supervised version of LSH. In [10], Kulis et al.
propose a kernelized version of LSH. However, they still
suffer from the redundancy in the hash codes.

2.2. Spectral Hashing and Extensions

Spectral Hashing (SH) is proposed by Weiss et al., to
learn hash functions from the data by minimizing the fol-
lowing objective function:

J(H) =
∑N

i,j=1
aij∥H(xi)−H(xj)∥2 (2)

s.t.
∑N

i=1
H(xi) = 0 (3)

1

N

∑N

i=1
H(xi)H(xi)

T = I (4)

H(xi) ∈ {−1, 1}K

The first two constraints are added to provide the follow-
ing two good properties. 1) The hash codes are efficient:
each hash bit partitions the data points into two balanced
parts and 2) The hash codes are compact: the bits of a hash
code are uncorrelated. As shown in [21], this minimiza-
tion problem can be converted to an eigenvalue decompo-
sition problem and efficiently solved. Thanks to the data-
dependent hash functions, SH is able to produce better hash
codes than LSH in practice. Many extensions of SH have
been proposed in recent years, including the kernelized ver-
sions [6, 15], a semi-supervised scheme [19], a speed-up
scheme [11] and a self-taught scheme which trains a classi-
fier per bit [22].

More recently, Unsupervised Sequential Projection
Learning for Hashing (USPLH) is proposed by Wang et al.
[20]. Its basic idea is to learn the hash functions sequen-
tially, in a way that the subsequent hash functions are in
charge of correcting the “errors” made by the previous hash
functions. Since USPLH, as well as SH and its extensions,
only employs a single hash table, they suffer from the prob-
lem that we described in the Introduction Section. Com-
pared with USPLH, instead of constructing a single hash
table by learning multiple hash bits one by one, our algo-

Table 1. Comparison of four representative hashing methods with
our method.

Method Data
dependent?

Multiple
hash tables?

Complementary
hash tables?

LSH no yes no
SH yes no -

USPLH yes no -
PCH yes yes no

Our method yes yes yes

rithm learns multiple hash tables one by one, so that can
balance the precision and the recall more effectively.

There are two previous works on the data dependent
hashing approaches with multiple hash tables. [17] presents
a k-means based LSH, constructing multiple hash tables
by using different randomly generated seeds for k-means.
Principal Component Hashing (PCH) [14] constructs hash
tables independently along the principle axes of the data
points. Unlike our proposed method which learns comple-
mentary hash buckets, the hash buckets of above two ap-
proaches are independent to each other.

Finally, we compare the proposed method with four rep-
resentative hashing methods in Tab. 1.

3. Complementary Hashing
The goal of the complementary hashing is to minimize

the following objective function:

J({Hl}Ll=1) =

N∑
i,j=1

(
aij min

l=1..L
∥Hl(xi)−Hl(xj)∥2

)
. (5)

Like LSH, CH employs multiple hash tables and we also
consider the hash functions in the form of Eqn. (1) in this
paper. But instead of using random hyperplanes w and ran-
dom thresholds b to construct the hash function, we learn
such parameters from the data. The idea behind this for-
mulation is straightforward. For two data points xi and xj ,
whose similarity aij is relatively large, we encourage that
they have similar hash codes in at least one hash table. In
the case that L = 1, say, only a single hash table is em-
ployed, the objective function becomes exactly the same
with that of SH, i.e., Eqn. (2). Ideally, all the true neigh-
bors of any query can be found by only retrieving the points
in the active hash bucket of each hash table. This is infea-
sible using only a single hash table, since it corresponds to
a single partition of the data space and the query near the
boundary of the partition is likely to get untrue neighbors.
For each hash table we impose the same constraints as SH
does, i.e., Eqn. (3) and Eqn. (4), so as to produce efficient
and compact hash codes in each hash table as well.

3.1. Algorithm

We adopt a boosting-based approach to solve this mini-
mization problem. Taking each pair (xi,xj) as an element



and a hash projection as a classifier to predict the label for
each element, the boosting scheme learns the new classifier
by paying more attention to the misclassified elements from
the previous classifiers [5]. The label of an element is 1 or
-1 according to whether the two component points of the el-
ement are sufficiently similar, i.e., bij = sgn(aij − α). A
hash projection H conducts the prediction by measuring the
similarity of the hash codes of the element’s two component
points:

PH(xi,xj) =

{
1, 1

4∥H(xi)−H(xj)∥2 < β
−1. otherwise

(6)

In a boosting paradigm, each element is associated with
a weight, and the classifier is learned in a way that the in-
accurate predictions for the elements with larger weights
incurs greater penalty. To make the subsequent classifier
(hash projection) lay more emphasis on the misclassified el-
ements by the previous classifiers, we need to assign larger
weights to those misclassified elements than the elements
being correctly classified. Different from the conventional
AdaBoost [5], which makes prediction using the weighted
sum of the outputs of the weak classifiers, our overall clas-
sifier uses the optimal decision of the member classifiers.
Because in the scenario of ANN search, instead of voting
for which point to retrieve, independent search is performed
in each hash table and the retrieved points are then merged
to generate the final search result. Hence the optimal deci-
sion made by a member hash table directly contributes to
the final search performance. Taking account of such a dif-
ference, we update the weight matrix S according to current
classifier H as:

sij =

 0, bij = PH(xi,xj)
min(sij , fij), bij = 1, PH(xi,xj) = −1
−min(−sij , fij). bij = −1, PH(xi,xj) = 1

(7)

fij = (aij − α)(
1

4
∥H(xi)−H(xj)∥2 − β).

Here, if an element is predicted correctly by current classi-
fier, its weight is set to zero and will not change any more
in the future updates. Otherwise, the prediction errors can
be categorized into two types: 1) a pair of similar points
are projected to the dissimilar hash codes and 2) a pair of
dissimilar points are projected to the similar hash codes. In
either case, we adjust the corresponding weight to reflect the
degree of the contradiction of the original similarity and the
similarity in the Hamming space. Following Eqn. (7), the
weight of the pair of similar points will always be greater
or equal than zero, while that of the pair of dissimilar points
less or equal than zero. The magnitude of the weight is
constantly decreasing, since we keep the old weight un-
changed if some previous classifier works better than the
current classifier.

Given the weighted elements, we learn a hash projection
by maximizing the following objective function:

Ĵ(H) =
∑N

i,j=1
sijH(xi)

TH(xj), (8)

where H(xi)
TH(xj) =

∑K
k=1 hk(xi)hk(xj) reflects the

similarity of the two hash codes. Here without loss of gen-
erality, we assume the data is normalized to have zero mean,
so that bk = 0 for mean thresholding. Straightforwardly,
this objective function encourages a pair of points to be pro-
jected to the similar hash codes if the corresponding weight
is large, and be projected to the dissimilar hash codes oth-
erwise.

In order to make the learned hash projection subjects to
the constraint Eqn. (3), we propose to maximize the vari-
ance of the projected data [19]:

maxW tr
[
WTXXTW

]
. (9)

where W is a d × K matrix, the rows of which is formed
of {wk}Kk=1. By relaxing sgn(wTx) to the signed mag-
nitude wTx in Eqn. (8), and combining the regularization
term Eqn. (9), we transform Eqn. (8) to the following ob-
jective function:

Ĵ(H) = tr
[
WTXSXTW + ηWTXXTW

]
= tr

[
WTMW

]
.

where M = XSXT + ηXXT is a d × d matrix. View-
ing the weight matrix S as the supervised data, this can be
understood as a semi-supervised formulation. Parameter η
trades off the effects of the supervised data and the regu-
larizer. This objective function is similar to that in [19],
expect that we use a real valued weight matrix S instead of
the label matrix whose elements are {−1, 0, 1}. This prob-
lem has a closed-form solution, that wk is the eigenvector
corresponding to the k-th largest eigenvalue of M, and bk
is the median value of wkx for x ∈ X. The orthogonality
property for w approximately guarantees Eqn. (4).

The overall procedure of complementary hashing is sum-
marized in Alg. 1. We initialize the weight matrix as
sij = K(aij − α), and it is straightforward to incorporate
the prior supervised data by modifying this initialization.

3.2. Scalability Extension

There are two practical issues in Alg. 1. First, two N×N
matrices, the similarity matrix A and the weight matrix S,
are involved in the algorithm. For the large scale dataset,
computing with such huge matrices is infeasible. Second,
it produces multiple hash codes per point. The storage re-
quired to hold the hash tables grows linearly along with the
growth of the number of hash tables. Actually, the big stor-
age burden is one of the major problems that hinders LSH



Algorithm 1 Complementary Hashing (CH)
Input: data X, length of hash codes K, number of hash

tables L.
Output: hash projections {Hl}Ll=1.

Initialize the similarity matrix and the weight matrix:
aij = sim(xi,xj), sij = K(aij − α).
for l = 1 to L do

Compute covariance matrix:
M = XSXT + ηXXT .

Learn the hash projection Hl (i.e., {wk, bk}Kk=1):
wk is the eigenvector corresponding to the k-th

largest eigenvalue of M.
bk is the median value of wkx for x ∈ X.

Update the weight matrix S by Eqn. (7).
end for

being used in the practical applications. In this subsection,
we address these issues and present a scalable version of
CH.

To handle the issue of the huge matrices, we make use of
sparse matrices instead. To make S sparse, we only update
the weights for a small proportion of the elements, which
are more likely to be misclassified by the previous classi-
fiers. In fact, the misclassified elements are more likely to
consist of the points near the hash hyperplanes. Recall that
there are two types of errors to consider when updating the
weight matrix: the paired similar points being projected to
dissimilar hash codes and the paired dissimilar points being
projected to similar hash codes. For the first type of error, it
is easy to see that the misclassified pair of points must sat-
isfy the following two properties: 1) they are close to each
other in the data space and 2) they are separated by many
hash hyperplanes.From these observations, we can deduce
that the misclassified pair of points must be distributed near
the hash hyperplanes. For the second type of error, the mis-
classified pair consists of two dissimilar points. Consider
the hyperplanes as walls, the points with the same hash code
are confined to the same room. If two dissimilar points ex-
ist in a room, they are supposed to be close to the opposite
walls, since they are far away from each other. Therefore,
we first select a group of candidate points from the vicinity
of the hash hyperplanes:

X = {x|dl(x) < ϵ}, (10)

dl(x) = max

(
dl−1(x), min

k=1..K
|wl

kx+ blk|
)
,

where d0(x) is set to zero. X is also expressed in the matrix
form X̂, the columns of which are the points contained in
X . Note that if a point is far away from all hash hyperplanes
in one of the previous hash tables, it will be never selected.
Next, we only update the weights for the data pairs formed

by these candidate points, constructing a sparse weight ma-
trix S. To avoid computing the dense similarity matrix A,
we initialize the weight matrix with equal weight for each
data pair, i.e., sij = K.

To handle the storage issue, we treat the points unequally
so that a majority of points are only indexed by a part
of hash tables, i.e., a majority of points have less than L
hash codes. Since the hash projections, except the first one,
play a complementary role of handling the misclassified el-
ements from the previous hash projections, it is reasonable
to only keep those misclassified points in the subsequent
hash tables. Due to the boosting paradigm, the number of
misclassified elements drops rapidly when more and more
hash tables are employed. This means a majority of points
are only indexed by the first few hash tables, dramatically
reducing the overall storage to hold the hash tables. Instead
of finding the points forming the misclassified pairs, which
is quite computationally intensive, the points collected from
the vicinity of the hash hyperplanes by Eqn. (10) are con-
sidered. Because, as aforementioned, the misclassified data
pairs are more likely constituted by these points. In this
way, for a single point, if we consider the concatenation of
all its associated hash codes in the corresponding buckets
as a single hash code of this point, the length of hash codes
for different data points may be different. A point xi be-
ing indexed in Li buckets has a hash code of length KLi.
When a majority of points are only indexed by the first few
hash tables, the total storage cost

∑N
i=1 KLi will be close to

O(NK), saved lots of space compared to the fully indexing
scheme which requires O(NKL) space.

The CH’s scalability extension is described in Alg. 2.
Different from Alg. 1, both hash projections and hash tables
are constructed during the learning process.

Algorithm 2 CH’s scalability extension
Input: data X, length of hash codes K, number of hash

tables L.
Output: hash projections {Hl}Ll=1, hash tables {Tl}Ll=1.

Initialize X̂ = X, sij = K, Tl = ∅.
for l = 1 to L do

Compute covariance matrix:
M = X̂SX̂T + ηX̂X̂T .

Learn the hash projection Hl (i.e., {wk, bk}Kk=1):
wk is the eigenvector corresponding to the k-th

largest eigenvalue of M.
bk is the median value of wkx for x ∈ X̂.

Construct the hash table:
Tl(Hl(x)) = Tl(Hl(x)) ∪ x, for all x ∈ X̂.

Select a set of candidate points X̂ by Eqn. (10).
Update S only for the data pairs formed by the points

in X̂ according to Eqn. (7).
end for



4. Experiments
4.1. Setting

In this section, we compare the proposed method against
some representative hashing methods, i.e., LSH, SH and
USPLH, to justify the effectiveness of the proposed method.
Two datasets are used in the experiments, 20K 512-
dimensional Gist features extracted from the images of La-
belMe dataset [18] and 1 million 128-dimensional SIFT de-
scriptors extracted from random images [12]. We randomly
select 2K points from the LabelMe dataset and 10K points
from the SIFT dataset respectively as the testing queries,
and the other points are taken as the database. The ground
truth neighbors of a query are obtained by the brute force
search, and a data point is considered to be a true neighbor
if it lies in the top 2 percent points closest to the query, in
terms of Euclidean distance. For the data-dependent hash-
ing methods, i.e., SH, USPLH and CH, the whole database
is used for learning the hash functions.

The following two schemes are usually adopted by the
hashing based methods to conduct ANN search. 1) Ham-
ming ranking: The Hamming distance between the hash
codes of the query and each point in the database is cal-
culated. The points are then ranked according to the corre-
sponding Hamming distances, and a certain number of top
ranked points are retrieved. Though the complexity of Ham-
ming ranking is linear to the size of the database, it can be
implemented very fast, taking advantage of the capability
of the hardware to efficiently compute the Hamming dis-
tance. 2) Hash lookup: All the points whose hash codes
fall within a Hamming radius around the query’s hash code
are retrieved. Hash lookup usually enjoys lower complexity
than Hamming ranking. We will compare different hashing
methods using both of these schemes in the experiments.

To perform Hamming ranking for the hashing methods
with multiple hash tables, i.e., LSH and CH, we compute
the Hamming distance of a point xi and the query xq by

d(xi,xq) = min
l=1..L

1

4
∥Hl(xq)−Hl(xi)∥2/1(xi∈Tl(Hl(xi))),

where Tl is the l-th hash table, and 1(·) is the indicator
function, which is used here to exclude the points that are
not indexed by a hash table (such case is possible for CH).
These Hamming distances are then used to perform rank-
ing. Performing hamming ranking in this way can leverage
the partial indexing structure of our hashing scheme, which
is equivalent to adopting hash codes of various length.

4.2. Implementation

LSH is implemented according to [3] and the code of SH
is obtained from the author’s Web site. The parameters of
USPLH are well adjusted with a validation dataset, which
is randomly sampled from the database. We implement two

versions of complementary hashing, CHp and CH. CHp is
implemented as described in Alg. 2. Its hash tables, except
the first one, only index a part of the points of the database,
in order to save storage. CH is almost the same with CHp

and the only differences is that all the points are indexed
in every hash table. For all the experiments, LSH, CH and
CHp employ the same number of hash tables.

4.3. Comparison with Other Methods

We first do the experiment using Hamming ranking. The
performances of the five methods, in terms of the preci-
sion versus the number of retrieved points, are illustrated in
Fig. 2 and Fig. 3. Both LSH and CH use three hash tables
in all the experiments in this subsection.

As can be seen in the figures, CH outperforms the other
methods significantly, which justifies the statement in the
Introduction Section. That is, to retrieve more points, the
methods with a single hash table, say, SH and USPLH,
need to check the nearby hash buckets by increasing the
Hamming radius to search, which makes the number of
active buckets as well as the number of irrelevant points
involved grow exponentially. The ratio of true neighbors
drops quickly along with the increase of Hamming radius
to search, undermines the precision of these methods.

In contrast, the methods with multiple hash tables simul-
taneously check the nearby hash buckets in each hash ta-
ble, which hopefully can find enough true neighbors with-
out the necessity of growing the Hamming radius too large.
LSH constructs the hash tables in a random way, resulting
in the different hash tables may suffer from severe redun-
dancy, i.e., find the same proportion of true neighbors. CH
learns the hash tables in a complementary mechanism so
that such a redundancy across the hash tables is dramati-
cally reduced. The problem is more obvious for the short
hash codes, since in that case the hash bucket usually con-
tains more points. That’s why CH outperforms the other
methods more significantly for the short hash codes, e.g.,
K = 16. The performance of CHp is worse than CH but
better than the other methods. This is understandable since
it trades off the search accuracy for the storage efficiency,
i.e., CHp requires around 60% of the storage of CH in this
experiment.

Fig. 4 illustrates the performance of the five methods us-
ing Hash lookup. The points within Hamming radius 2 are
retrieved. Both CH and CHp outperform the other methods
using the hash codes of short and moderate length. US-
PLH works better when long hash codes, say, K = 48, 64,
are used. This is probably because it relaxes the orthog-
onal constraint (Eqn. (4)) of the hash hyperplanes, which
forces the hash projection to progressively select the direc-
tions that the variance of the data is small. This problem is
more obvious when the number of hash bit grows. That’s
why, in the case that long hash codes is used, the methods
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Figure 2. Comparison of the performance using Hamming ranking on the 20K LabelMe dataset. (a), (b) and (c) are the performances for
the hash codes of 16, 24 and 32 bits respectively.
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Figure 3. Comparison of the performance using Hamming ranking on the 1M SIFT dataset. (a), (b) and (c) are the performances for the
hash codes of 16, 24 and 32 bits respectively.

with the orthogonality constraint, say SH, CH and CHp,
even work worse than LSH, which randomly selects the
hash hyperplanes, for the LabelMe dataset. Our approach
can also have such an extension by relaxing the orthogonal
constraints.

4.4. AccuracyStorage Tradeoff
The proposed method enjoys the flexibility of trading off

the search accuracy with the storage cost. Such a trade-
off can be controlled by the two parameters, L and ϵ. L
is the number of hash tables, and fewer hash tables leads
to less storage overhead. In Fig. 5, we show the perfor-
mance of LSH and CH according to different L for the SIFT
dataset. Generally, both LSH and CH perform better when
more hash tables are used, and their performances trend to
be converged when L > 10. Due to the data-dependent
hash functions, CH performs better even with only a single
hash table. The second and third hash tables bring signif-
icant performance gain, and the contributions of the later
hash tables become less significant. This observation is in
line with the intuition, since the hash projections are learned
in a boosting way. In summary, CH constantly outperforms
LSH in the case that the same storage is required.

In the proposed method, we can also trade off the search
accuracy and the storage cost by adjusting the parameter ϵ,

which controls the number of points to be indexed by the
hash tables. In Fig. 6, we show the performance of CHp

for different ϵ for the SIFT dataset, together with the perfor-
mance of USPLH and SH for comparison. All the methods
use 24-bit hash codes. We can see that larger ϵ leads to bet-
ter performance, since larger ϵ indicates more data points
are indexed by the hash tables. The corresponding number
of data points indexed by the hash tables is shown in Tab. 2.
In the case of small ϵ, e.g., ϵ = 0.01, the proposed method
can still perform better than USPLH and SH, with only a
little storage overhead.

Table 2. The percentage of points indexed in the three hash tables
of CHp in the cases of different ϵ, corresponding to the perfor-
mance curves in Fig. 6.

Parameter Table#1 Table#2 Table#3
ϵ = 0.01 100% 13.3% 1.9%
ϵ = 0.03 100% 34.9% 12.4%
ϵ = 0.05 100% 50.9% 26.1%
ϵ = 0.2 100% 100% 100%

5. Conclusion
In this paper, we present the complementary hashing,

which is a kind of data-dependent hashing with multiple
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Figure 4. Comparison of the performance with Hash lookup on (a) 20K LabelMe dataset
and (b) 1M SIFT dataset. The points within Hamming radius 2 are retrieved.
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Figure 5. Comparison of LSH and CH in the
cases that different numbers of hash tables
are employed.
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Figure 6. The performance of CHp in the cases of different ϵ, to-
gether with the performance of USPLH and SH for comparison.

hash tables and is able to balance the precision and recall
more effectively. The hash tables are sequentially learned
from the data in a boosting manner, so that different hash ta-
bles are likely to contribute complementary parts of the true
neighbors of the query. We experimentally illustrate the ad-
vantages of adopting multiple complementary hash tables,
compared with LSH that constructs multiple hash tables in
the data-blind way, and the methods adopting only a single
hash table.
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