
� � � � � � � � � � 	
 � � � � � � � � � � � � � �� � � �
 � 	 � � � � �
Bernhard Schölkopf, GMD First

Is there anything worthwhile to learn
about the new SVM algorithm,or does it
fall into the category of “yet-another-algo-
rithm,” in which case readers should stop
here and save their time for something
more useful? In this short overview, I will
try to argue that studying support-vector
learning is very useful in two respects.
First, it is quite satisfying from a theoreti-
cal point of view: SV learning is based on
some beautifully simple ideas and provides
a clear intuition of what learning from ex-
amples is about. Second,it can lead to high
performances in practical applications.

In the following sense can the SV algo-
rithm be considered as lying at the intersec-
tion of learning theory and practice:for
certain simple types of algorithms,statisti-
cal learning theory can identify rather pre-
cisely the factors that need to be taken into
account to learn successfully. Real-world
applications,however, often mandate the
use of more complex models and algori-
thms—such as neural networks—that are
much harder to analyze theoretically. The
SV algorithm achieves both. It constructs
models that are complex enough:it con-
tains a large class of neural nets,radial

basis function (RBF) nets,and polynomial
classifiers as special cases. Yet it is simple
enough to be analyzed mathematically,
because it can be shown to correspond to a
linear method in a high-dimensional fea-
ture space nonlinearly related to input
space. Moreover, even though we can think
of it as a linear algorithm in a high-dimen-
sional space,in practice,it does not involve
any computations in that high-dimensional
space. By the use of kernels, all necessary
computations are performed directly in
input space. This is the characteristic twist
of SV methods—we are dealing with com-
plex algorithms for nonlinear pattern
recognition,1 regression,2 or feature extrac-
tion,3

�
b
�
ut for the sake of analysis and algo-

rithmics,we can pretend that we are work-
ing with a simple linear algorithm.

I will explain the gist of SV methods by
describing their roots in learning theory,
the optimal hyperplane algorithm,the ker-
nel trick,and SV function estimation. For
details and further references,see Vladimir
Vapnik’s authoritative treatment,2 the col-
lection my colleagues and I have put to-
gether,4 and the SV Web page at http://svm.
first.gmd.de.

� � � � � � � � � � � � � � � � � ! � � � � � ! � " � ! #� $ � # � % � &
For pattern recognition,we try to esti-

mate a function f:R N
'

→({±1} using training
data—that is,N-dimensional patterns xi

)
and class labels yi

) ,
(x1,y

*
1),…,(x‘ , y‘) ∈ R N × {±1}, (1)

such that f will correctly classify new exam-
ples (x,y)—that is,f(x) = y for examples (x,y),
which were generated from the same under-
lying probability distribution P(x,y) as the
training data. If we put no restriction on the
class of functions that we choose our estimate
f from,however, even a function that does
well on the training data—for example by
satisfying f(xi

)) =
+

yi
) (here and belo

,
w, the index

i is understood to run over 1,…, ‘)—need
not generalize well to unseen examples. Sup-
pose we know nothing additional about f (for
example,about its smoothness). Then the
values on the training patterns carry no infor-
mation whatsoever about values on novel
patterns. Hence learning is impossible,and
minimizing the training error does not imply
a small expected test error.

Statistical learning theory,2 or VC - (Vap-
nik-Chervonenkis) theory, shows that it is
crucial to restrict the class of functions
that the learning machine can implement
to one with a capacity that is suitable for
the amount of available training data.

. / � � � � % � � � % � & & � " � � � &
To design learning algorithms,we thus

must come up with a class of functions
whose capacity can be computed. SV clas-
sifiers are based on the class of hyperplanes

(w⋅x) + b = 0 w ∈R N, b ∈R, (2)

corresponding to decision functions

f(x) = sign((w⋅x) + b). (3)

We can show that the optimal hyper-
plane, defined as the one with the maximal
margin of separation between the two
classes (see Figure 1),has the lowest ca-

0 1 2 3 3 3 2 4 5 3 6 6 2 7 3 4 5 8 9 8 5 3 : 8

Suppor t vector machines

; < = > ? @ A B C > ; < C D = < @ E = @; < = > ? @ A B C > ; < C D = < @ E = @

F G H I J K L M N O P I J Q KR S L T P J Q L K G U V W I X L V U J S L I Y F P J Z P X P G[P I J Q K \ Q L] Q N ^ P J Z P X P G N P _ `

My first exposure to Support Vector Machines came this spring when I heard Sue
Dumais present impressive results on text categorization using this analysis technique.
This issue’s collection of essays should help familiarize our readers with this interest-
ing new racehorse in the Machine Learning stable. Bernhard Schölkopf, in an intro-
ductory overview, points out that a particular advantage of SVMs over other learning
algorithms is that it can be analyzed theoretically using concepts from computational
learning theory, and at the same time can achieve good performance when applied to
real problems. Examples of these real-world applications are provided by Sue Dumais,
who describes the aforementioned text-categorization problem,yielding the best re-
sults to date on the Reuters collection,and Edgar Osuna,who presents strong results
on application to face detection. Our fourth author, John Platt,gives us a practical
guide and a new technique for implementing the algorithm efficiently.

–Marti Hearst

.

a b c d e f b g b h i j k k l j k

pacity. It can be uniquely constructed by
solving a constrained quadratic optimiza-
tion problem whose solution w has an ex-
pansion in terms of a subset of
training patterns that lie on the margin (see
Figure 1). These training patterns,called
support vectors,carry all relevant informa-
tion about the classification problem.

Omitting the details of the calcu-
lations,there is just one crucial property
of the algorithm that we need to empha-
size: both the quadratic programming
problem and the final decision function

depend only on
dot products between patterns. This is
precisely what lets us generalize to the
nonlinear case.

m n o p q r n s t o u n s o v w x n r v n y s
Figure 2 shows the basic idea of SV ma-

chines,which is to map the data into some

other dot product space (called the feature
space) F via a nonlinear map

Φ:R N
z
→F, (4)

and perform the above linear algorithm in
F. As I’ve noted, this only requires the
evaluation of dot products.

(5)

Clearly, if F is high-dimensional,the right-
hand side of Equation 5 will be very expen-
sive to compute. In some cases,however,
there is a simple kernel kthat can be evalu-
ated efficiently. For instance, the polyno-
mial kernel

(6)

can be shown to correspond to a map Φ
into the space spanned by all products of
exactly d dimensions of R N

'
. For d=2 and x,

y∈R 2,{ for example, we have

(7)

defining More gen-
erally, we can prove that for every kernel
that gives rise to a positive matrix (k(xi

) ,xj
|))ij

) ,{
we can construct a map Φ such that Equa-
tion 5 holds.

Besides Equation 6,SV practitioners use

radial basis function (RBF) kernels such as

(8)

and sigmoid kernels (with gain κ and offset
Θ)

(9)

} ~ � s
We now have all the tools to construct

nonlinear classifiers (see Figure 2). To this
end, we substitute Φ(xi

)) f+
or each training

example xi
) ,{ and perform the optimal hyper-

plane algorithm in F. Because we are using
kernels,we will thus end up with nonlinear
decision function of the form

(10)

The parameters vi
) are computed as the so-

lution of a quadratic programming
problem.

In input space, the hyperplane corres-
ponds to a nonlinear decision function
whose form is determined by the kernel
(see Figures 3 and 4).

The algorithm I’ve described thus far has
a number of astonishing properties:

• It is based on statistical learning theory,
• It is practical (as it reduces to a quad-

ratic programming problem with a
unique solution),and

• It contains a number of more or less
heuristic algorithms as special cases:by
the choice of different kernel functions,
we obtain different architectures (Fig-
ure 4),such as polynomial classifiers
(Equation 6),RBF classifiers (Equation
8 and Figure 3),and three-layer neural
nets (Equation 9).

The most important restriction up to now
has been that we were only considering the
case of classification. However, a general-
ization to regression estimation—that is, to
y∈R , can be given. In this case, the algo-
rithm tries to construct a linear function in
the feature space such that the training
points lie within a distance ε > 0. Similar to
the pattern-recognition case, we can write
this as a quadratic programming problem
in terms of kernels. The nonlinear regres-
sion estimate takes the form

(11)

f v k bi
�

i
i

() (,)x x x= ⋅ +
=
∑

1

l

f v k bi
�

i
i

() ((,)).x x x= ⋅ +
=
∑sign

1

l

k
�
() tanh(()).x,y x y= ⋅ +κ Θ

k
�
() exp(/ ()),x,y x y= − − 2 22σ

Φ() (, ,).x = x x x x1
2

1 2 2
22

()

(() ()),

x y

x y

⋅ =

⋅

=

⋅

= ⋅

2
�

1

2

1

2

2

1
2

1 2

2
2

1
2

1 2

2
2

2 2

x
x

y
y

x
x x
x

y
y y

y

Φ Φ

k
� d

�
() ()x,y x y= ⋅

k
�
(): (() ()).x,y x y= ⋅Φ Φ

f
�

v bi
�

ii
() (())x x x= ⋅ +∑sign

w x=∑ vi
�

ii

�

.�

� � � � � � � � � � � � �. � � � � � � � � � � � � �.

� �
� � � ¡ ¢ � � � £ ¤ ¥ ¦ ¤ §¢ � � ¨ £ ¤ ¥ ¦ §

¦ © ¢ � ¢ � � � ¨ £ £ ¦ª «
¦ © ¢ � � ª � ¨ ¬£ ¦� � ®

.̄

¯
¯ « � °

° ± ¦ ¤ §

�

² � ¢ � � £ ¤ � ¦ ³ ´

� ¨
µ ¦ ª §

¶ · ¸ ¹ º » ¼ ½ ¾ ¿ » À Á º Á Â Ã » Ä Ã Á ¿ ¿ · Å · Ä Á Æ · Ç È Æ Ç É À º Ç Â Ã » Ê Ë ¿ » À Á º Á Æ » Â Á Ã Ã ¿ Å º Ç Ê Ì · Á Ê Ç È Ì ¿ ½ Í Î » Ç À Æ · Ê Á Ã Î É À » º À Ã Á È » · ¿ Ç º Æ Î Ç ¸ Ç È Á ÃÆ Ç Æ Î » ¿ Î Ç º Æ » ¿ Æ Ã · È » Ä Ç È È » Ä Æ · È ¸ Æ Î » Ä Ç È Ï » Ð Î ¹ Ã Ã ¿ Ç Å Æ Î » Æ Ñ Ç Ä Ã Á ¿ ¿ » ¿ Ò Ì Ç Æ Æ » Ì Ó Ô Á È Ì · È Æ » º ¿ » Ä Æ ¿ · Æ Î Á Ã Å Ñ Á É ½ Í Î » º » · ¿ Á Ñ » · ¸ Î ÆÏ » Ä Æ Ç º Õ Á È Ì Á Æ Î º » ¿ Î Ç Ã Ì Ö ¿ ¹ Ä Î Æ Î Á Æ × Ø
⋅

Ò Ò Õ
⋅Ù Ø Ó Ú Ö Ó Û Ü ½ Ý » ¿ Ä Á Ã · È ¸ Õ Á È Ì Ö ¿ ¹ Ä Î Æ Î Á Æ Æ Î » À Ç · È Æ Ò ¿ Ó Ä Ã Ç ¿ » ¿ Æ Æ Ç Æ Î »Î É À » º À Ã Á È » ¿ Á Æ · ¿ Å É Þ Ò Õ

⋅Ù Ø Ó Ú Ö Þ ß ¼ Ô Ñ » Ç Â Æ Á · È Á Å Ç º Ê Ò Õ Ô Ö Ó Ç Å Æ Î » Î É À » º À Ã Á È » Ñ · Æ Î × Ø Ò Ò Õ
⋅à Ø Ó Ú Â Ó

≥
¼ ½ á Ç Æ » Æ Î Á Æ Æ Î »Ê Á º ¸ · È Ô Ê » Á ¿ ¹ º » Ì À » º À » È Ì · Ä ¹ Ã Á º Ã É Æ Ç Æ Î » Î É À » º À Ã Á È » Ô » â ¹ Á Ã ¿ ã ä Þ Þ Õ Þ Þ ½ Í Ç Ê Á Ð · Ê · å » Æ Î » Ê Á º ¸ · È Ô Ñ » Æ Î ¹ ¿ Î Á Ï » Æ ÇÊ · È · Ê · å » Þ Õ Þ ¿ ¹ Â æ » Ä Æ Æ Ç × Ø Ò Ò Õ

⋅Ù Ø Ó Ú Â Ó
≥

¼ ½

ç è � é ê ë ì è í î ï ì é � ë ì è í

Φ

¶ · ¸ ¹ º » ã ½ Í Î » · Ì » Á Ç Å ð ñ Ê Á Ä Î · È » ¿ Ë Ê Á À Æ Î » Æ º Á · È · È ¸ Ì Á Æ ÁÈ Ç È Ã · È » Á º Ã É · È Æ Ç Á Î · ¸ Î » º ò Ì · Ê » È ¿ · Ç È Á Ã Å » Á Æ ¹ º » ¿ À Á Ä » Ï · Á
Φ

Ô Á È Ì Ä Ç È ¿ Æ º ¹ Ä Æ Á ¿ » À Á º Á Æ · È ¸ Î É À » º À Ã Á È » Ñ · Æ Î Ê Á Ð · Ê ¹ ÊÊ Á º ¸ · È Æ Î » º » ½ Í Î · ¿ É · » Ã Ì ¿ Á È Ç È Ã · È » Á º Ì » Ä · ¿ · Ç È Â Ç ¹ È Ì Á º É · È· È À ¹ Æ ¿ À Á Ä » ½ ó É Æ Î » ¹ ¿ » Ç Å Á ô » º È » Ã Å ¹ È Ä Æ · Ç È Ô · Æ · ¿ À Ç ¿ ¿ · Â Ã »Æ Ç Ä Ç Ê À ¹ Æ » Æ Î » ¿ » À Á º Á Æ · È ¸ Î É À » º À Ã Á È » Ñ · Æ Î Ç ¹ Æ » Ð À Ã · Ä · Æ Ã ÉÄ Á º º É · È ¸ Ç ¹ Æ Æ Î » Ê Á À · È Æ Ç Æ Î » Å » Á Æ ¹ º » ¿ À Á Ä » ½

.

To apply the algorithm, we either
specify ε a priori, or we specify an
upper bound on the fraction of training
points allowed to lie outside of a dis-
tance ε from the regression estimate
(asymptotically, the number of SVs)
and the corresponding ε is computed
automatically.5

õ

ö ÷ ø ø ù ú û ü ù ý ù þ ÿ � � ù ú û � � ú ü ÿ � ù ú
� � � ÷ ù �

Chances are that those readers who are
still with me might be interested to hear
how researchers have built on the above,
applied the algorithm to real-world prob-
lems,and developed extensions. In this

respect,several fields have emerged.

• Training methods for speeding up the
quadratic program,such as the one de-
scribed later in this installment of
Trends & Controversies by John Platt.

• Speeding up the evaluation of the deci-
sion function is of interest in a variety
of applications,such as optical-charac-
ter recognition.6

�
• The choice of kernel functions,and

hence of the feature space to work in, is
of both theoretical and practical inter-
est. It determines both the functional
form of the estimate and, via the objec-
tive function of the quadratic program,
the type of regularization that is used to
constrain the estimate.7,8

�
However, even

though different kernels lead to differ-
ent types of learning machines,the
choice of kernel seems to be less crucial
than it may appear at first sight. In OCR
applications,the kernels (Equations 6,
9, and 8) lead to very similar perfor-
mance and to strongly overlapping sets
of support vectors.

• Although the use of SV methods in ap-
plications has only recently begun,ap-
plication developers have already re-
ported state-of-the-art performances in a
variety of applications in pattern recog-
nition, regression estimation,and time
series prediction. However, it is proba-
bly fair to say that we are still missing
an application where SV methods sig-
nificantly outperform any other avail-
able algorithm or solve a problem that
has so far been impossible to tackle. For
the latter, SV methods for solving in-
verse problems are a promising candi-
date.9

�
Sue Dumais and Edgar Osuna

describe promising applications in this
discussion.

• Using kernels for other algorithms
emerges as an exciting opportunity for
developing new learning techniques.
The kernel method for computing dot
products in feature spaces is not re-
stricted to SV machines. We can use it
to derive nonlinear generalizations of
any algorithm that can be cast in terms
of dot products. As a mere start, we
decided to apply this idea to one of the
most widely used algorithms for data
analysis,principal component analysis.
This leads to kernel PCA,3

�
an algorithm

that performs nonlinear PCA by carry-
ing out linear PCA in feature space. The

� 	
 � � �
 � � � �
 � � � � � � � � �

� � � � � � � � � � � � � � ! " � # $ % & � ' ' � " � � � " ! � # () * � ' � # � � � � (� �) � ' � ' " � # & + � ! # , � � # � - � . � � + � ! # / 0 � 1 � � & � ' � # ((� ' , ' � � �
+ 2 ! & � ' ' � ' ! " + � � � # � # � � � � � � � ' 3 + 4 � ' ! � (� # � � ' + 4 � (� & � ' � ! # ' � � " � & � 3 + 4 � ' � � � ! � + 5 � & + ! � ' " ! � # () * + 4 � � � ! � � + 4 � � �
! # 6 ! �) � + 2 � � # 6 + 4 � (� ' 4 � (� # � ' � 1 ! ! � ' & ! (� + 4 � � ! (� � ' ! " + 4 � � � � � � � # + ! " + 4 � (� & � ' � ! #
" � # & + � ! # � # � . � � + � ! # 7 8 � v k bi

�
ii

⋅ +∑ (,)x x

Σ

9 9 9

: ; < = ; <
σ > Σ υ? @ > A B A ? C C

D E F G H < I
υ J υ K υL9 9 9

M E I < N E O < P Q A

R ; = = P Q < N E O < P Q I A J 9 9 9 A L

S T = = E U N E O < P Q I
Φ > A ? C B Φ > A CΦ > A C Φ > A nV C

W P < = Q P U ; O < > Φ > A C 9 Φ > A ? C C X @ > A B A ? C> 9 C > 9 C > 9 C

Φ > A J C Φ > A K C

σ > C

Y Z

[

[

� � � � � � \ �] � & 4 � + � & + � � � ! " $ % � � + 4 ! (' � ^ 4 � � # � � + _ � # (+ 4 � ' � � � ! � + 5 � & + ! � ' _ ` - � # + 4 � ' � � � � � � a (� � � + ' 0 � � � # ! # � # � � � *
� � � � � (-) *

Φ
0 � # + ! � " � � + � � � ' � � & � b 6 2 4 � � � (! + � � ! (� & + ' � � � & ! � � � + � (� c * + 4 � � ' � ! " + 4 � , � � # � d 6 + 4 � ' � + 2 ! � * � � '

� � � � # � � � & + � & � & ! � � � + � (� # ! # � ' � # � � ' + � � � ^ 4 � � � ' � + ' � � � � # � � � * & ! �) � # � () * 2 � � � 4 + '
ν̀

6 " ! � # () * ' ! 5 � # � � . � � e
(� � + � & � � ! � � � � - � # � � + + � � # � � & ! � # � + � ! # 6

ν̀
f g `

αh ` 3 � # � � � � � ' ' � ! # � ' + � � � + � ! # 6
ν̀

f
α i ` j

ὰ
0 k ! � � # � � � � # 5 � � � � � !) � �

- � # , � � # � l 1] m 0 � ^ 4 � � # � � � & ! �) � # � + � ! # � ' " � (� # + ! + 4 � " � # & + � ! #
σ

- � # � � + + � � # � � & ! � # � + � ! # 6
σ

- n 0 f ' � � # - n o p 0 3 � #
� � � � � ' ' � ! # ' + � � � + � ! # 6

σ
- n 0 f n o p 3 � # , � � # � l 1] 6

σ
- n 0 f n �

.

q r s t u v r w r x y z { { | } z

method consists of solving a linear
eigenvalue problem for a matrix whose
elements are computed using the kernel
function. The resulting feature extrac-
tors have the same architecture as SV
machines (see Figure 4). A number of
researchers have since started to “ker-
nelize” various other linear algorithms.

~ � � � � � � � � �
1. B.E. Boser, I.M. Guyon,and V.N. Vapnik,

“A Training Algorithm for Optimal Margin
Classifiers,” Proc. Fifth Ann. Workshop
Computational Learning Theory, ACM
Press,New York, 1992,pp. 144–152.

2. V. Vapnik, The Nature of Statistical Learn-
ing Theory, Springer-Verlag, New York,
1995.

3. B. Schölkopf, A. Smola,and K.-R. Müller,
“Nonlinear Component Analysis as a Ker-
nel Eigenvalue Problem,” Neural Computa-
tion, Vol. 10,1998,pp. 1299–1319.

4. B. Schölkopf, C.J.C. Burges,and A.J.
Smola,Advances in Kernel Methods—Sup-
port Vector Learning, to appear, MIT Press,
Cambridge, Mass,1998.

5. B. Schölkopf et al.,“Support Vector Regres-
sion with Automatic Accuracy Control,” to be
published in Proc. Eighth Int’l Conf. Artifi-
cial Neural Networks,Perspectives in Neural
Computing, Springer-Verlag, Berlin, 1998.

6. C.J.C. Burges,“Simplif ied Support Vector
Decision Rules,” Proc. 13th Int’l Conf.
Machine Learning, Morgan Kaufmann,San
Francisco,1996,pp. 71–77.

7. A. Smola and B. Schölkopf, “From Regu-
larization Operators to Support Vector Ker-
nels,” Advances in Neural Information Pro-
cessing Systems 10, M. Jordan,M. Kearns,
and S. Solla,eds.,MIT Press,1998.

8. F. Girosi,An Equivalence between Sparse
Approximation and Support Vector Machines,
AI Memo No. 1606,MIT, Cambridge, Mass.,
1997.

9. J. Weston et al.,Density Estimation Using
Support Vector Machines,Tech. Report
CSD-TR-97-23,Royal Holloway, Univ. of
London,1997.

� �

Susan Dumais,Decision Theory and Adap-
tive Systems Group,Microsoft Research

As the volume of electronic information
increases,there is growing interest in devel-
oping tools to help people better find, filter,
and manage these resources. Text categoriza-
tion—the assignment of natural-language
texts to one or more predefined categories
based on their content—is an important com-
ponent in many information organization
and management tasks. Machine-learning

methods,including SVMs,have tremendous
potential for helping people more effectively
organize electronic resources.

Today, most text categorization is done by
people. We all save hundreds of files,e-mail
messages,and URLs in folders every day.
We are often asked to choose keywords
from an approved set of indexing terms for
describing our technical publications. On a
much larger scale, trained specialists assign
new items to categories in large taxonomies
such as the Dewey Decimal or Library of
Congress subject headings,Medical Subject
Headings (MeSH),or Yahoo!’s Internet di-
rectory. Between these two extremes,people
organize objects into categories to support a
wide variety of information-management
tasks,including information routing/filter-
ing/push,identification of objectionable
materials or junk mail,structured search and
browsing, and topic identification for topic-
specific processing operations.

Human categorization is very time-con-
suming and costly, thus limiting its applica-

bility—especially for large or rapidly
changing collections. Consequently, inter-
est is growing in developing technologies
for (semi)automatic text categorization.
Rule-based approaches similar to those
employed in expert systems have been used,
but they generally require manual construc-
tion of the rules,make rigid binary deci-
sions about category membership,and are
typically difficult to modify. Another strat-
egy is to use inductive-learning techniques
to automatically construct classifiers using
labeled training data. Researchers have ap-
plied a growing number of learning tech-
niques to text categorization, including
multivariate regression,nearest-neighbor
classifiers,probabilistic Bayesian models,
decision trees,and neural networks.1,2 Re-
cently, my colleagues and I and others have
used SVMs for text categorization with
very promising results.3,4

�
In this essay, I

briefly describe the results of experiments
in which we use SVMs to classify newswire
stories from Reuters.4

Susan T. Dumaisis a senior researcher in the Decision Theory and Adap-
tive Systems Group at Microsoft Research. Her research interests include
algorithms and interfaces for improved information retrieval and classifica-
tion, human-computer interaction,combining search and navigation, user
modeling, individual differences,collaborative filtering, and organizational
impacts of new technology. She received a BA in mathematics and psychol-
ogy from Bates College and a PhD in cognitive psychology from Indiana
University. She is a member of the ACM, the ASIS, the Human Factors and
Ergonomic Society, and the Psychonomic Society. Contact her at Microsoft
Research, 1 Microsoft Way, Redmond, WA 98052; sdumais@microsoft.
com; http://research.microsoft.com/~sdumais.

Edgar Osunahas just returned to his native Venezuela after receiving his
PhD in operations research from the Massachusetts Institute of Technology.
His research interests include the study of different aspects and properties
of Vapnik’s SVM. He received his BS in computer engineering from the
Universidad Simon Bolivar, Caracas,Venezuela. Contact him at IESA,
POBA International #646,PO Box 02-5255,Miami, FL 33102-5255;
eosuna@usb.ve.

John Platt is a senior researcher in the Signal Processing Group at Micro-
soft Research. Recently, he has concentrated on fast general-purpose ma-
chine-learning algorithms for use in processing signals. More generally, his
research interests include neural networks,machine learning, computer
vision,and signal processing. He received his PhD in computer science at
Caltech in 1989,where he studied computer graphics and neural networks.
His received his BS in chemistry from California State University at Long
Beach. Contact him at Microsoft Research, 1 Microsoft Way, Redmond,
WA 98005; jplatt@microsoft.com; http://research.microsoft.com/~jplatt.

Bernhard Schölkopf is a researcher at GMD First,Berlin. His research
interests are in machine learning and perception,in particular using SVMs
and Kernel PCA. He has an MSc in mathematics from the University of
London,and a Diploma in physics and a PhD in computer science, both
from the Max Planck Institute. Contact him at GMD-First,Rm. 208,
Rudower Chaussee 5,D-12489 Berlin; bs@first.gmd.de; http://www.first.
gmd.de/~bs.

.

� � � � � � � � � � � � � � � � � � � ¡ � � ¢

The goal of automatic text-categoriza-
tion systems is to assign new items to one
or more of a set of predefined categories on
the basis of their textual content. Optimal
categorization functions can be learned
from labeled training examples.

Inducti ve learning of classifiers. A classi-
fier is a function that maps an input attri-
bute vector, x→ = (x1, x2, x3

� , …, xn£), to the
confidence that the input belongs to a
class—that is, f(x→) = confidence(class). In
the case of text classification, the attributes
are words in the document and the classes
are the categories of interest (for example,
Reuters categories include “interest,”
“earnings,” and “grain”).

Example classifiers for the Reuters cate-
gory interest are

• if (interest AND rate) OR (quarterly), then
confidence (“interest”category) = 0.9

• confidence (“interest”category) =
0.3*interest + 0.4*rate + 0.7*quarterly

The key idea behind SVMs and other in-
ductive-learning approaches is to use a train-
ing set of labeled instances to learn the clas-
sification function automatically. SVM
classifiers resemble the second example
above—a vector of learned feature weights.
The resulting classifiers are easy to construct
and update, depend only on information that
is easy for people to provide (that is,exam-
ples of items that are in or out of categories),
and allow users to smoothly trade off preci-
sion and recall depending on their task.

Text representation and featur e selec-
tion. Each document is represented as a
vector of words,as is typically done in in-
formation retrieval.5

õ
For most text-retrieval

applications,the entries in the vector are
weighted to reflect the frequency of terms
in documents and the distribution of terms
across the collection as a whole. For text

classification, simpler binary feature values
(a word either occurs or does not occur in a
document) are often used instead.

Text collections containing millions of
unique terms are quite common. Thus,for
both efficiency and efficacy, feature selection
is widely used when applying machine-
learning methods to text categorization. To
reduce the number of features,we first re-
move features based on overall frequency
counts,and then select a small number of
features based on their fit to categories. We
use the mutual information between each
feature and a category to further reduce the
feature space. These much smaller document
descriptions then serve as input to the SVM.

Learning SVMs.We used simple linear
SVMs because they provide good general-
ization accuracy and are fast to learn.
Thorsten Joachims has explored two classes
of nonlinear SVMs—polynomial classifiers
and radial basis functions—and observed
only small benefits compared to linear
models.3

�
We used John Platt’s Sequential

Minimal Optimization method6
�

(descr
,

ibed
in a later essay) to learn the vector of fea-
ture weights,w→

¤
. Once the w¥ eights are

learned, new items are classified by com-
puting x→

¤
⋅w→ ¤

w¦ herew→
¤

is the vector of
learned weights,and x→

¤
is the binary vector

representing a new document. We also
learned two parameters of a sigmoid func-
tion to transform the output of the SVM to
probabilities.

§ � � � � ¨ © ª � « ¬ � � � � ¢
The Reuters collection is a popular one

for text-categorization research and is pub-
licly available at http://www.research.att.
com/~lewis/reuters21578.html. We used
the 12,902 Reuters stories that have been
classified into 118 categories. Following
the ModApte split,we used 75% of the
stories (9,603 stories) to build classifiers
and the remaining 25% (3,299 stories) to
test the accuracy of the resulting models in
reproducing the manual category assign-
ments. Stories can be assigned to more than
one category.

Text files are automatically processed to
produce a vector of words for each docu-
ment. Eliminating words that appear in only
one document and then selecting the 300
words with highest mutual information with
each category reduces the number of fea-
tures. These 300-element binary feature vec-
tors serve as input to the SVM. A separate

® ® ¯ ° ° ° ¯ ± ² ° ³ ³ ¯ ´ ° ± ² µ ¶ µ ² ° · µ

¸ ¹ º » ¼ ½ ¾ ¿ À ¼ ¹ Á Â ¼ Ã ¼ Ä Å ¼ À Æ Ç À È ¹ Ä É ¼ Æ Ç À Æ Ê Ã ¼ » ¼ ¹ À Ä Ê Ä Ë ¹ » Ë Ç À Ê Ì Í È Î ¾
Ï Ð Ñ Ò Ó Ð Ô Õ Ö Ð × Ø Ù Ö Ú Ø Ó Ù Ö Ú Ø Ó Õ Ø Û Ó Ü Ý Ø Ø Ó Þ Ð Ñ Ø Ö Ý ß à áâ ã ä â ã ä â ã ä â ã ä â ã ä

å æ ç è é ê ë é é ì ë é é ì ë í é î ë í é í ë ïæ ð ñ ò ó ë î í î ë í í í ë ô í é ë î é ô ë òõ ö è å ÷ ø ù ú ó ò ë î ì ò ë ò ì í ë í ò ò ë ê î ó ë ìû ç æ ü è ò î ë ì î í ë í í ý ë ó í ì ë ï é ó ë òð ç þ ÿ å î ï ë ý î é ë ì î é ë ò í ì ë ï í í ë é� ç æ ÿ å ò ì ë ý ò ô ë é ò é ë ï î ê ë ì î ì ë éü è � å ç å � � ò ô ë ó ò ó ë é î ý ë ô ò î ë ý î î ë î
� � ü � ó é ë ê í ì ë ó í ó ë ó î ó ë ê í ì ë ò
� � å æ � ò í ë é ò é ë î í ê ë î é ê ë ì é ý ë íð ö ç è ó í ë ê ò ì ë ô î ò ë ó é ý ë í é ï ë ô
� � û ë � ö � ý ï ò ó ë ò í ý ë ì í ì ë ï í í ë ó é ê ë ï� � û ë æ � � ò ý ë î î ì ë ê í ï ë ï � 	 � í î ë ï

� �

� � �

� � �

� � �

�

� � � � �� � �

� � � � � � � � � � �

� � � � � � � � � � � �

� ! "# � � $ � % � & � �

' � � � � �

()*
+, -, ./

� � ��

0 Ê Ë 1 À ¼ 2 ¾ 3 4 5 É 1 À Ã ¼ ¾

.

6 7 8 9 : ; 7 < 7 = > ? @ @ A B C

classifier (w→) is
learned for each
category. Using
SMO to train the
linear SVM takes an
average of 0.26
CPU seconds per
category (averaged
over 118 categories)
on a 266-MHz Pentium II running Windows
NT. Other learning methods are 20 to 50
times slower. New instances are classified by
computing a score for each document (x→⋅w→)
and comparing the score with a learned
threshold. New documents exceeding the
threshold are said to belong to the category.

The learned SVM classifiers are intu-
itively reasonable. The weight vector for
the category “interest” includes the words
prime (.70),rate (.67),interest (.63),rates
(.60),and discount (.46),with large posi-
tive weights,and the words group (–.24),
year (–.25),sees (–.33) world (–.35),and
dlrs (–.71),with large negative weights.

As is typical in evaluating text catego-
rization, we measure classification accu-
racy using the average of precision and
recall (the so-called breakeven point). Pre-
cision is the proportion of items placed in
the category that are really in the category,
and recall is the proportion of items in the
category that are actually placed in the cat-
egory. Table 1 summarizes microaveraged
breakeven performance for five learning
algorithms explored by my colleagues and
I explored for the 10 most frequent cate-
gories,as well as the overall score for all
118 categories.4

Linear SVMs were the most accurate
method, averaging 91.3% for the 10 most
frequent categories and 85.5% over all 118
categories. These results are consistent
with Joachims’results in spite of substan-
tial differences in text preprocessing, term
weighting, and parameter selection,sug-
gesting that the SVM approach is quite
robust and generally applicable for text-
categorization problems.3

�
Figure 5 shows a representative ROC

curve for the category “grain.” We generate
this curve by varying the decision threshold
to produce higher precision or higher re-
call, depending on the task. The advantages
of the SVM can be seen over the entire
recall-precision space.

D E F F G H I
In summary, inductive learning methods

offer great potential to support flexible, dy-
namic, and personalized information access
and management in a wide variety of tasks.

J K L K M K N O K P
1. D.D. Lewis and P. Hayes,special issue of

ACM Trans. Information Systems, Vol. 12,
No. 1,July 1994.

2. Y. Yang, “An Evaluation of Statistical Ap-
proaches to Text Categorization,” to be
published in J. Information Retrieval, 1998.

3. T. Joachims,“Text Categorization with Sup-
port Vector Machines:Learning with Many
Relevant Features,” to be published in Proc.
10th European Conf. Machine Learning
(ECML), Springer-Verlag, 1998; http://
www-ai.cs.uni-dortmund.de/PERSONAL/
joachims.html/Joachims_97b.ps.gz.

4. S. Dumais et al.,“Inductive Learning Algo-
rithms and Representations for Text Catego-
rization, to be published in Proc. Conf. Infor-
mation and Knowledge Management,1998;
http://research.microsoft.com/~sdumais/
cikm98.doc.

5. G. Salton and M. McGill,Introduction to
Modern Information Retrieval, McGraw
Hill, New York, 1983.

6. J. Platt, “Fast Training of SVMs Using Se-
quential Minimal Optimization,” to be pub-
lished in Advances in Kernel Methods—
Support Vector Machine Learning, B.
Schölkpf, C. Burges,and A. Smola,eds.,
MIT Press,Cambridge, Mass.,1998.

Q R R S T U V W X Y Z [\] ^ _ ` a b a \ a ` \ U] V

Edgar Osuna, MIT Center for Biological and
Computational Learning and Operations Re-
search Center

This essay introduces an SMV applica-
tion for detecting vertically oriented and
unoccluded frontal views of human faces in
gray-level images. This application handles
faces over a wide range of scales and works
under different lighting conditions,even
with moderately strong shadows.

We can define the face-detection prob-
lem as follows. Given as input an arbitrary
image, which could be a digitized video
signal or a scanned photograph,determine
whether there are any human faces in the

image, and if
there are, return
an encoding of
their location.
The encoding in
this system is to
fit each face in a
bounding box
defined by the

image coordinates of the corners.
Face detection as a computer-vision task

has many applications. It has direct rele-
vance to the face-recognition problem,be-
cause the first important step of a fully au-
tomatic human face recognizer is usually
identifying and locating faces in an un-
known image. Face detection also has po-
tential application in human-computer in-
terfaces,surveillance systems,and census
systems,for example.

For this discussion,face detection is also
interesting as an example of a natural and
challenging problem for demonstrating and
testing the potentials of SVMs. Many other
real-world object classes and phenomena
share similar characteristics—for example,
tumor anomalies in MRI scans and struc-
tural defects in manufactured parts. A suc-
cessful and general methodology for find-
ing faces using SVMs should generalize
well for other spatially well-defined pat-
tern- and feature-detection problems.

Face detection,like most object-detection
problems,is a difficult task because of the
significant pattern variations that are hard to
parameterize analytically. Some common
sources of pattern variations are facial ap-
pearance, expression,presence or absence of
common structural features such as glasses or
a moustache, and light-source distribution.

This system works by testing candidate
image locations for local patterns that ap-
pear like faces,using a classification proce-
dure that determines whether a given local
image pattern is a face. Therefore, our ap-
proach comes at the face-detection problem
as a classification problem given by exam-
ples of two classes:faces and nonfaces.

c H d e f g E h h I h i d F h
Researchers have approached the face-

detection problem with different techniques
in the last few years,including neural net-
works,1,2 detection of f

j
ace features and use

of geometrical constraints,3
�

density estima
j

-
tion of the training data,4 labeled graphs,5

õ
and clustering and distribution-based mod-
eling. 6,7

�
The results of Kah-Kay Sung and

.

Tomaso Poggio6,7
�

and Henry Rowley2 re-
flect systems with very high detection rates
and low false-positive detection rates.

Sung and Poggio use clustering and dis-
tance metrics to model the distribution of
the face and nonface manifold and a neural
network to classify a new pattern given the
measurements. The key to the quality of

their result is the clustering and use of
combined Mahalanobis and Euclidean met-
rics to measure the distance from a new
pattern and the clusters. Other important
features of their approach are the use of
nonface clusters and a bootstrapping tech-
nique to collect important nonface patterns.
However, this approach does not provide a

principled way to choose some important
free parameters such as the number of clus-
ters it uses.

Similarly, Rowley and his colleagues have
used problem information in the design of a
retinally connected neural network trained to
classify face and nonface patterns. Their ap-
proach relies on training several neural net-
works emphasizing sets of the training data to
obtain different sets of weights. Then,their
approach uses different schemes of arbitra-
tion between them to reach a final answer.

Our SVM approach to the face-detection
system uses no prior information to obtain
the decision surface, this being an interest-
ing property that can be exploited in using
the same approach for detecting other ob-
jects in digital images.

k l m n o p q r s m t u m v m s v w x y z { z v m |
This system detects faces by exhaus-

tively scanning an image for face-like pat-
terns at many possible scales,by dividing
the original image into overlapping subim-
ages and classifying them using an SVM to
determine the appropriate class—face or
nonface. The system handles multiple
scales by examining windows taken from
scaled versions of the original image.

Clearly, the major use of SVMs is in the
classification step, which is the most criti -
cal part of this work. Figure 6 gives a geo-
metrical interpretation of the way SVMs
work in the context of face detection.

More specifically, this system works as
follows. We train on a database of face and
nonface 19×19 pixel patterns,assigned to
classes +1 and –1,respectively, using the
support vector algorithm. This process uses
a second-degree homogeneous polynomial
kernel function and an upper bound C =
200 to obtain a perfect training error.

To compensate for certain sources of
image variation, we perform some prepro-
cessing of the data:

• Masking: A binary pixel mask removes
some pixels close to the window-pattern
boundary, allowing a reduction in the
dimensionality of the input space from
19 × 19 = 361 to 283. This step reduces
background patterns that introduce un-
necessary noise in the training process.

• Illumination gradient correction: The
process subtracts a best-fit brightness
plane from the unmasked window pixel
values,allowing reduction of light and
heavy shadows.

} ~ �

� � � � � � � � � � � � � � � � � ¡ � � � � � � � � � � � � ¢ � � � � � � � � � � � � � � � �
 £ � � � � � ¤ � � � � � � ¥ � � � � � ¡ � � � � � � � � � � � � ¦ � � � § � � � � ¨ � � � � � � � � � � � � � £ � ¥ � � � � � � � � � £ � � � � � ¤ � � � � � � � ¡ � � � � � � � � � � � �

� � ¦ � � � � ¡ � � � � � � � � � �

© � ¦ £ � � ª � © � � � ¡ � � � � � � � � � ¥ � � � � � ¡ � � � � � � � � � � � ¤ � � � � � � � � � � § � � � � ¢ � � � � � � � � � � � � ¤ � � � � � � � � ¤ � ¡ � � � � � � � �
� « � � � � � � � � � � � � � � � � � ¦ � � � � � �

¬ ® ¯ ° ± ² ³ ´

µ ± ² ³ ´

.

¶ · ¸ ¹ º » · ¼ · ½ ¾ ¿ À À Á Â Ã

• Histogram equalization: Our process
performs a histogram equalization over
the patterns to compensate for differences
in illumination brightness and different
cameras’response curves,and so on.

Once the process obtains a decision sur-
face through training, it uses the runtime
system over images that do not contain
faces,storing misclassifications so that
they can be used as negative examples in
subsequent training phases. Images of
landscapes,trees,buildings,and rocks,for
example, are good sources of false posi-
tives because of the many different textured
patterns they contain. This bootstrapping
step, which Sung and Poggio6

Ä
successfullÅ y

used, is very important in the context of a
face detector that learns from examples:

• Although negative examples are abun-
dant,negative examples that are useful
from a learning standpoint are very dif-
ficult to characterize and define.

• By approaching the problem of object
detection,and in this case of face de-
tection,by using the paradigm of bi-
nary pattern classification, the two
classes—object and nonobject—are not
equally complex. The nonobject class
is broader and richer, and therefore
needs more examples to get an accurate
definition that separates it from the
object class. Figure 7 shows an image
used for bootstrapping with some mis-
classifications that later served as nega-
tive examples.

After training the SVM,using an imple-
mentation of the algorithm my colleagues
and I describe elsewhere,8

Æ
wÇ e incorporate it

as the classifier in a runtime system very
similar to the one used by Sung and Pog-
gio.5,6

È
It performs the following operations:

• Rescale the input image several times;
• Cut 19×19 window patterns out of the

scaled image;
• Preprocess the window using masking,

light correction and histogran equaliza-
tion;

• Classify the pattern using the SVM; and
• If the class corresponds to a face, draw

a regtangle aroung the face in the output
image.

Figure 8 reflects the system’s architec-
ture at runtime.

É Ê Ë Ì Í Î Ï Ì Ð Ñ Ò Ó Í Ì Ô Õ Ó Ñ Ô Ö Ð Ô Ñ Ò Ñ Î ×
Î Ï Ò Ø Ì Ô

To test the runtime system,we used two
sets of images. Set A contained 313 high-
quality images with the same number of
faces. Set B contained 23 images of mixed
quality, with a total of 155 faces. We tested
both sets,first using our system and then
the one by Sung and Poggio. 5,6

È
To give

true meaning to the number of false posi-
tives obtained, note that set A involved
4,669,960 pattern windows,while set B
involved 5,383,682. Table 2 compares the
two systems.

Figure 9 presents some output images of
our system,which were not used during the
training phase of the system.

É Ê Ñ Ì Ð Ô Î Ö Ð Ñ Ö Ò Í Ì Ò Ó Ù Ñ Î Ï Ì Ô Ú Ô Ñ Ì Ï
The system I’ve discussed so far spends

approximately 6 seconds (SparcStation 20)
on a 320×240 pixels gray-level image. Al -
though this is faster than most previous
systems,it is not fast enough for use as a
runtime system. To build a runtime version
of the system,we took the following steps:

• We ported the C code developed on the
Sun environment to a Windows NT
Pentium 200-MHz computer and added

a Matrox RGB frame grabber and a
Hitachi three-chip color camera. We
used no special hardware to speed up
the computational burden of the system.

• We collected several color images with
faces,from which we extracted areas
with skin and nonskin pixels. We col-
lected a dataset of 6,000 examples.

Û Ü Ý Þ ß à á â ã ä å æ à ç è ß é ê Ü æ à é æ Þ ß à è æ ß Þ ë æ Ü ç à â ì í å à î ï Ü æ ê ð à ß ç Ü å å Ü ñ ë â ò ó

ô õ ö ÷ ø ù ú û ü ý
ö þ ÿ û ú ù � � � ø ÿ û � ø ý � � ù õ � � �� � �

×
� � ö ù � ý 	
 � � ù ü ø� � ÿ ÿ ý � ø ù � õ � ù
 ø � ü ÿ û ú

ý � ÷ û 	 ù � û ø ù � õ � 	 û

 ù � ù � û ø ù � õ ÷
 ù õ ü
 ÷ ö ö � ÿ ø � ý � ø � ÿ ú û � ù õ ý

� � � � ÷ ù � � � ù
 � û ÿ �

ö �

 ù � 	 ý � � û � ý � õ � õ � � û � ý

� � � � � ú ö 	 ý ø ý � 	 û

 ù � ù ý ÿ� û � ý � õ � õ � û � ý

ô � ö �

 ù � 	 ý � û � ý

� ÿ ý ö ÿ � � ý

 ù õ ü

� �� �
! "# $ % &

Û Ü Ý Þ ß à ' â (à å Þ) æ å * ß ñ ç ñ Þ ß * è é à + î à æ à é æ Ü ñ ë å ä å æ à ç â

, è -) à . â / à ß * ñ ß ç è ë é à ñ * æ ê à ã 0 1 * è é à + î à æ à é æ Ü ñ ë å ä å æ à ç â

2 3 4 5 4 3 5 6 2 3 4 5 4 3 5 78 3 5 3 9 5 8 3 5 3 9 5
: ; 5 3 < ; = 4 3 : ; 5 3 < ; = 4 3> ? @ ; = ; : A 4 > ? @ ; = ; : A 4

� � � � B C � D B D C E E F� ÷ õ ü � D C G E B D C E � �

.

• We trained a SVM classifier using the
skin and nonskin data. The input vari-
ables were normalized green and red
values—g/(r+g+b) and r/(r+g+b),re-
spectively. Figure 10 presents an image
captured by the system and its corre-

sponding skin-detection output.
• We coded a very primitive motion de-

tector based on thresholded frame dif-
ferencing to identify areas of movement
and use them as the focus of attention.
Motion was not a requirement to be de-
tected by the system because every so
many frames (20 in the current imple-
mentation), we skipped this step and
scanned the whole image.

• We put together a hierarchical system
using as a first step the motion-detection
module. We used the SVM skin-detec-
tion system as second layer to identify
candidate locations of faces. We used the
face/nonface SVM classifier described I
described earlier over the gray-level ver-
sion of the candidate locations.

The whole system achieves rates of 4 to
5 frames per second. Figure 11 presents a
couple of images captured by our PC-based
Color Real-Time face-detection system.

H I J I K I L M I N
1. G. Burel and D. Carel, “Detection and Lo-

calization of Faces on Digital Images,”
Pattern Recognition Letters, Vol. 15,1994,
pp. 963–967.

2. H. Rowley, S. Baluja,and T. Kanade, Human
Face Detection in Visual Scenes, Tech. Re-
port 95–158,Computer Science Dept.,
Carnegie Mellon Univ., Pittsburgh,1995.

3. G. Yang and T. Huang, “Human Face Detec-
tion in a Complex Background,” Pattern
Recognition, Vol. 27,1994,pp. 53–63.

4. B. Moghaddam and A. Pentland, Proba-
bilistic Visual Learning for Object Detec-
tion, Tech. Report 326,MIT Media Labora-
tory, Cambridge, Mass.,1995.

5. N. Krüger, M. Pötzsch, and C. v.d. Mals-
burg, Determination of Face Position and
Pose with Learned Representation Based on
Labeled Graphs, Tech. Report 96-03,Ruhr-
Universität,1996.

6. K. Sung, Learning and Example Selection
for Object and Pattern Detection, PhD the-
sis,MIT AI Lab and Center for Biological
and Computational Learning, 1995.

7. K. Sung and T. Poggio, Example-Based
Learning for View-Based Human Face De-
tection,A.I. Memo 1521,C.B.C.L Paper
112,Dec. 1994.

8. E. Osuna,R. Freund, and F. Girosi,“An
Improved Training Algorithm for Support
Vector Machines,” Proc. IEEE Workshop on
Neural Networks and Signal Processing,
IEEE Press,Piscataway, N.J., 1997.

O P Q R P S T U V W T W X R Y Z [\
John Platt, Microsoft Research

In the past few years,SVMs have proven
to be very effective in real-world classifica-
tion tasks.1 This installment of Trends &
Controversies describes two of these tasks:
face recognition and text categorization.
However, many people have found the nu-
merical implementation of SVMs to be
intimidating. In this essay, I will attempt to
demystify the implementation of SVMs. As
a first step, if you are interested in imple-
menting an SVM,I recommend reading
Chris Burges’tutorial on SVMs,2 available
at http://svm.research.bell-labs.com/
SVMdoc.html.

An SVM is a parameterized function
whose functional form is defined before
training. Training an SVM requires a la-
beled training set,because the SVM will fit
the function from a set of examples. The
training set consists of a set of N examples.
Each example consists of aninput vector,
xi, and a label,yi

] , which describes whether
the input vector is in a predefined category.
There are N free parameters in an SVM
trained with N examples. These parameters
are called αi

] . ^ To find these parameters,you
must solve a quadratic programming (QP)
problem:

where Q is an N×N matrix that depends
on the training inputs xi

] ,_ the labels yi
] , and

the functional form of the SVM. We call
this problem quadratic programmingbe-
cause the function to be minimized (called
the objective function) depends on the αi

]
quadratically, while αi

] onl` y appears lin-
early in the constraints (see http://www-
c.mcs.anl.
gov/home/otc/Guide/OptWeb/continuous/
constrained/qprog). Definitions and appli-
cations of xi

] , yi
] , αi

] , and Q appear in the tu-
torial by Burges.2

Conceptually, the SVM QP problem is to
find a minimum of a bowl-shaped objective
function. The search for the minimum is
constrained to lie within a cube and on a
plane. The search occurs in a high-dimen-
sional space, so that the bowl is high dimen-
sional,the cube is a hypercube, and the

minimize

subjectto and

1

2

0 0

1 1

1

α α α

α α

i
a

ij j
i j

N

i
i

N

i i i
i

N

Q

C y

−

≤ ≤ =

= =

=

∑ ∑

∑

,b ;

c d e f f f e g h f i i e j f g h k l k h f m k

n o p q r s t u v w x s y z { | } s ~ � � � s � � o x � s � s � � o ~ x { ~ � q } so { | } s { s x � s � q � o x p � � � � v

n o p q r s t t v n z � s � s � s � � o ~ x ~ x � � s � � � � z � s � � ~ } ~ r � s z } �� o { s � � � � s {

.

� � � � � � � � � � � � � � � � �

plane is a hyperplane. For most typical
SVM functional forms,the matrix Q has
special properties,so that the objective
function is either bowl-shaped (positive
definite) or has flat-bottomed troughs (posi-
tive semidefinite),but is never saddle-
shaped (indefinite). Thus,there is either a
unique minimum or a connected set of
equivalent minima. An SVM QP has a defi-
nite termination (or optimality) condition
that describes these minima. We call these
optimality conditions the Karush-Kuhn-
Tucker (KKT) conditions,and they simply
describe the set of αi

] that are constrained
minima.3

�
The values of αi

] also have an intuitive
explanation. There is one αi

] for each train-
ing example. Each αi

] deter
�

mines how
much each training example influences the
SVM function. Most of the training exam-
ples do not affect the SVM function,so
most of the αi

] ar e 0.
Because of its simple form,you might

expect the solution to the SVM QP problem
to be quite simple. Unfortunately, for real-
world problems,the matrix Q can be enor-
mous:it has a dimension equal to the num-
ber of training examples. A training set of
60,000 examples will yield a Q matrix with
3.6 billion elements,which cannot easily fit
into the memory of a standard computer.

We have at least two different ways of
solving such gigantic QP problems. First,
there are QP methods that use sophisticated
data structures.4 These QP methods do not
require the storage of the entire Q matrix,
because they do not need to access the rows
or columns of Q that correspond to those αi

]
that are at 0 or at C. Deep in the inner loop,
these methods only perform dot products
between rows or columns of Q and a vec-
tor, rather than performing an entire ma-
trix-vector multiplication.

¡ ¢ £ ¤ ¥ ¦ ¤ § ¨ © ª « ¬ ¢ ® ¦ ¯ ¤ ° ± ¢ ¥
The other method for attacking the large-

scale SVM QP problem is to decompose
the large QP problem into a series of
smaller QP problems. Thus,the selection
of submatrices of Q happens outside of the
QP package, rather than inside. Conse-
quently, the decomposition method is com-
patible with standard QP packages.

Vapnik first suggested the decomposition
approach in a method that has since been
known as chunking.1 The chunking algo-
rithm exploits the fact that the value of the
objective function is the same if you re-

move the rows and columns of the matrix Q
that correspond to zero αi

] . ^ Therefore, the
large QP problem can break down into a
series of smaller QP problems,whose ulti-
mate goal is to identify all of the nonzero αi

]
and discard all of the zero αi

] . At every step,
chunking solves a QP problem that consists
of the following αi

] :² every nonzero αi
] from

the last step,and the αi
] tha

³
t correspond to

the M worst violations of the KKT condi-
tions,for some value of M (see Figure 12a).
The size of the QP subproblem tends to
grow with time. At the last step, the chunk-
ing approach has identified the entire set of
nonzero αi

] ; hence, the last step solves the
overall QP problem.

Chunking reduces the Q matrix’s dimen-
sion from the number of training examples
to approximately the number of nonzero αi

] .^
However, chunking still might not handle
large-scale training problems,because even
this reduced matrix might not fit into mem-
ory. Of course, we can combine chunking
with the sophisticated QP methods des-
cribed above, which do not require full
storage of a matrix.

In 1997,Edgar Osuna and his colleagues
suggested a new strategy for solving the
SVM QP problem.5

È
Osuna sho
´

wed that the
large QP problem can be broken down into
a series of smaller QP subproblems. As long
as at least one αi

] that violates the KKT con-
ditions is added to the previous subproblem,
each step reduces the objective function and
maintains all of the constraints. Therefore, a
sequence of QP subproblems that always
add at least one KKT violator will asymp-
totically converge.

Osuna suggests keeping a constant size
matrix for every QP subproblem,which
implies adding and deleting the same num-
ber of examples at every step5

È
(see Figure

12b). Using a constant-size matrix allows
the training of arbitrarily sized datasets.
The algorithm in Osuna’s paper suggests
adding one example and deleting one ex-
ample at every step. Such an algorithm
converges,although it might not be the
fastest possible algorithm. In practice, re-
searchers add and delete multiple examples
according to various unpublished heuris-
tics. Typically, these heuristics add KKT
violators at each step and delete those αi

]
that are either 0 or C. Joachims has pub-
lished an algorithm for adding and deleting
examples from the QP steps,which rapidly
decreases the objective function.6

Ä
All of these decomposition methods

require a numerical QP package. Such
packages might be expensive for commer-
cial users (see the “Where to get the pro-
grams”section). Writing your own efficient
QP package is difficult without a numeri-
cal-analysis background.

µ ¢ ¶ · ¢ © « ¨ ¸ ± ¥ ¨ © ¨ ¥ ¸ ± ¤ ¦ « ¨ ¥ ¨ ¹ ¸ « ¨ ¤ ©
Sequential minimal optimization is an

alternative method that can decompose the
SVM QP problem without any extra matrix
storage and without using numerical QP
optimization steps.3,7

�
SMO decomposes

the overall QP problem into QP subprob-
lems,identically to Osuna’s method. Un-
like the previous decomposition heuristics,
SMO chooses to solve the smallest possible
optimization problem at every step. For the
standard SVM QP problem,the smallest
possible optimization problem involves
two elements of αi

] , because the αi
] must

obey one linear equality constraint. At
every step, SMO chooses two αi

] to jointl
³

y
optimize, finds the optimal values for these
αi

] ,_ and updates the SVM to reflect the new
optimal values (see Figure 12c).

(a)

(b)

(c)

º » ¼ ½ ¾ ¿ À Á Â Ã Ä ¾ ¿ ¿ Å Æ Ç ¿ ¾ È Å Ç » É ¿ Ê ¿ Ç Ä Ë Ì Í Î Ë ¾ Ç ¾ Å » È » È ¼ Ï Ð Ñ Í Ò Ó Å Ô Õ Ä ½ È Ö » È ¼ × Ó Ø Ô Ù Í ½ È Å Ú Í Å Æ ¼ Ë ¾ » Ç Ä Ê × Å È Ì Ó Û Ô Ï Ñ Ù Â Ã Ä ¿ ¾ ¿ Å ¾ ¿Ç Ä ¾ ¿ ¿ Í Ç ¿ Ü Í Î Ë ¾ ¿ Å Û Ä Ê ¿ Ç Ä Ë Ì Â Ã Ä ¿ Ä Ë ¾ » Ý Ë È Ç Å Æ Ç Ä » È Æ » È ¿ Å Ç ¿ É ¿ ¾ Þ Í Ç ¿ Ü ¾ ¿ Ü ¾ ¿ Í ¿ È Ç Í Ç Ä ¿ Ç ¾ Å » È » È ¼ Í ¿ Ç × ß Ä » Æ ¿ Ç Ä ¿ Ç Ä » Û Ö Ø Ë à ¿ Í¾ ¿ Ü ¾ ¿ Í ¿ È Ç Ç Ä ¿
α á Ø ¿ » È ¼ Ë Ü Ç » Ê » Ý ¿ Ì Å Ç Ç Ä Å Ç Í Ç ¿ Ü Â â ¼ » É ¿ È ¼ ¾ Ë ½ Ü Ë Î Ç Ä ¾ ¿ ¿ Æ » È ¿ Í Û Ë ¾ ¾ ¿ Í Ü Ë È Ì Í Ç Ë Ç Ä ¾ ¿ ¿ Ç ¾ Å » È » È ¼ » Ç ¿ ¾ Å Ç » Ë È Í ×ß » Ç Ä Ç Ä ¿ Î » ¾ Í Ç » Ç ¿ ¾ Å Ç » Ë È Å Ç Ç Ä ¿ Ç Ë Ü Â

.

SMO can solve for two αi
] anal ytically,

thus avoiding numerical QP optimization
entirely. The inner loop can be expressed in
a short amount of C code, rather than by
invoking an entire QP library routine. Even
though more optimization subproblems are
solved in the course of the algorithm, each
subproblem is so fast that the overall QP
problem can be solved quickly.

Because there are so many possible com-
binations of QP packages,decomposition
heuristics,code optimizations,data struc-
tures,and benchmark problems,it is very
difficult to determine which SVM algo-
rithm (if any) is the most efficient. SMO
has been compared to the standard chunk-
ing algorithm suggested by Burges in his
tutorial.2,3The QP algorithm used by this
version of chunking is projected conjugate
gradient(PCG). Table 3 compares the re-
sults for SMO versus PCG chunking. Both
algorithms are coded in C++,share SVM
evaluation code, are compiled with Micro-
soft Visual C++ version 5.0,and are run on
a 266-MHz Pentium II with Windows NT
and 128 Mbytes of memory. Both algori-
thms have inner loops that take advantage
of input vectors that contain mostly zero
entries (that is,sparse vectors).

For more details on this comparison,and
for more experiments on synthetic datasets,
please consult my upcoming publication.3

�
The Adult experiment is an income-predic-
tion task and is derived from the UCI ma-

chine-learning benchmark.8
Æ

The Web ex-
periment is a text-categorization task. The
Adult and Web datasets are available at
http://www.research.microsoft.com/~jplatt/
smo.html. The MNIST experiment is an
OCR benchmark available at http://www.
research.att.com/~yann/ocr/mnist. The
training CPU time is listed for both SMO
and PCG chunking for the training set size
shown in the table. The scaling exponent is
the slope of a linear fit to a log-log plot of
the training time versus the training set
size. This scaling exponent varies with the
dataset used. The empirical worst-case
scaling for SMO is quadratic, while the
empirical worst-case scaling for PCG
chunking is cubic.

For a linear problem with sparse inputs,
SMO can be more than 1,000 times faster
than PCG chunking.

Joachims has compared his algorithm
(SVMlight version 2) and SMO on the same
datasets.6

Ä
His algorithm and SMO have

comparable scaling with training set size.
The CPU time of Joachims’algorithm
seems roughly comparable to SMO; differ-
ent code optimizations make exact compar-
ison between the two algorithms difficult.

ã ä å æ å ç è é å ç ç ä å ê æ è é æ ë ì í
The pseudocode for SMO is currently in

a technical report available at http://www.
research.microsoft.com/~jplatt/smo.html.7

î
SMO can be quickly implemented in the
programming language of your choice
using this pseudocode. I would recommend
SMO if you are planning on using linear
SVMs,if your data is sparse, or if you want
to write your own end-to-end code.

If you decide to use a QP-based system,
be careful about writing QP code your-
self—there are many subtle numerical pre-
cision issues involved, and you can find
yourself in a quagmire quite rapidly. Also,
be wary of freeware QP packages available
on the Web: in my experience, such pack-
ages tend to run slowly and might not work
well for ill-conditioned or very large prob-

lems. Purchasing a QP package from a
well-known numerical analysis source is
the best bet,unless you have an extensive
numerical analysis background, in which
case you can create your own QP package.
Osuna and his colleagues use MINOS for
their QP package, which has licensing in-
formation at http://www-leland.stanford.
edu/~saunders/brochure/brochure.html.5

È
LOQO is another robust,large-scale inte-
rior-point package suitable for QP and
available for a fee at http://www.princeton.
edu/~rvdb.

Finally, a program that implements Joa-
chims’version of Osuna’s algorithm,6

Ä
called

SVMlight, is available free, for scientific pur-
poses only, at http://www-ai.informatik.uni-
dortmund.de/FORSCHUNG/ VERFAHREN/
SVM_LIGHT/svm_light.eng.html.

ï ð ñ ð ò ð ó ô ð õ

1. V. Vapnik, Estimation of Dependencies
Based on Empirical Data, Springer-Verlag,
New York, 1982.

2. C.J.C. Burges,“A Tutorial on Support Vec-
tor Machines for Pattern Recognition,”
submitted to Data Mining and Knowledge
Discovery, 1998.

3. J.C. Platt, “Fast Training of SVMs Using
Sequential Minimal Optimization,” to be
published in Advances in Kernel Methods—
Support Vector Learning, B. Schölkopf, C.
Burges,and A. Smola,eds.,MIT Press,
Cambridge, Mass.,1998.

4. L. Kaufman,“Solving the Quadratic Pro-
gramming Problem Arising in Support Vec-
tor Classification,” to be published in Ad-
vances in Kernel Methods—Support Vector
Learning, MIT Press,1998.

5. E. Osuna,R. Freund, and F. Girosi,“An
Improved Training Algorithm for Support
Vector Machines,” Proc. IEEE Neural Net-
works for Signal Processing VII Workshop,
IEEE Press,Piscataway, N.J., 1997,pp.
276–285.

6. T. Joachims,“Making Large-Scale SVM
Learning Practical,” to be published in Ad-
vances in Kernel Methods—Support Vector
Learning, MIT Press,1998.

7. J.C. Platt, Sequential Minimal Optimiza-
tion: A Fast Algorithm for Training Support
Vector Machines, Microsoft Research Tech.
Report MSR-TR-98-14,Microsoft,Red-
mond, Wash.,1998.

8. C.J. Merz and P.M. Murphy, UCI Repository
of Machine Learning Databases, Univ. of
California,Irvine, Dept. Information and
Computer Science, Irvine, Calif.; http://www.
ics.uci.edu/~mlearn/MLRepository.html.

ö ÷ ø ù ù ù ø ú û ù ü ü ø ý ù ú û þ ÿ þ û ù � þ

� � � � � � � � 	
 � � � � � 	 � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � 	 � 	 � � � � � � 	 ! � � � "
� 	 � � � � � # � � � � 	 � � � � � � � � � � � � � � � � $ � �

% & '() * + , - . / 0 . 1 % & '
2 3 4 0 . 0 . 1 2 3 4 0 . 0 . 1 () * + , - . / 0 . 1

5 6 3 . 6 7 8 3 4 0 . 0 . 1 & % 9 & % 9 : + 4 7 0 . 1 : + 4 7 0 . 1
; < = 6 3 0 > 6 . 2 - : 6 ? : 6 2 : 0 @ 6 2 0 > 6 A : 6 + B C 2 0 > 6 A : 6 + B C 6 < = D . 6 . 2 6 < = D . 6 . 2

E F G H I H J K L M N O J K L M N P P Q R R P P S T U R U Q S P P T V P T W V T P
X L Y H J K L M N O J K L M N Z W Q S Z W R [\ T V P S Q P [Z T S P T [R T]
E F G H I ^ M G _ _ J M K ^ M G _ _ J M K P P Q R R P S \ P T Z P P Q W P U T [R T P R T W
X L Y ^ M G _ _ J M K ^ M G _ _ J M K Z W Q S Z W V Q \ [V T] R V Q \ S S T [P T S R T U

` a b c d e f H g K f h J M H [U Q U U U R W Q Z S P T U V V Q P U W T U a i E a i E

j k l m n o p q r s t u u v q

Inf ormation Integration
for the Web

with essaw ys by William Cohen,
Craig Knoblock, and Alon Levy

.

