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Abstract. With the amount of sequence data deluge as a result of next generation
sequencing, there comes a need to leverage the large-scale biological sequence da-
ta. Therefore, the role of high performance computational methods to mining in-
teresting information solely from these sequence data becomes increasingly impor-
tant. Almost everything in bioinformatics counts on the inter-relationship between
sequences, structure and function. Although pairwise statistical significance (PSS)
has been found to be capable of accurately mining related sequences (homologs),
its estimation is both computationally and data intensive. To keep it from being
a performance bottleneck, high performance computation (HPC) approaches are
used for accelerating the computation. In this chapter, we first present the algorithm
of pairwise statistical significance, then highlights the use of such HPC approach-
es in acceleration of estimation of pairwise statistical significance using multi-core
CPU, many-core GPU, respectively, which both enable significant improvement of
accelerating pairwise statistical significance estimation (PSSE).

Keywords. pairwise statistical significance, sequence mining, high performance
computation (HPC), multi-core CPU, many-core GPU

1. Introduction

The recently years have witnessed the emergence of new sequencing platforms, high-
er accuracy, more reads, highlighting longer reads, and cheaper genomes [1]], which re-
sults in a dramatically increasing trend in the quantity and variety of publicly available
genomic and proteomic sequence data. As of October 2012, for instance, there are ap-
proximately 145,430,961,262 bases from 157,889,737 reported sequences in GenBank
[2]. Furthermore, the number of bases in GenBank still continues to grow at an expo-
nential rate, doubling in size every 18 months since 1982 (Moore’s Law at work again).
Worldwide sequencing capacities currently exceed 15 petabases per year [3]]. “Big data”
sets demand more computing power. Under the scenario of unprecedented flood of data
generated by the next generation of DNA sequencers, how to handle these data, make
sense of them, and enable them accessible to biologists working on a wide diversity of
problems places unique challenges upon bioinformatics [4].

Data mining aims to recognize patterns and construct the relationships from a raw
data and transform it into a comprehensible form for further use. Especially, the “raw
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data” in bioinformatics refers to genomic sequence. There exist many complex data min-
ing tasks, which often cannot be handled directly by traditional data mining algorithms.
In bioinformatics, data handling is now becoming a bottleneck of knowledge discovery,
which costs more to analyze a genome than to sequence a genome. In fact, genomic da-
ta mining and knowledge extraction for biological problems has become one of top 10
challenging problems in data mining research [JS].

Almost everything in bioinformatics depends upon mining the inter-relationship be-
tween sequence, structure and function (all encapsulated in the term relatedness), which
is far from being well understood [6].

The recently proposed pairwise statistical significance (PSS) has been shown to be
a promising alternative to the database statistical significance (DSS) for the purpose of
identifying homologs [7H9]. Although shown to be accurate, pairwise statistical signifi-
cance estimation (PSSE) is both computationally and data intensive. An unscalable im-
plementation will become a performance bottleneck to be practically useful for many
large-scale applications. Thus, use of high-performance computing (HPC) techniques is
highly conducive to accelerate the computation of PSSE.

Since the multi-core computers or laptops and clusters have become increasingly
ubiquitous and more powerful, it is of interest to use high performance technologies to
unlock the potential of computers or laptops and clusters. At the same time, with many-
core Graphics Processing Unit (GPU) becoming increasingly powerful, inexpensive, and
relatively easy to program, it has become a very attractive hardware acceleration plat-
form. Those strongly motivate the use of multi-core CPUs [10}, [11], many-core GPUs
[12,[13] or FPGAs [[14] to accelerate the PSSE.

Based on the above observation and motivation, in this chapter, we highlight to
present OpenMP, MPI and their hybrid, and GPU implementations to accelerate the
PSSE, which help. After careful performance analysis, we have efficiently distributed the
compute-intensive kernels of the algorithm across processors (cores), so as to reap the
maximum benefits of OpenMP or/and MPI paradigms, CUDA as well.

2. Background
2.1. Why Statistical Significance?

Pairwise sequence alignment (PSA) forms a crux of both DNA and protein sequence
comparison techniques. It in turn builds the basis of many other applications in bioin-
formatics, such as database search, finding protein function, protein structure, phyloge-
netic analysis, etc, for making various high level inferences about the DNA and protein
sequences. PSA is one of the most widely used methodology that tries to mine such re-
latedness hidden from proteomic and genomic data. Many bioinformatics applications
have been developed on the basis of PSA, such as BLAST [15]], PSI-BLAST [16], and
FASTA [17].

Biologists usually use pairwise alignment programs to identify similar, or more
specifically, related sequences or homologs (having common ancestor). A typical pair-
wise alignment program aligns two sequences and constructs an alignment with maxi-
mum similarity score. PSA produces a score for an alignment as a measure of the sim-
ilarity between two sequences. In general, the higher the score, the more related the
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Figure 1. Two different distributions of alignment score

sequences. However, the alignment score counts on various factors such as alignment
methods, sequence lengths, sequence compositions and scoring schemes, and so forth
[[18]]. Therefore, estimating the relationship between two sequences solely depended on
the scores may lead to a bias conclusion.

To determine whether the resulting similarity (represented by score) between two
sequences implies an evolutionary link or not, one has to know how probable it is that
we could have obtained the same score by aligning completely unrelated (e.g., random-
ly chosen) sequences [19]]. Therefore, statistical approaches are often used to address
the problem. The task related to estimating the significance of an alignment score, in
essence, is estimating data reliability and how well the data support a specific hypothesis
or prediction. Fig. |1| shows that two alignment score distributions (probability density
functions) “Dist. A” and “Dist. B”. Assuming that scores x and y are in the score distri-
butions A and B, respectively. Obviously, x <y, but x is more statistically significant than
¥, since x lies more in the right tail of its distribution, meaning that it is less probable to
have occurred by chance. The shaded region in this figure presents the probability which
a score equal or higher could have been obtained by chance.

Statistical significance represents the likelihood that the resulting similarities in
terms of alignment score between two sequences. It is very useful to judge whether the
similarity is a functional or evolutionary link, or a chance event [18]. As a result, ac-
curate estimation of statistical significance of sequence alignment has attracted a lot of
investigation in recent years [8} 9} [12, 20432].

The statistical significance of the resulting sequence alignment score between the
sequences can be presented by the probability (i.e., P-value) that random or unrelated
sequences could be aligned to generate the same score. The term “P-value” here rep-
resents the probability of an alignment with this score or higher occurring by chance
alone. If an alignment score has a low probability of occurring by chance, the alignment
is considered statistically significant, and hence potentially biologically significant.

These statistical approaches can be based upon theoretical models or upon permu-
tation reconstructions of the observed sequences [33]. However, it is only possible when



the distribution of the alignment scores is known precisely, which can be obtained by
aligning many pairs of random sequences.

2.2. Pairwise Statistical Significance

When two sequences are aligned optimally, the significance of a local alignment score
can be tested on the grounds of the distribution of scores expected by aligning two ran-
dom sequences of the same length and composition as the two test sequences [33H35]].

The optimal alignment scores of random sequences, assessed from high scoring seg-
ments pairs, follow a Gumbel distribution (a type I extreme value distribution, EVD
[18,[191133]). The EVD, to some extent, is like a normal distribution but with a positively
skewed tail in the higher score range. It is a limiting distribution for the maximum or
the minimum of a large collection of random observations from the same arbitrary dis-
tribution. In particular, herein the maximum observations refer to the optimal alignment
scores, whose distribution can be deduced not only from reliability theory [36], but from
Karlin-Altschul model [33]).

The remarkable Karlin-Altschul model interprets the number of highest scoring
matching regions above a threshold by a Poisson distribution. Briefly, considering the
query sequence Seq; = ajay---ay, and the subject sequence Seq> = b1b; - -- by, where
m = |Seq1| and n = |Seq»| are their lengths, respectively, the scoring scheme SC (substi-
tution matrix, gap opening penalty, and gap extension penalty, etc.,), the expected num-
ber of distinct local alignments with score values of at least x is approximately Poisson
distributed with mean

E(x) ~ Kmne™** | ey

where A and K are calculational constants depending on the scoring scheme and average
compositions of sequences based on the Poisson distribution hypothesis [33}37].

Based on Gumbel distribution, the probability of finding an ungapped segment pair
with a score lower than x, can be defined by:

P(S(Seq1,Seqr) < x) = o~ Kmne ™M )

Correspondingly, P-value represents the probability of observing at least one score
S greater than or equal to a score x in the set of alignment scores, which is given by:

P(S(Seq,Seqz) > x) =1—P(S(Seqi,Seqz) < x)

=1 _emenei)Lx =1 e*E(x) . (3)

Formula can also be generalized to apply to multiple sequences, allowing the
significance of specific sequence alignments to be evaluated [33]]. Through the Taylor
expansion of equation , the P-value can be approximated by the E-value when E (x) <
0.01.

In general, there are two primary methods to estimate the statistical significance of
local sequence alignment. One is called database statistical significance (DSS) reported
by many popular database search programs, such as BLAST [38]], FASTA [17], and



SSEARCH (using full implementation of Smith-Waterman algorithm [39]). This method
depends on the size and composition of the database being searched. The other method
is called the pairwise statistical significance (PSS) proposed by Agrawal et al. [[7]], which
is specific to the sequence-pair being aligned, and independent of any database.

In particular, pairwise statistical significance is an attempt to make the statistical
significance estimation procedure more specific to the sequence pair being compared. In
addition to not needing a database to estimate the statistical significance of an alignment,
pairwise statistical significance is shown to be more accurate than database statistical
significance reported by popular database search programs like BLAST, PSI-BLAST,
and SSEARCH [[7]].

This brings us to the formal definition of pairwise statistical significance. Consid-
er that the scoring scheme SC (substitution matrix, gap opening penalty, gap extension
penalty), and the number of permutations N, the PSSE of two sequences is represented
as:

PSSE(Seq1,Seqy,m,n,SC,N) . %)

Through permuting Seg, N times randomly, the function 4| generates N scores by
aligning Seq; against each of the N permuted sequences and then fits these scores to an
EVD [17,118,134] 135]] using censored maximum likelihood [40].

Note that the EVD distribution only applies a gapless alignment. However, local se-
quence alignment methods are used to find the best-matching pairwise alignments with
gap penalties. For the cases of gapped alignment, although no asymptotic score distribu-
tion has yet been established analytically, computational experiments strongly indicate
these scores still roughly follow Gumbel law after pragmatic estimation of the A and K
parameters 17, 18} 134} 135].

In the sense of gapless alignment, the parameters of the EVD can be obtained by
theoretical computation. However, we cannot get these parameters through the same way.
As a thumb of rule, the fitting for parameters is often used. A good fit play a great role
in performance improvement of pairwise statistical significance in terms of homolog
detection.

Through permuting Seq2 N times randomly, the function [4] generates N scores by
aligning Seq1 against each of the N permuted sequences and then fits these scores to an
EVD [17,134} 135]] using censored maximum likelihood [40].

Note that the EVD distribution only applies to a gapless alignment. However, local
sequence alignment methods are used to find the best-matching pairwise alignments with
gap penalties. For the cases of gapped alignment, although no asymptotic score distribu-
tion has yet been established analytically, computational experiments strongly indicate
these scores still roughly follow Gumbel law after pragmatic estimation of the A and K
parameters [[17,[18,|34}35]]. In the sense of gapless alignment, the parameters of the EVD
can be obtained by theoretical computation. However, we cannot get these parameters
through the same way. As a thumb of rule, parameter fitting is commonly used. A good
fit plays a crucial role in performance improvement of pairwise statistical significance in
terms of homology detection.



3. HPC Solutions to Accelerate PSSE

Although the estimation of PSS has been shown to be accurate, it involves thousands of
such permutations and alignments, which are enormously time consuming and can be
impractical for estimating pairwise statistical significance of a large number of sequence
pairs. For instance, for our experiments with 86 query sequences and 2771 subject se-
quences, the sequential implementation takes more than 32 hours.

Therefore, applying high performance computing (HPC) techniques provides more
opportunities of accelerating the estimation in reasonable time. Multi-core computers
and clusters have become increasingly ubiquitous and more powerful. Therefore, it is
of interest to unlock the potential of multi-core desktops and clusters using high perfor-
mance technologies. On the other hand, with general purpose graphics processing units
(GPGPUs) becoming increasingly powerful, inexpensive, and relatively easy to program,
it has become a very attractive hardware acceleration platform. Those strongly motivate
the use of multi-core CPUs, many-core GPUs or their hybrid to accelerate the estimation
of PSS.

3.1. The paradigms of high performance computation techniques

In 2006, Berkeley released a technology report [41] about parallel computing research.
According to this report, since power is proving to be the dominant constraint for present
and future generations of processing elements, the trend of future processors would be “
Small is Beautiful”. Now the semiconductor industry has settled on two main trajectories
for designing microprocessors [42]], i.e., multi-core trajectory and many-core trajectory.
The multi-core trajectory, mainly walked by (©)Intel and (©)AMD, began with two-core
processors, with the number of cores doubling with each semiconductor process gener-
ation. The many-core trajectory began with a large number of far smaller cores. An ex-
ample is the NVIDIA C2050 Graphics Processing Unit (GPU) with 448 cores, each of
which is a heavily multi-threaded, single instruction issue.

To harvest the benefits of all the new generation parallel hardware including multi-
core CPU and many-core GPU, one has to develop a parallel program to work with the
hardware together. As a result, the four important models used in developing applications
are shared-memory model (OpenMP paradigm), distributed memory model (message
passing model, that is, MPI paradigm), distributed-shared memory model (the hybrid of
the previous two), and attached memory model (for example, CUDA, only works for
NVIDIA GPU). These paradigms are discussed as follows.

3.1.1. OpenMP paradigm

In past several decades, most classes of applications have harvested free and regular
performance gains, even without releasing new versions or doing anything special, since
the CPU manufacturers and memory and disk manufacturers have reliably enabled ever-
newer and ever-faster mainstream systems. However, As claimed by Herb Sutter, “the
free lunch is over” [43]].

In recent years, the several CPU vendors, such as AMD® and Intel®, have shifted
gears away from heading for more clock speeds to adding parallelism support on-chip
with multicore processors (i.e., putting more simpler and smaller cores on a single chip
compared to before). This practice can bypass many of the technological obstacles (such
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Figure 2. The non-uniform memory architecture for hybrid parallel programming paradigms

as energy and other constraints on processor designs) that CPU vendors are encountering
while trying to boost speeds. But only if an application takes advantage of these multiple
cores, it is able to harvest the benefits. This is where OpenMP paradigm sets foot in this
picture

OpenMP is an application programming interface (API) that may be used to im-
plement a multi-threaded, shared memory parallel algorithm. It supports multi-platform
shared memory multiprocessing programming in C/C++ and Fortran. It consists of a set
of compiler directives, environment variables, and library routines that determine run-
time execution. OpenMP directives can be added to a sequential source code to instruct
the compiler to execute the corresponding block of code in parallel. The main advan-
tages of this technique are relative ease of use and portability between serial and multi-
processor platforms, as for a serial compiler the directives are ignored as comments [44]].

3.1.2. MPI paradigm

Currently, the most often-used parallel programming paradigm is the flat MPI mode, in
which each single-threaded MPI process is executed on one core. However, the growth in
memory capacity is not keeping pace with the growth in the number of cores. Therefore,
this programming model of MPI everywhere is not likely to be a viable model on these
newer architectures simply because of the reduced amount of memory per core [43]. It is
important to investigate a hybrid paradigm (for example, a combination of OpenMP and
MPI) to avoid these issues [46].

3.1.3. Hybrid paradigm

The hybrid paradigm can match the characteristics of the cluster of multicore nodes very
well, since it allows for a two-level communication pattern (i.e., intra-communications
among cores within a node and inter-node communications among different nodes), as
shown in Fig.[2] The main benefits of the hybrid paradigm is to take advantage of process



level coarse-grain parallelism, in which one MPI process executes on each multi-core
processor, and fine grain parallelism on a loop level, in which each MPI process spawns
a team of threads to occupy the multicore processor when encountering parallel sections
of code using OpenMP.

3.1.4. CUDA

Although GPUs were originally designed as highly effective graphics accelerator, the
modern programmable GPUs have evolved into highly parallel, many core processors
with tremendous computational power and huge memory bandwidth [47]]. This makes
them more effective compared to general-purpose CPUs for a wide range of applications.

In 2007, NVIDIA released GPUs with Compute unified device architecture (CUD-
A), a software and hardware co-processing architecture. CUDA is a computing engine
of GPUs that is accessible to developers through a minimalist set of variants of indus-
try standard programming languages such as C/C++ and Fortran. Third party wrappers
are also available for Python, Perl, Java, Ruby, and MATLAB, which allows applica-
tion developers to write scalable multi-threaded programs for CUDA-enabled GPUs with
familiar languages.

Although the current generation of GPUs provides much higher computational par-
allelism than the CPUs, memory management is still more complex compared to CPU.
To obtain high performance, a developer needs to have a good understanding of the hi-
erarchy and features of the GPU memory. An insightful discussion on memory manage-
ment and optimizations of GPUs could be found in Ref. [48].

3.2. implementations

Careful analysis of the data pipelines of PSSE shows that the computation of PSSE can
be decomposed into three computation kernels: (1) Permutation: generating N random
sequences by permuting Segs; (2) Alignment: aligning the N permuted sequences of Seq2
(also known as subject sequence) with Seql (known as query sequence) using Smith-
Waterman algorithm [39]; and (3) Fitting: obtaining statistical constants K and A by
fitting the scores produced in (2) into an EVD, then returning the PSS between sequence
pair Seq1 and Seq2 according to Equation[3]

However, permutation and alignment comprise the overwhelming majority (more
than 99.8%) of the overall execution time [[12]]. Therefore, efforts should be spent to
optimize these two kernels to achieve high performance.

Therefore, efforts should be spent to optimize these two kernels, which will result in
net significant improvements to the performance of the algorithm as a whole.

Also, we observe that permutation presents high degrees of data independency that
are naturally suitable for single instruction, multiple threads (SIMT) architectures and
therefore, can be mapped very well to task parallelism models of multi-core CPU and
many-core GPU. In this part, we present MPI, OpenMP and GPU implementations. Fur-
thermore, we analyze potential reasons for these performance differences.

3.2.1. implementation setup

We carried out the MPI and OpenMP implementations on Cray XE6 machines (provid-
ed by Hopper system at NERSC), each with 24 cores and 32 GB memory. Each node



contains two twelve-core AMD® “Magny-Cours” @2.1 GHz processors. As for GPU
implementations, they are carried out using Intel© Core™ i7 CPU 920 processors run-
ning at 2.67 GHz. The system has 4 cores (each with 2 threads), 4 GB of memory, dual
Tesla C2050 GPU (each with 448 CUDA cores). All the implementations are running in
64-bit Linux operating system, and the program has been compiled using gcc 4.4.1 and
CUDA 4.1. All the performance in terms of speedup is computed over the corresponding
sequential implementation.

The sequences data used in this work comprise of a non-redundant subset of the
CATH 2.3 database [49]]. This dataset consists of 2771 domain sequences as our subject
sequences library, which represents 1099 homologous superfamilies and 623 topologies
and includes 86 CATH queries serving as our query set.

3.2.2. MPI implementations

(1) Intuitive strategy

As discussed in the previous section, the kernels of permutation and alignment are
independent of each other during the pairwise statistical significance estimation proce-
dure, which map very well to programming models capable of expressing MPI task par-
allelism. The pairwise statistical significance estimation (PSSE) of single-pair sequences
processes only one pair of query and subject sequences. The idea of computing single-
pair PSSE is as follows.

Given the query sequence A and the subject sequence B, to compute PSSE, thou-
sands (say N) of randomly permutations of B are needed. To obtain these N random se-
quences of B, first, a set of N random numbers is generated. Each MPI process then gen-
erates new random numbers using its own seed and swap the characters of B accordingly
to obtain a permuted sequence. Thus the N random permutations of B are obtained in
parallel. The algorithm then uses Smith-Waterman to compute alignment score of A and
the N permuted copies of B in parallel. The scores are then gathered by process O for
fitting.

The multi-pair PSSE processes multiple queries and subject sequences. In the rest
of chapter, we mainly discussed multi-pair PSSE since the benefits of HPC are harvested
usually when the bigger data are available.

The intuitive strategy for multi-pair estimation of PSS is simply extended from Ref.
[S0]. That paper discusses the parallelization of estimation of PSS of a single pair of
query and subject sequences. We just execute that for each query and subject sequence
pair. The main disadvantage of this policy is that a higher overhead of communication
among processes has to be paid, as the query and subject sequences have to be broadcast-
ed to all the processes. Also, communication is required for gathering alignment scores
for each pair. Moreover, only the root performs the task of fitting. See Ref. [[1L1]] for more
details about the MPI implementation.

(2) Tiling strategy

Unlike in the intuitive strategy, the tiling strategy employs a more coarse-grained
parallelism. Tiling strategy partitions the sequence database into different disjoint sets
of subject sequences and assigns one set to each process. Therefore, each process has
a subset of subject sequences and all the query sequences and can estimate the PSS of
each pair independent of other processes. This enhances data locality on single node and
reduces the overhead of communication.
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Figure 3. The speedup of MPI implementations using two different strategies

In order to achieve higher efficiency for this parallelization, the workload of each
node should be roughly equal. The workload of the estimation of PSS process mainly
depends on the length of query and subject sequence. Therefore, instead of distributing
roughly equal number of subject sequences to different processes, this method partitions
sequences based on the total length of sequences. This helps to balance the workload
across nodes and improve the performance. Unlike the previous strategy, there is no
need to gather alignment scores generated from every node as each node can estimate
the pairwise statistical significance separately. The overhead of communication is much
smaller, which is expected to result in a higher performance and better scalability. More
details about this strategy can be found in Ref. [[11]]

We show the speedups of the two MPI implementations using intuitive and tiling
strategies, respectively as shown in Fig[3] When MPI tasks P < 64, there are not many
differences in term of speedup between the two strategies. However, when P > 64, due
to lower overhead of communications and better load balancing, the tiling strategy im-
plementation shows a much better scalability and higher performance than the intuitive
strategy. Their maximum speedups are 452.93 x and 92.92 x when using 1024 MPI pro-
cesses and 256 MPI processes, respectively.

3.2.3. OpenMP implementation

Compared to the implementation of MPI paradigm, OpenMP implementation uses a
similar strategy to accelerate PSSE. However, OpenMP paradigm currently applies to
shared memory machine, therefore, there are some differences in terms of the overhead
of communications. All of the OpenMP experiments are executed on single node with
24 cores. Since the amount of computation required for a query sequence depends on its
length, herein we compared the performance using multiple lengths of query sequences.
Four query sequences of length 200, 400, 800, and 1600 are chosen from CATH to align
against all the 2771 subject sequences. We have tested different number of OpenMP
threads, T, and MPI tasks, P. Fig. E] shows the experimental results of the OpenMP im-
plementation. All speedups are computed over the corresponding sequential implementa-
tion. The maximum speedup is 6.10x, 9.61x, 14.55%, and 18.94 x, corresponding to the



0 —T—T T T T 71
Len.=200 —8—
Len.=400 :
15 Len=800 :-+@--
o Len.=1600 @
S oo
g 10
L% :
5 e e T T T T L —
0 AR S TR RN NN TR TR SN A N SN

0 2 4 6 8 1012 14 16 18 20 22 24
Threads

Figure 4. The speedup of the OpenMP implementation

length of query equal to 200, 400, 800 and 1600, respectively. Observe that, performance
increases with the increase in length of query sequences.

Although in most cases, the non-uniform memory architecture (NUMA) used by
Hopper machine provides advantages over traditional symmetric multiProcessing (SMP)
solutions in terms of low level memory characteristics (such as memory bandwidth) and
scalability, it also brings its disadvantages, like the NUMA effect [46]. Each NUMA n-
ode we are using is essentially a four-chip node, one of which contains a six-core die. All
the memory in NUMA is transparently accessible, but if a process running on chip node
i accesses the memory connected to a different chip node j (where i # j), a performance
penalty will be incurred (i.e., NUMA effect). When f is lower, the performance will be
more sensitive to this extra overhead. This can shed a light on why the speedup using
8 threads is even a little lower than using 6 threads when the length of query sequence
is equal to 200, because the benefits of increasing threads is lower than the overhead
of NUMA effect. But when the length of query sequence increases, the NUMA effect
decreases. In [46], authors claimed that it is very hard to address the performance impli-
cations of the NUMA effect while using more than 6 OpenMP threads on Hopper. Our
experiments confirmed this claim again.

In short, using more OpenMP threads can potentially save memory usage while it
may also increase the synchronization cost (implicit or explicit) among these threads and
the activation/deactivation overhead. Therefore, it is hard to generalize a common rule
for setting of the optimized number of OpenMP threads to deliver the best performance,
because it also depends on specific computer architectures, platforms and problem size.

See Ref. [10] for more details about OpenMP implementation of PSSE. The hybrid
scheme (using OpenMP and MPI paradigms together) is also possible, whose details can
be found in Ref. [51]]

3.2.4. GPU implementation

In this subsection, we will discuss the solution of using GPU to accelerate pairwise sta-
tistical significance estimation. We first present the main design issues (i.e., GPU mem-
ory access optimization and maximizing occupancy), which play a great role in the w-
hole performance of GPU implementations. Then we present the experimental results
and discuss the reasons of performance difference.



(1) Design

A good understanding of the hierarchy and features of GPU memory is required in
order to obtain good performance. It is especially important to optimize global memory
access as its bandwidth is low and its latency is hundreds of clock cycles [47]. Moreover,
global memory coalescing is the most critical optimization for GPU programming [48]].
Since the kernels of PSSE usually work over large numbers of sequences that reside in
the global memory, the performance is highly dependent on hiding memory latency.

When a GPU kernel is accessing global memory, all threads in groups of 32 (i.e.
warp) access a bank of memory at one time. A batch of memory accesses is considered
coalesced when the data requested by a warp of threads are located in contiguous memory
addresses. For example, if the data requested by threads within a warp are located in 32
consecutive memory addresses (such that the i-t4 address is accessed by the i-th thread),
the memory can be read in a single access. Hence, this memory access operation runs
32 times faster. If the memory access is not coalesced, it is divided into multiple reads
and hence serialized. Whether data is coalesced or not has a significant impact on an
application’s performance, as it determines the degree of memory access parallelism
[52].

After permutation, if the sequence Seq2 and its N permuted copies were stored con-
tiguously one after another in the global memory, the intuitive memory layout would be
as shown in Fig. E]-(a). Note that, we need one byte (uchar) to store each amino acid
residue. Moreover, GPU can read four-byte (packed as a CUDA built-in vector data type
uchar4) of data from the global memory to registers in one instruction. To achieve high
parallelism of global memory access, uchar4 is used to store the permuted sequences.
Dummy amino acid symbols are padded in the end to make the length of sequences a
multiple of 4.

Considering inter-task parallelism, where each thread works on the alignment of
one of the permuted copies of Seg2 to Seql, in this layout the gap between the memory
accesses by the neighboring threads is at least the length of the sequence. For example,
in the intuitive layout, if thread T accesses the first residue (i.e., ‘R’), and thread T;
accesses the first residue (i.e., ‘E’), the gap between the access data is n. This results in
non-coalesced memory reads (i.e., serialized reads), which significantly deteriorates the
performance.

We therefore reorganize the layout of sequence data in memory to obtain coalesced
reads. Now, to achieve coalesced access, we reorganize layout of sequences in memory as
aligned structure of arrays, as shown in Fig.[5}(b). In the optimized layout, the characters
(in granularity of 4 bytes) that lie at the same index in different permuted sequences
stay at neighboring positions. Then if the first uchar4 of the first permuted sequence (i.e.
‘REGN’) is requested by thread Ty, the first uchar4 of the second permuted sequence
(i.e. ‘ARNE’) is requested by 77, and so on. This results in reading a consecutive memory
(each thread reads 4 bytes) by a warp of threads in a single access. Thus the global
memory access is coalesced, and therefore high performance is achieved.

As the sequences remain unchanged during the alignment, they can be thought of as
read-only data, which can be bound to texture memory. For read patterns, texture memory
fetches is a better alternative to global memory reads because of texture memory cache,
which can further improve the performance.

Hiding global memory latency is very important to achieve high performance on
the GPU. This can be done by creating enough threads to keep the CUDA cores always
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Figure 5. Two GPU memory layout strategies.

occupied while many other threads are waiting for global memory accesses [48]]. GPU
occupancy, as defined below, is a metric to determine how effectively the hardware is
kept busy.

Occupancy = (B X Tyyum) [ Tax ®)

where T},,,, is maximum number of resident threads that can be launched on a SM (which
is a constant for a specific GPU), T, is the number of active threads per block and B is
the number of active blocks per Streaming Multiprocessor (SM).

(2) Implementations

Smith-Waterman is a dynamic programming algorithm to identify the optimal local
alignment between a pair of sequences. In general, there are two different methods for
parallelizing the alignment task[53]. The first method is regarded as inter-task parallelis-
m. In this case, each thread performs alignment of one pair of sequences. Hence, in a
thread block, multiple alignment tasks are performed in parallel [54]]. The second one is
intra-task parallelism . Here, alignment of each pair of sequences is assigned to a block
of threads, splitting the whole task into a number of sub-tasks. Each thread in the thread



block then performs its own sub-tasks, cooperating to exploit the parallel characteristics
of cells in the anti-diagonals of the local alignment matrix.

Through analyzing our experimental results of the single-pair PSSE, we observe that
inter-task parallelism performs better than intra-task parallelism (results shown later).
Hence, we consider inter-task parallelism in computing multi-pair PSSE. Based on the
guidelines for optimizing memory and occupancy described earlier, we compare three
implementation strategies.

o Intuitive strategy

Given Q query sequences and S subject sequences, the intuitive strategy is to simply
perform the same ‘single-pair’ procedure Q x S times. In other words, in each iteration,
we send a single pair of query and subject sequences to the GPU. The GPU processes that
pair and returns the result to the CPU. The same procedure is repeated for all query and
subject sequence pairs. However, this strategy suffers from low occupancy. We analyze
the cause along with its performance results in the next section.

e Data reuse strategy

In the first strategy, the subject sequences from the database are permuted for every
query-subject sequence pair. Hence, the same subject sequence is permuted every time it
is sent to the GPU. A better strategy is to create permutations of each subject sequence
only once and reuse them to align with all the queries. “One permutation, all queries”
is the idea of the second strategy. Because of the reuse of permuted sequences, higher
performance is expected than the first strategy. However, the occupancy of GPU, to be
shown in the next section, is still not elevated.

e Adaptively tile-based strategy

The low occupancy of the above two strategies is due to the underutilized computing
power of GPU. In addition, these two strategies do not work well when the size of subject
sequence database becomes too big to be fitted into GPU global memory. For instance,
if the size of the original subject sequence database is 5 MB, it becomes 5000 MB when
each of the sequences is permuted, say, 1000 times. This prohibits transfer of all the
subject sequences to GPU at the same time. We therefore need an optimal number of
subject sequences to be shipped to GPU keeping in mind that the subject sequences and
their permuted copies fit in global memory. Moreover, the number of new generated
sequences should be enough to keep all CUDA cores busy, i.e., keep a high occupancy of
GPU, which is very important to harness the GPU power. Herein we develop a memory
tiling technique that is self-tuning based on the hardware configuration and can achieve
a close-to-optimal performance. The idea behind the technique is as follows. In out-of-
core fashion, the data in the main memory is divided into smaller chunks called tiles and
transferred to the GPU global memory. In our case, the tiles are the number of subject
sequences to be transferred to the GPU at a time. The tile size T can be calculated using
the following equation.

SMVle X Tmax

7 = | e X e

(6)

where SM,,,,,,, is the total number of SMs in GPU, T,,,,, is the maximum number of resi-
dent threads per SM, and N is the number of permutations.



In Tesla C2050 used in our experiments, there are 14 SMs and the maximum number
of resident threads per SM is 1024. Let N = 1000, then, T = |14 x 1024/1000 |= 14,
which means that there are 14 distinct subject sequences to be transferred to the GPU’s
global memory at a time. Based on the second strategy (i.e., data reuse), 14 subject
sequences and their permuted copies are aligned against one query sequence at a time,
until all the query sequences are processed. As a result, 14 x 1000 alignment scores in
total are obtained in each round, which are subsequently transferred to CPU for fitting.
The CPU takes the 1000 alignment scores for each subject-query sequence pair and uses
them to compute the corresponding pairwise statistical significance pss. The tile-based
strategy has been described in Fig. [6]

CPU Memory GPU Global Memory
porm— "\\ L
Seq.1
Seq. Tile 1 permutations
— Seq.14 .
Seq. Tile 2 permutations
— - A
-------------- . 4
______________________ e :5‘
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Figure 6. Adaptive tile-based strategy

(3) Performance analysis

In the intuitive and data reuse strategies, most of the SMs suffer from the same low
occupancy using the inter-task parallelism method. As expected, we observe poor perfor-
mance for both strategies, as shown in Fig.[7] The data reuse strategy produces higher per-
formance than the intuitive strategy, because the number of permutations is reduced by a
factor of Q, the number of query sequences. To alleviate the low occupancy problem, our
proposed tile-based strategy uses a carefully tuned tile size that can effectively improve
the occupancy. Recall that, as a result of tiling, we send 14 subject sequences and one
query sequence to the GPU in each round. After the permutation step, we have 14 x 1000
alignments to be performed. Consequently, each SM has 1000 alignments to perform.
Also, note that, the maximum number of blocks that can be launched simultaneously on
an SM is 8. Therefore, when the number of threads per block is 64, the number of blocks
per SM is min([1000/64],8) = 8, resulting in an occupancy of (8 x 64)/1024 = 50%,
based on Equations (3). This is a significant improvement over the cases using the in-
tuitive and data-reuse strategies. The maximum theoretical occupancy of an SM for the
three strategies is given in Table[T]



Table 1. The maximum occupancy for three strategies.

Threads/blocks 64 128 256 512

Intuitive Occu. 12.5% 625% 625% 6.25%
Data-reuse Occu. 12.5% 6.25% 625% 6.25%
Tile-based Occu.  50.0% 100% 100% 100%

(1) Speedup w.r.t Threads (2) GCUPS w.r.t Threads
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Figure 7. Performance of three strategies for multi-pair PSSE. All experiments are run using 2771 subject
sequences and 86 query sequences from the CATH 2.3 database.

Due to a high occupancy, the tile-based strategy using single (dual) GPU(s) achieves
significant speedups of 240.31 (338.63)x, 243.51 (361.63)x, 240.71 (363.99)x, and
243.84 (369.95)x for 64, 128, 256, and 512 threads per block, respectively, as shown in
Fig.[7]

The billion cell updates per second (GCUPS) value is another commonly used per-
formance measure in bioinformatics [S3]. The tile-based strategy using single (dual)
GPU(s) achieves performance results from 16.55 (23.34) to 16.79 (25.50) GCUPS, as
shown in the chart of Fig.

In summary, low occupancy is known to interfere with the ability to hide latency
on memory-bound kernels, causing performance degradation. However, increasing oc-
cupancy does not necessarily increase performance. In general, once a 50% occupancy
is achieved, further optimization to gain additional occupancy has little effect on perfor-
mance. Our experiments verify this claim. More details about the GPU implementation
can be found in Ref. [[12,[13]].

All the implementations of the proposed method and related programs are available
for free academic use at http://cucis.ece.northwestern.edu/projects/PSSE/|


http://cucis.ece.northwestern.edu/projects/PSSE/

4. Conclusion

In this chapter, we first present a new method of mining genomic sequence data for
related sequences using pairwise statistical significance. Then we give some high per-
formance solutions to accelerate the estimation of the pairwise statistical significance
of local sequence alignment, Our accelerator harvests computation power of multi-
core CPU and many-core GPUs and by using OpenMP/MPI programming and CUDA
paradigms, respectively, which results in high end-to-end speedups for PSSE. The pro-
posed optimizations and efficient framework are also applicable to a wide variety of next-
generation sequencing comparison based applications, such as DNA sequence mapping
and database search.

The shorter read lengths and larger data volumes of high-throughput sequencing
technologies have created substantial new requirements for bioinformatics. The “Big
data” in terms of biological sequence demands more computing power. Therefore, re-
searchers are expected to use parallelized computational workflows to mine meaningful
information from the sequences, for which our work can serve as a useful stepping stone
to making Big Data work in genetics.
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