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ABSTRACT
For Internet based video broadcasting applications such as IPTV,

the Peer-to-Peer (P2P) streaming scheme has been found to be an
effective solution. An important issue in live broadcasting is to avoid
playback buffer underflow. How to utilize the playback buffer and
upload bandwidth of peers to minimize the freeze-ups in playback, is
the problem we try to solve. In this work, we propose a successive
water-filling (SWaF) algorithm for the video transmission scheduling
in P2P live streaming system, to minimize the playback freeze-ups
among peers. SWaF algorithm only needs each peer to optimally
transmit (within its uploading bandwidth) part of its available video
segments in the buffer to other peers requiring the content and pass
small amount message to some other peers. Moreover, SWaF has low
complexity and provable optimality. Numerical results demonstrated
the effectiveness of the proposed algorithm.

Index Terms— Peer-to-peer, scheduling, water-filling.

1. INTRODUCTION

Peer-to-Peer (P2P) live streaming has become a viable solution for
IPTV [4] services with medium quality video for a large number of
concurrent users [3]. With the popularity of video on demand appli-
cations over Internet, the traditional client-server and content server
at edge solutions are not adequate in handling dynamic viewer be-
haviors and do not scale well with a large audience. On the other
hand, the P2P based solutions utilizing application layer overlay are
becoming popular, because it is easy to implement and cheaper than
duplicating content servers at edges. The core benefit of P2P based
solution is that it utilizes the buffering and uploading capacities of the
participating peers, and provides a more scalable and robust content
delivery solution.

With the great success of many P2P streaming systems, e.g.,
PPLive [10], PPStream [11], CoolStreaming [14], there comes some
work analyzing the operation and tradeoff of such systems (see [13]
[6] [9] [2] and references therein). In [13] the authors investigate
the scaling law by quantitatively studying the asymptotic effects and
tradeoffs. Recently in [6] the authors analyze the pull-based P2P
streaming systems based on fluid model, and construct a simple 2-
hop scheduling algorithm for a buffer-less system. Systems with
buffer are also studied using extensive simulations. In [9] the au-
thors consider the resilience utilizing path diversity for multicast tree
based P2P streaming systems. In [2] the authors present a survey of
the media distribution methods, overlay structures and error control
solutions proposed for P2P live streaming. However, none of these
works gives an analytical model of the P2P streaming system under
heterogeneous buffer occupancies.

P2P downloading system, like Bit Torrent [12] has been exten-
sively studied. However, P2P downloading system does not consider
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real time playback constraint and thus does not have the playback
buffer underflow issues as is addressed in this paper.

In a P2P streaming system, it is desirable to minimize the proba-
bility of “freeze-ups” during the live video playback. In other words,
the extra buffered content (i.e., content reserve level) of each peer
should be kept positive. Paper [7] uses the well-known α-fair utility
function to model users’ satisfactory level of their current content re-
serve levels, and allocates network resources (i.e., transmission rates)
to all users to maximize the total utility. It shows that the optimal
solution can balance the buffer occupancy level among users and it
proposes a greedy heuristic solution that achieves the desirable result.

The heuristic in [7] is a centralized algorithm, which needs a co-
ordinator to do all the computing for scheduling. In a P2P network,
a distributed algorithm is favorable, where the computing load is dis-
tributed over peers. In this work, we propose successive water-filling
(SWaF) scheduling algorithm. In general, SWaF can be implemented
in a centralized way, moreover, for the case where the propagation
delay of the message passing is small compared with the time inter-
val for uploading capacity to vary, SWaF can be implemented in a
distributed way, where every peer can solve its local problem, with
some message passing to other peers. Theoretically we prove the op-
timality of proposed sWaF algorithm, and we show that our algorithm
is even simpler than the heuristic in [7].

The rest of this paper is organized as follows. In Section II, we
provide the system model and problem formulation. In Section III,
we propose the successive water-filling algorithm. We present nu-
merical examples in Section IV and in Section V we summarize our
results and propose future work.

2. SYSTEMMODEL

As in [7], we consider a P2P system with a video source and N
peers, with uploading bandwidth C0, C1, · · · , CN respectively. Let
the content be streamed over all peers with a constant bit rate (CBR)
R0. The playback buffer of each peer k is characterized by the buffer
state tuple, {xk, tk, yk}, where xk and yk are the buffer content start-
ing point and ending point, respectively, and tk is the current play-
back time. The content reserve level is yk − tk, which is the video
segment remained in the buffer to be played.

For a scheduling interval T seconds, within its uploading capac-
ity Cj , each peer j provides a content of playback time zj,k to peer
k if the content is available (0 ≤ zj,k ≤ yj − yk), and within its up-
load capacity C0 the source provides a content of playback time z0,k

to peer k. Then peer j transmits in a total bit rate of
∑

k
zj,kR0/T

which should be no greater than Cj . The content reserve level of
each peer k becomes

∑N

j=0
zj,k + (yk − tk).

An important consideration for P2P live video streaming system
is to prevent peer buffers from underflow which may cause unpleas-
ant “freezes” in the playback. Since each peer gets the content via
the uploading link of other peers, and each peer wants high content
reserve level, the peers are competing for the uploading bandwidth.
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Fig. 1. Content provision pattern based on availability.

The limited uploading bandwidth needs to be allocated reasonably to
make each peer have enough content reserve level. To characterize
the system requirement, as in [7], we adopt a model similar to the
network utility maximization framework in [5], to maximize the total
happiness about playback smoothness of all the peers, where the hap-
piness of peer k is measured by a utility function, Uk(lk), for content
reserve level lk.

In general, Uk(lk) is a concave function in lk, which means the
increase of the happiness slows down as the reserve level lk gets
larger. An example of such concave function is, as adopted in [7],
the well-known α-fair utility function [8], Uk(lk) = wk

l
1−α
k

1−α
, where

wk (a positive number) is the weight indicating the relative impor-
tance of peer k in the system and α ∈ (0, 1) is a parameter.

Hence, the problem of uploading bandwidth allocation is formu-
lated as follows,
maximize

∑
k

Uk(
∑N

j=0
zj,k + (yk − tk))

subject to
∑

k
zj,k ≤ βCj ,

0 ≤
∑

j∈J
zj,k ≤ max{0, maxj∈J yj − yk},

j ∈ {0, 1, · · · , N}, k ∈ {1, · · · , N}
variables zj,k,

(1)

where β = T/R0, J is any subset of {0, 1, · · · , N} \ {k} . In this
problem, the goal is to maximize the total utility over the playback
buffer content reserve level, the first constraint states that the serving
rate of the source or the peer should be no grater than the uploading
capacity, and the second constraint states the content availability and
no transmission repetition of content.

In [7], a centralized solution based on a greedy heuristic is pro-
posed for a discrete version of problem (1) where the unit for the
playback buffer is Group of Pictures (GoP), instead of the continu-
ous time as in problem (1). In the following, we propose a distributed
successive water-filling (SWaF) algorithm, where every peer solves
its local problem, with some message passing to other peers. Theo-
retically we show that SWaF yields an optimal solution of (1). Com-
putationally, SWaF is simpler than the algorithm in [7]. Note that in
general, SWaF can be implemented as a centralized solution if a peer
with good computing capacity is selected as a coordinator.

3. SUCCESSIVE WATER-FILLING (SWAF) ALGORITHM

For a practical solution, we assume a small group consisting of a
source and N peers from all the peers in the system forms a cooper-
ative group. The SWaF algorithm is within each cooperative group.

Denote θk as the content reserve level. Initially (at the beginning
of current scheduling interval), θk = yk − tk. Suppose y1 ≥ y2 ≥
· · · ≥ yN , which means each Cj (j = 0, 1, 2, · · · , N − 1) can serve
peers j + 1, j + 2, · · · , N . Note that zj,k = 0, j ≥ k because peer
j cannot serve peer k ≤ j due to the content availability. We assume
zj,k ≤ yj − yk for j < k, which means peer j has enough content to
serve peer k > j. Figure 1 shows the content provision pattern.

We propose the following distributed SWaF algorithm.

3.1. Distributed SWaF Algorithm

1. Initialization:
Every peer k, k = 1, 2, · · · , N , reports its yk to peer 0 (this can

be any other peer as well), then peer 0 sorts all the yk’s and then
reports every peer k its neighbors k − 1 and k + 1 according to the
sort result y1 ≥ y2 ≥ · · · ≥ yN .

Peer k asks peer k + 1 for its initial θk+1.
Every peer has one bit Cur flag with initial value zero. Cur flag=1

means current peer is running water-filling algorithm.
Peer 0 asks peer N − 1 to set its Cur flag=1.
2. Each peer j (j = N−1, N−2, · · · , 1, 0) does the following:
IF peer j’s Cur flag=1
Peer j calculates zj,k for k = j + 1, · · · , N , using water-filling

approach:
zj,k = max{U ′−1

k (λj)− θk, 0}, k = j + 1, · · · , N, (2)

where λj is a positive number which is chosen such that
∑N

k=j+1
zj,k =

βCj . λj is found by bisectional search.
Peer j sets its Cur flag=0.
Peer j (j �= 0) updates θk = θk + zj,k, for k = j + 1, · · · , N ,

passes them to peer j − 1.
Peer j (j �= 0) asks peer j−1 to set its Cur flag=1; Peer j (j = 0)

reports ‘The End’.
END IF

Note that zj,k, as calculated in (2), is a water-filling solution of
the following optimization problem,

maximize
∑N

k=j+1
Uk(zj,k + θk)

subject to
∑N

k=j+1
zj,k ≤ βCj

variables zj,k, k ∈ {j + 1, · · · , N}.

(3)

By Lagrange dual approach and KKT condition [1], it is read-
ily verified that the optimal solution of the problem (3) is the water-
filling solution as calculated in (2), where λj is the Lagrange multi-
plier associated with the constraint in (3).

3.2. Optimality

Proposition 1 SWaF algorithm yields an optimal solution for prob-
lem (1) assuming the second constraint is satisfied.

Proof:
First, we look atCN−1. Since peerN−1 can only serve peerN ,

it is easy to check SWaF algorithm gives zN−1,N = βCN−1 which
is the optimal solution.

Then, we look at CN−2. Since peer N − 2 can only serve peer
N − 1 and peerN , at the optimum we have zN−2,N−1 + zN−2,N =
βCN−2. Note that in problem (1) the first inequality constraint be-
comes equality at the optimal. We have the following,

max ∑N
k=j+1

zj,k = βCj

j = 0, 1, · · · , N − 1

∑N

k=1
Uk(

∑k−1

j=0
zj,k + θk)

= max ∑N−2

k=j+1
zj,k ≤ βCj

j = 0, 1, · · · , N − 3

∑N−2

k=1
Uk(

∑k−1

j=0
zj,k + θk)

+max
zj,N−1+zj,N =βCj−

∑N−2

k=j+1
zj,k,j=0,1,··· ,N−2

[UN−1(
∑N−2

j=0
zj,N−1 + θN−1)

+UN (
∑N−2

j=0
zj,N + βCN−1 + θN )]

= max ∑N−2

k=j+1
zj,k ≤ βCj

j = 0, 1, · · · , N − 3

∑N−2

k=1
Uk(

∑k−1

j=0
zj,k + θk)

+max
zj,N−1+zj,N =βCj−

∑N−2

k=j+1
zj,k,j=0,1,··· ,N−3

[UN−1(
∑N−2

j=0
zj,N−1 + θN−1)

+UN (
∑N−2

j=0
zj,N + βCN−1 + θN )]|zN−2,N−1,zN−2,N :P

= max∑
N
k=j+1

zj,k=βCj ,j=0,1,··· ,N−1
∑N

k=1
Uk(

∑k−1

j=0
zj,k + θk)|zN−2,N−1,zN−2,N :P

(4)
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Fig. 2. Illustration of water-filling.

where P is the problem of max [UN−1(zN−2,N−1 + θN−1) +
UN (zN−2,N + θN )] over variables zN−2,N−1, zN−2,N with con-
straint zN−2,N−1 + zN−2,N = βCN−2. Equation (4) shows that an
optimal zN−2,N−1 and zN−2,N can be derived by solving P , where
P can be solved by a water-filling algorithm.

Similarly, given the optimal zN−1,N , zN−2,N−1 and zN−2,N

derived in previous steps, we further assign CN−3 by a correspond-
ing water-filling algorithm getting an optimal zN−3,k for k = N −

2, N − 1, N where
∑N

k=N−2
zN−3,k = βCN−3.

Successively, when SWaF algorithm finishes assigning C0, we
get an optimal solution. �

3.3. Complexity

The complexity of SWaF algorithm is O(N log Λ), where N is
the number of peers and Λ is the number of equal-partitions of
the searching interval of Lagrangian multiplier of the water-filling
algorithm where the partition is based on the accuracy tolerance.

The complexity of the algorithm in [7] is O(NM) where M is
the number of GoPs transmitted by one peer in a scheduling interval.
As our numerical results show, SWaF is simpler than the algorithm
in [7], and this advantage is more obvious whenM is large. Note that
if the accuracy tolerance for the scheduling by SWaF algorithm is
about one GoP, SWaF has a complexity O(N log M). This explains
that whenM is large, the simplicity of SWaF is more obvious.

3.4. Remarks

We have the following comments on SWaF.
Remark 1. We assume the second constraint in problem (1) is

satisfied above, which means the solution of z happens to satisfy the
constraint. If we do not have such assumption, the water-filling in (2)
becomes

zj,k = min{yj − (yk + θk), max{U ′−1

k (λj)− θk, 0}}, (5)

and correspondingly, in the initialization of SWaF, peer j needs peer
k, k = j + 1, · · · , N to pass its yk to peer j.

Remark 2. If all the peers use the same concave utility function,
the shape of the utility function does not affect the algorithm. This
is because, in such case, U ′−1

k (λj) in the water-filling algorithm (2)
will become a commonU ′−1(λj), which can be interpreted as ‘water
level’ [1], and a direct bisectional search for the ‘water level’ can be
done instead of the bisectional search for λj . The ‘water level’ is of
our interest for the optima, not the dual variable λj . The illustration
for this case is shown in Fig. 2. It is easy to see that the ‘water level’
is in the interval of [min θk +βCj/(N−j), max θk +βCj/(N−j)]
and the bisectional search is easy and fast.

Remark 3. SWaF only gives one optimal solution of problem (1).
Note that the optimal solution of problem (1) may not be unique.

Remark 4. SWaF here is in a distributed fashion, but in general, it
can be implemented centrally, if a peer with good computing capacity
is selected as a coordinator and it does all the computing.
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Fig. 3. Peer buffer content reserve states.
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Fig. 4. Number of iterations for water-filling at each serving peer.

Remark 5. When SWaF is in a distributed fashion, the dynamics
of bisectional search for λ is local, which means each peer k searches
its own λk, and would not affect the upload-link dynamics of others.

Remark 6. Distributed SWaF requires the scheduling interval
greater than the total computing time and message passing time. Note
that since SWaF is a successive algorithm, the propagation delay of
the message passing accumulates. Hence for the case where upload-
ing capacity varies slowly w.r.t. time, distributed SWaF is a good
choice, while for the case where uploading capacity varies fast, SWaF
in a centralized fashion may fit well.

4. NUMERICAL RESULTS

To verify the performance of the proposed algorithm, we set up P2P
sessions with the following parameters similar to [7], video play-
back rate R0 = 300 kbps, uploading bandwidth standard variation
40 kbps. The average uploading bandwidth is C =

∑N

j=0
Cj/N .

We assume each peer has the same utility function. In [7], the advan-
tage of utility-based scheduling compared with utility-blind schedul-
ing has been illustrated and it is not our focus in this work. Here we
focus on how the distributed SWaF algorithm works.

Consider a system with a source (peer 0) and 6 peers (peer
1, · · · , 6). Assume the scheduling interval T = 4 seconds. As-
sume the initial playback buffer reserves for peer 1, · · · , 6 are
(9,7,8,11,12,10) seconds, respectively. Assume the initial buffer
ending times are (y1, · · · , y6) = (30, 24, 20, 16, 11, 6). The aver-
age uploading bandwidth is C = 324.6 kbps=1.28R0.

Figure 3 shows the peer buffer content reserve states for a suc-
cessive water-filling carried out by a sequence of working (serving)
peers (peer 5,4,3,2,1,0). It can be seen that SWaF has the tendency to
make all the peers have similar (fair) content reserve level. It is read-
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Fig. 5. Changes of uploading bandwidth.
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Fig. 6. Performance with time-varying uploading bandwidth.

ily verified that the greedy heuristic in [7] actually gives a solution
similar to SWaF algorithm in a discrete version with segment of GoP.

Figure 4 shows the number of iterations for water-filling at
each serving peer (peer 5,4,3,2,1,0), with an accuracy tolerance 2%,
i.e., the bisectional search ending condition being |

∑N

k=j+1
zj,k −

βCj | ≤ 0.02 for all j. The average iterations over 6 peers is 4.5 in
this figure which is just a random case. We run 105 cases for different
uploading capacities, and we find an average iterations 4.58. For the
same setting, the average iterations over 6 peers for the algorithm
in [7] is 8, where for each iteration it has the similar computing com-
plexity as in SWaF algorithm. Hence we can see SWaF algorithm
has the advantage of low complexity.

The advantage of low complexity of SWaF can be more obvious
when it is compared with the algorithm in [7] for a scheduling in-
terval of more number of GoPs. For a scheduling interval T = 8
seconds, 105 cases of different uploading capacities are tested. An
average number of iterations over 6 peers is about 5.54 with an accu-
racy tolerance 2%, while the heuristic in [7] needs 16 iterations.

Assume the uploading bandwidth varies from one scheduling in-
terval to another, but fixed for each scheduling interval. The SWaF
algorithm is effective for such system. For the same 6 peers set up, we
let uploading bandwidth vary as plotted in Fig. 5, where the average
bandwidth is marked in circle. Each scheduling interval T is 4 sec-
onds. Figure 6 shows the content reserve level for 6 peers. The figure
doesn’t show the detailed reserve level for every water-filling, but it
shows the reserve level after every 6 water-fillings in one scheduling
interval. Here we assume the total time of computing and message
passing in one scheduling interval is much less than T . As discussed
in Remark 6, if the total time of computing and message passing in
one scheduling interval is more than T , SWaF is better to be imple-
mented centrally where a coordinator does all the computing.

5. CONCLUSIONS AND FUTUREWORK

In this paper we develop a successive water-filling algorithm (SWaF)
to solve the video segment scheduling for P2P live video streaming
system. We prove the optimality of SWaF and show it has lower
complexity compared with the heuristic algorithm in [7]. In general,
SWaF can be carried out in a centralized fashion, (note that the al-
gorithm in [7] is centralized as well), if a peer with good computing
capacity is selected as a coordinator and it does all the computing.
Moreover, for the case where the propagation delay of the message
passing is small compared with the time interval for uploading ca-
pacity to vary, SWaF can be carried out in a distributed fashion where
the optima can be found by each peer solving its own problem with
some message passing over peers. The numerical results show the
effectiveness of SWaF algorithm.

For future work, we will investigate alternative distributed algo-
rithms. We have investigated a price based distributed algorithm sim-
ilar to the algorithm in [5], but it seems a slow convergence. We will
study more and compare it with SWaF. In addition, we will include
the end-to-end transmission delays in the system modelling and sim-
ulations. We will also investigate richer video adaptation schemes
and quality metrics in conjunction with underlying P2P distribution
scheme, and work towards a graceful degradation in playback when
system resources are limited.
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