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Abstract The challenge roots in the dif culty that estimating the

motions of multiple targets cannot be treated indepengentl

Video-based multiple target tracking (MTT) is a chal- if they are presentin close vicinity, because their visuml 0
lenging task when similar targets are present in close vicin Servations (or visual evidence) are mixed and it is generall
ity. Because their visual observations are mixed and dif - Very dif cult, if notimpossible, to gure out the right asso
cult to segment, their motions have to be estimated jointly. Ciations of these observations to the individuals targat (
Most existing approaches perform this joint motion estima- implies a general segmentation problem). To handle this
tion in a centralized fashion and involve searching a rather dif culty, the motions of multiple targets have to be joiptl
high dimensional space, and thus leading to quite compli- €stimated from the mixed visual observations, which makes
cated joint trackers. This paper brings a new view to MTT MTT much more dif cult than tracking a single target as
from a game-theoretic perspective, bridging the joint mo- the solution space of MTT is much larger.
tion estimation and the Nash Equilibrium ofgame In- This joint estimation problem can be performed in a cen-
stead of designing a centralized tracker, MTT is decentral- tralized fashion by formulating a joint observation moa@sl,
ized and a set of individual trackers is used, each of which treated in many existing methods3 9, 12, 7, 6, 11, 14, 19,
tries to maximize its visual evidence for explaining its mo- 8]. Because the joint observation model evaluates hypothe-
tion as well as generates interferences to others. Modgllin ses of joint motion states, these methods lead to compticate
this competition behavior, a specighmeis designed so  centralized MTT trackers that generally need to search a
that the dif cult joint motion estimation is achieved at the rather high dimensional solution space.
Nash Equilibrium of this game where no individual tracker This paper brings a new view to MTT from a game-
has incentives to change its motion estimate. This papertheoretic perspective, bridging the joint motion estimati
SubStantializeS th|S nOVeI idea in a Solid case Study Whereand the Nash Equ"'bnum Of a game_ It advocates a decen_
individual trackers are kernel-based trackers. An ef dien trglized methodology that solves MTT through the competi-
best response updating procedure is designed to nd thetjon among a set of simple individual target trackers. These
Nash Equilibrium. The powerfulness of this game-theoretic jngjvidual trackers compete against each other for visbal o
MTT is shown by promising results on dif cult real videos.  servations, and each individual tracker tries to maxinrtize i
visual evidence for explaining its motion and also genarate
interferences to other individual trackers. This can natu-
rally be formulated as gamein which individual trackers
are players each of which estimates its own motioine(

Multiple target tracking (MTT) in video is a critical and ~ €hoosing its owrstrategy by optimizing its own objective
fundamental task in many real applicatiorssg. video  (i-e. utility or payofj. The solution to MTT is tied to the
surveillance, vision-based interfaces, and video amalysi Nash Equilibrium(N.E.) [10] of the game, where no player
This task would not have been more dif cult than tracking ¢an achieve a better payoff by choosing a different strategy
a single target, if multiple targets had quite differennas The objective functions for the individual trackers can-
appearances or were not present in close vicinity. In prac-not be arbitrarily chosen, for example based on intuitians o
tice, however, it is very common that those targets may look heuristics, as they characterize the game and its Nash Equi-
similar and may occlude each other in video during their in- librium and thus in uencing the solution to MTT. To make
teractions. As aresult, itis understandable that losincks this clear, speci cally, this paper presents a solid andehov
and associating wrong tracks to some targets are commortase study where individual trackers are kernel-basek-trac
experiences of the failures in vision-based MTT systems. ers P, 3]. Based on the kernel representation, we introduce

1. Introduction



aninterference modehat describes the visual observations ference model takes both target appearances and spatial re-
of the individual tracker by considering the interferences lations into consideration.

generated from other trackers, and then de ne a joint mo-

tion estimation problem. The Karush-Kuhn-Tucker (KKT) 3.1. Joint likelihood maximization

conditions of this joint optimization produce a xed-point
equation. Naive iteration is not likely to reach the xed-
point, as it may not converge. Therefore, inspired bysile
permodular gaméheory, we construct a game whose Nash
Equilibrium corresponds to the xed-point of the KKT con-
ditions. More important, we design an ef cient iterative
best-response updating procedure that guarantees the con-

vergence to the N.E. under certain conditions and this is = argmax P( i SOF (1)
provable. This best-response updating is done in a closed fa ing o

form thus it is quite computationally appealing.

The proposed game-theoretic MTT method has many
merits. First, it is decentralized as each individual teack
only needs to optimize its own objective, and the compli-
cated joint motion estimation is avoided. This decentral- i
ized scheme greatly reduces the computational complexity.

In addition, the individual motion estimation is computedi  If occlusion is preseni,e. i\ j & ;;9i;] N, we

a simple closed form and is computationally very ef cient. can assign the pixels in the overlapped regions to different
Moreover, the proposed method is theoretically plausible targets probabilistically, thus

because of its convergence properties.

Denote the motion parameters for tita target by ;.
Its corresponding support is denoted by, i.e. the set of
pixelsf x, g within the region of target. Thus, the motions
of a number ofN targets can be estimated by maximizing
the joint likelihood,

Ifno occlusionis presenite. i\ | = ;;8i;j N. This
joint optimization can be done independently:

= argmaxP( iji); 8i N: (2)

2. Related work - pramax POl v @
»oo NGz
Multiple target tracking has been studied extensively in n o _ o

literature and can be back-traced 18], Mostwork assume ~ Where " is the probabilistic support of targét This is
that one target hypothesis can only claim a single image ob-e€quivalent to an energy minimization problem:
servation and one observation can only support one hypoth-
esis. This assumption can be referred as a probabilistic ex-
clusion principle §] and used as a prior in the well-known
joint probabilistic data association Iter (JPDAF),[12] o
and multiple hypothesis tracking (MHT}] Thus, the  3-2. Kernel-based likelihood

key problem in multiple target tracking is to infer the opti- Speci cally, for a kernel-based tracker, a target is rep-

mal joint motion con guration in a high dimensional space. (esented by a kernel weighted feature histogramn The
This can be done in a centralized fashion by sampling or

sequential Monte Carl®[ 14, 7, 6, 19, 11, 8], or evolution- the location of the kernel center ahds it le. Denot
ary optimization f], or in a decentralized mannet§] by € location of the kernel center ahds [ts scale. benote

; ; : by x» the 2D pixel location and, = jj*=—Yjj. The kernel
inferring on a Markov Network. Object detectors may also PY Xn 5 PIXel andn, = JJ=F—-
be included 11, 17]. functionk(zy) in this paper is the Epanechnikov kernel:

)(\l N
= argmin NP 1; DN 4)
fis s NG o1

motion parameters are denoted bé fy;hg, wherey is

Different from these existing methods, we bridge the 1
joint motion estimation and the Nash Equilibrium of a  k(z?) = g
game. We construct aon-cooperative gamgl0, 15] that
characterizes the competition among a set of individual
trackers. The Nash Equilibrium of this game corresponds o ) 4
to a local optimum of the joint motion con guration and tive derivative of the kernelis denoted bzz) = kXz?).

can be solved by an ef cient decentralized method. Following the notations inZ], for a single tracker with-
out interference, the model of targets described by an

M -bin histogramg; = fGm gm=1: v, and the target hy-
pothesis byPi (i) = fpim (Yi)Om=1; m,

In this section, we introduce a new analytical interfer- X
ence model for kernel-based trackers, which is a key com Pim (Vi) = k(j X Yi ii2) b(xa) m]  (6)
ponent in formulating the game-theoretic MTT. This inter-

G ld+2)1  z2);  zZZ<1
; otherwise ’

(5)

whered = 2 andcy is the area of the unit circle. The nega-

3. Interference model

h;

Xn2 i



where []is the Kronecker delta function and the function 4. Game-theoretic multiple target tracking
b( ) maps the pixel locatior, to a bin indexn. The Bhat-
tacharyya coef cient (y;) is employed to measure the sim-
ilarity between a target hypothesis and the model

Based on the interference model, we can formulate the
joint motion estimation (Sec4.1) and construct a game
(Sec.4.2) whose N.E. corresponds to a local optimum of

X p the joint motion estimation and can be ef ciently solved
(yi)= Pim (Yi)Gm : (7 (Sec.4.3). The algorithm is summarized in Set4.
m=1

. : L 4.1. Joint motion estimation
Since the distance from the hypothesis histogity;)

3% the model histograng; can be de ned ag(y;) = Assuming that the scales remain constant when multi-
1  (yi), the likelihood model for tracker (in Eq. 2) ple targets approach to each other, based on the interferenc
without considering interference can be formulated as: likelihood model (Eq11), the minimization of the joint en-
ergy (in Eq.4) is equivalent to:
P(iji)/ e O (8)
X
3.3. Kernel-based interference model (ymax Jilys,  yn) = Nlyisy 1)(12)

. . . . i=1
Due to partial occlusion, we need to consider the inter-

ference among thd targetsj.e. ;\ 6 ;;9i;j N. Maximizing the joint likelihood is equivalent to optimizin
The observation model for trackeis no longer solely de-  the joint kernel locations of all targets that maximize the
termined byy; but the joint motion con guration of all  sum of the generalized Bhattacharyya coef cients.
trackers (which is denoted tby;;y ig= fy;; ;yngto Denote the initial locations of the trackersby?; y° . g.
highlight other trackers' interference to trackgr In view Then, performing Taylor expansionr.t. pim (y2;y°,) and

of this, we generalize the kernel-based histogram model by,plugging Eq9into A (yi;y i), A(Yi;y i) can be approx-

imated by
. 1 X ~Xn  Yi.o
Pm (Viry i) = & K(j—5—10) [A(xn) m] ¥
i 2 i O
s gy ) Ny i) = Bim (Yi:Y i)Gm
_ Gm (Xn)K(j =501%) _ ©) m=1
i1 Gm (xn)K(ii =5=10i%) 1 —
jmAm " > Bm (Y25¥°)Gm + Pim (VisY 1) %
whereC;  1is a normalization term. The probability that m=1 A
the pixelx,, is within ; is approximated by 10—
" I = > Bim (Y25 Y% i) Gm +
_Gm (X)KGi 227 o Ly (i i
g —Xn — o : X 2t
1 Gm (<n)k(i 25 202) % !i(xn)k(ij“h_ Yijzyp qu( il ,*,"Xn”y_)_,z . (13)
i i j=1 Gm (Xn) k(i =5~51j%)

P i
wheregm (Xn) = mzl Gm [ (b(xn) m)] is the his- ) ) o _
togram bin value for pixekn in the target modeli . Please where! (X ) is determined by the initial status Of tracker
note when using Epanechnikov kernel with a nite sup- Pim (y{;y°;) and the model histogram of targeti,

port, if one tracker has no overlap with others, Bcde- ;

generates to Ecp. To avoid numerical problems, we set ~ Om .

gm = > 0;8m < M , where is a very small value, to tilxn) = [b(xn)  m] Bim (y2;y0.) (14)

guarantee non-zero bigg, (Xn) andgm (Xn). m=1 ' '
Thegenerglized Bhattacharyya coef cierst de ned as Since only the second term in Ef3 is related to the

"Yisy )= mor Pm(Yily i)am. Then, thelikeli-  yariaplefy;;y ;g given the initial locations, we can ignore

hood model for targetwith interference is formulated as: e terms inJ; that are not affected Hwi  ;yng Then

P ow)l e . (11) we rede ne the objective function and have:
- 4
. ThIS mterfergnce m_odel _takes both the appearance sim max  Ja(yi yn) 2 rlyicy i) (15)
ilarity and spatial relations into account. This interfece fyir syng i=1
model down-weights those pixels that are in the overlapped
regions of different trackers and have ambiguous idestitie wherer;(y;;y i) corresponds to the individual matching



of trackeri (as the second term in E§3):

filyisy i) % (16)
1 X i (xn)KGj < 22%)
G P Gm (o )K( B hji2)

=161 g (xn)k(i 50 2)

Sincer Jo w.rt.tofys;  ;yngis intractable, we fur-

ther approximate it with a lower bourdd ~ J»:
max  Ja(yi; Syn)E ROy 1) (A7)
fyi: syng i=1
where
AUBIDE (18)
1 X L (xn)k(jj 2252 5j2) _
G 1+ e Gk )

This proximation means that the pixels in the occlusion re-
gions are further down-weighted as

0 1
i Xn Y2
=@+ Am OO ),
(=146 Om (xn)K(i 25 24)2)
0 1
=@y Inlo)ygXe Yigaa o)
J

i=1i6i Gm (Xn)

This is reasonable, since we don't explicitly recover the oc

Thus, the N.E. of the game we construct must also satisfy
these conditions. In view of this, we design a gaGe

N; fR%g; frioe (yi;y )9 . Atthe NE.fyy;  ;yygof
this game8 playeri and its optimal strategy; , we have
Mot (Yiiy i) Tt (Yisy 1);8yi, by de nition of N.E..
Sincery is continuousy . rt (Yisy i)jyi = 0;:8i, is
held at N.E.. Consequently, the N.E. also satis es the KKT
conditions ofJ3. Therefore, this construction of the game
is plausible, and maximizindjs is equivalent to nding the
N.E.. Fortunately, this can be solved ef ciently by a decen-
tralized best response updating, as described below.

4.3. Finding a Nash Equilibrium

To nd a N.E., we design a decentralized synchronous
scheme to update the best response for each tracker.
Namely,8i, assuming all the other trackers' locations;
are given, we nd the besg; that maximizes the utility
ot (Yi;y i), i.e.tosolver y rie (Yi;y i) =0. The justi-
cation of this iterative process can be found in SBcWe
have 8i,

Myt (Yisy i) =1y RYiy i)y 1y Ry j)=0:
i6i
(21)
Eqg. 21 can be solved in a closed-form. To make the
derivation clear, we denote

clusion relations among the targets and a natural choice is

to reduce their contributions to the weighted histograms.

4.2. Game construction and formulation

Although it is natural to design a game to model the com-
petition among multiple trackers, the construction of the
game cannot be arbitramy,g.based on intuitions or heuris-

tics, because the equilibrium of the game may not neces-

sarily be a solution to MTT. For example, if we formulate
a naive non-cooperative gam&\; f R2g;f A (yi:y i)g .,
where the players correspond to the individual trackeess, th
strategy for each player is the motign 2 R?, and its util-
ity N (Yi;y i) isthe generalized Bhattacharyya coef cient.

This naive game is unable to assure a social optimal behav-

ior ( that corresponds to a good joint solution to MTT), be-
cause each tracker will try to solely increase its own wtilit
Special care has to be taken in the game construction.
. 4
Alocal optimumfy,; ;yygofJs(y:; ;yn) =
rot (Y1; ;YN ) IS a good solution to MTT. The solution
must satisfy the Karush-Kuhn-Tucker (KKT) conditions,

@ior (Y1,
@i

'yN)hyh

8i N:

Yn 9 01 (20)

4 | i(Xn)
i (Xn) = P : - —:  (22)
1+ e i g::;k(]l i)
o ! (xa)k(i “22i%) 03
ji Xn) = P - - ;
1+ |N=1 16| 3;;“ (();(:;k(ll %JJZ))2
Then, we have
r yil‘igzli;y i)
1 .. X i
cpz i el Vi) xa  yi)124)
[ ; l
and fori 6 j, we have,
ryil sy i)
X . Xn yi .2
= o i () QUi — 0T (xn  Yi)(25)
(] i

AN

Please notg; merely in uencesy (yj;y j) throughthe
overlapped regiofix, 2 ; \ g andg(jj %jjz) is
uniform for Epanechnikov kernet. y, 1 (yj;y ) acts as
a force of thq th tracker that pushes away thé tracker.

Plugging Eg24 and Eqg.25to Eq.21, we can solve the
besty; giveny ; in a closed form. To make things clear,



we de ne two more coef cientsw;i (xn) andw; (xn) for
pixelx, 2 i,

1 X
Wi (Xn) 2 o i (Xn) (] nhi ylJJZ)§8Xn 2 i
(26)
1 iXn  Viii2 ) :
Wii (Xn) i Cjh? [ (Xn)g(] T ) znz ': J
n i j
(27)
We have,
X
Myl (YisY i) = ryi505Y j)
j=1
X X
= Xn Wi (Xn) Vi w;i (xn) = 0:(28)
i j=1 i =1

Therefore, considering the interference of the tardetall

the others targets and given the locations of other targets,

the bes#}; that maximizes the utility is
Pn P XnWii (Xn)
§ = pp ) g

; (29)
=1 , Wii (Xn)

For each frame (), whenN trackers approach to each

other, we can iteratively updaye;i = 1; ;N by Eq.29.

This iterative process reaches an equilibrium that ackieve

a local optimum of the joint motion estimation.

A geometrical explanation is the following. We can view

Y\ as a combination of forcgs ; which is the solution to
r )/ir](yj;y j)=0 as
X Wi (Xn) |

Wi (Xn) (30)

%=
¢ ; acts as trackgrs counter force to trackérwhen con-
sideringy;'s interference iry (yj;y j). This can be visu-
alized in Fig.1.

Figure 1. lllustration of force combination fgf .

4.4, Algorithm summary

We summarize our game-theoretic MTT algorithm. If a

generate a game and use the algorithm in &tg.search for

the N.E. If one target is isolated from others we use Mean-

shift tracker. The procedure is summarized in Rig.

Input : Framel (), target models q;g, and ini-
tial states of the set of individual tracker§ 1 =
fyl Y. Ygfori=1; N’

Output: Tracking results ® = fy®;h()

0

1; N

gfori =

1. Divide trackers into different groups if they are in
close vicinity.

2. For each group of trackers, if it has more than
one tracker in the group, generate a game and call
the algorithm in Fig3, otherwise call Mean-shift
tracker p].

3. For each individual tracker, searbﬁ) with dis-
crete scale factorfd0:95; 1; 1:05g to maximize its
generalized Bhattacharyya coef cieM; ¢ i).

Figure 2. Procedure of game-theoretic MTT.

Input : Framel, target modelsfq;g, and initial
states of the set of individual trackefg?; h;g for
i=1; ;N.

Output: Target locationg ¢;;i = 1;
equilibrium.

;N g at the

1. For each tracker, determine ; and calculate
Pi(yi;y i) byEq.9.

2. Inorderto calculate y, /5 (yi;y i) in Eq.24, for
each pixek, 2 i, calculate

l'i(xn) by Eq.14,
i (Xn) by EQ.22,
wi (Xn) by Eq.26.
3. In order to calculate , K (yi;y i) in EqQ. 25
(note switch subscript andj), for trackerj 6
i; i\ ; 6 ;,foreachpixelx, 2 ;\ j,
calculate
i (Xn) according to Eq23,
wi (Xn) according to Eq27.

4. For tracker, calculatefy giveny ; by Eq.29.

5. Ifall fyy 8 = 1; ;N g are stationary, exit;
otherwise go to Step 1.

subset of targets approach to each other, and their hypotheEigure 3. Algorithm for nding N.E. in game-theoretic MTT.
ses are overlapped (the distances less than a threshold), we



5. Game theoretic analysis 6.1. Example of best response updating

In the gameG we have constructed, the utility func- First, we show an example of the best response updating
gon of each player is the joint matchimgy (yi;y i) = fortracking the hands.and the face in a_s.ign language video.
iN ~yi;y i), which forces an individual tracker to take The rst 4 images in Fig4 show the positions of the hands
other trackers' in uences into consideration rather thalyo and the face at the rst 3 iterations and at the last iteration
focusing on its own interest. y, & (yj;y ), i-e. the sen- during the best response updating. WeF;)bserve that the sum

sitivity of trackerj's matching w.rt trackei's motiony;,  Of generalized Bhattacharyya coef cients; (yi;y i)

can be regarded as a price trackecharges trackeir and monotonically increases as shown in the last graph. But the
counter reacts tg; throughyi i individual A(yi VY i) may be up and down. This is a rather

To analyze whether the Nash Equilibrium can be dif cult case because the hands and the face share the same

achieved by the best response updating for g@ne skin tones. In our method, the competition ends up at an
N; fR2g;frioe (Y1, ;yn)g, We resort to the follow-  equilibrium that gives a good estimation of them.

ing de nition and theorem in the supermodular game the-

ory [15, 16]. 6.2. Synthesized video

We synthesize two videos in which there are 3 differ-
ent targets and 5 identical targets, respectively. The-back
grounds include random noise and 10-20 small targets that
are wandering randomly. Frame samples are shown in
Fig. 5. The trackers are drawn in different colors and a red
dash ellipse indicates the group of trackers that are enlgage
Theorem 1 In a supermodular (submodular) gant = in the game. The nal motiorg; are drawn at the centers

fN;_fS; ffihggi (a) there e>;ists at Iea;st onel Nash Equilibrium; ¢ 16 targets. From the test results, the competition among
(b) if each player starts from any feasible strategy and usesy, o (orgets leads to an equilibrium and largely avoids the
best response updating, then the joint strategies will even coalescence problem.

tually converge to a Nash Equilibrium.

Denition 1 A gameG = fN;S;ff;ggis a supermodular
(submodular) game if the s& of feasible joint strategies
is a sublattice, and each utility functidn is supermodular
(submodular) function ofs.

: 6.3. Real video
For details about supermodular games, we refer the readers

to Chapter 4 in15] and Chapter 7 in16). We further test the proposed approach in real sign lan-
Based on the supermodular game theory, to show theguage and sports videos. These are very challenging tests
best response updating can reach a N.E., a suf cient con-for MTT. The hand gesturing in sign language video (Bjg.
dition includes 1) the solution of EQ1is a best response is fast and the hand shape is deformable. Since the color of
of ¢ given xed y i, and 2) the gamés is a super- the hands and the face are quite similar, when the hands
modular/submodular game. Condition 1 is satis ed since moving in front of the head, it is very likely that indepen-
rot (Yi;y i) isconcave ony; in thatthe Epanechnikovker- — dent trackers will fail as shown in the 2nd row of Figy.0On
nel functionk is non-negative and strictly concave. The de- the contrary, in our method, the interference from the face
tails are given in Appendix A. The condition 2 can be satis- tracker to the hands tends to push the hands away from the

edincertain ;i =1; ;N where each utility function  face, which greatly alleviates coalescence phenomenons.
is submodular function, which is given in Appendix B. Sports video is another large category where the ath-
letes generally wear similar sports suits and may have very
6. Experiments complicated interactions. Therefore tracking the people i
sports video is a very dif cult task. We show the track-
We demonstrate the proposed game-theoretic MTT bying results forkid soccer , free style soccer and
using both synthesized and real video (downloaded fromyolleyball . The proposed method can follow the people

Google Vided. The basic individual tracker is a Mean-shift - with complicated occlusions. The comparison to the results
trackers with32 32 2D histogram in the Hue-Saturation  of independent trackers are in the supplemental materials.
space. To purely evaluate the performance of the proposed

method, we do not incorporate motion dynamic prior, ob- 7. Conclusion

ject detectors, and background subtraction, although it is

easy to incorporate them. The method is implemented in  In this paper we introduce a new view of game theory to
C++ and tested on Pentium IV 3Ghz PC. Empirically, the the study of multiple target tracking. The competition of in
best response updating converges very quickly within 3-10dividual trackers is formulated as a game and we bridge the
iterations, so the computations are almost the same as thagolution to the joint motion estimation and the Nash Equi-
in multiple independent Mean-shift trackers. librium of the game. Consequently, the maximization of the



Figure 4. lllustration of best response updating procedteeation #0, 1, 2, and 8.

Figure 5. Tracking synthesized video: (1st row) 3 differiamgets for frame #1, 15, 42, 427, and 500; (2nd row) 5 idaht&rgets for
frame #1, 13, 19, 20, 25.

joint likelihood can be decentralized. The N.E. of this game ments off the diagonal, it is negative de nite which indi-
can be solved by an ef cient iterative procedure in a closed cates it is concave ovgr = fu;;Vv;g.

form. The proposed method achieves promising results in

tracking quasi-identical targets in both synthesized @ad r

video sequences. The future work includes the incorpora-

tion of motion dynamic models in the trackers' utilities and
faster algorithms for computing approximate N.E.
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Appendix
A. Proof of Eq. 29is a best response

To show EQ.29 is the best response @ given xed
y i, we need to show the solutiofy of Eqg. 21 is a
global optimum ofrlipt (Yi;y i). We prove this by show-
iNngrot (Yizy i)= ]-Nzl i (Y1; ;YN ) is concave.

Denotey; fui;vig, giveny ; are xed, K(yi) =
F(Ui;vi) andry (yi) = + (ui;vi). Noteg(jj *sjj%) is
positive and uniform for Epanechnikov kernel. From E4j.
and Eq.25, we have

@ (uiv) _o. @i(uiv) _ @) o X
@uaev ' @uau @va@y R
@; (uisvi) _ . @ (uisvi) _ @ (Uisvi) _ PR
@@y O awey | @vav i (o)

P
So in the Hessian malgrix ofp-'\‘:1 £ (ui; Vi), the elements

on the diagonal are jN:1 . Wji (xn) and O for ele-

B. Conditions for G being a submodular game

To show a game is supermodular (submodular) game we
need to show the joint strategy space is de ned on a sublat-
tice and all utility functions are supermodular (submodula
functions on the joint strategy space. Any non-empty com-
pact subset oR" is a sublattice oR" [16]. So the rst
requirement is satis ed in our gant. For the second con-
dition, we have this theorenif):

Theorem 2 LetX R"™ andf : X ! R. The functiorf
is supermodular iff it satis es increasing (decreasing}-di
ferences orX . If f is twice differentiablef is supermodu-

lariff 525 0, or submodularifizZ5- 0, 8i;j .

Thus, denotey; fui;vig, we need to examine

@ (yisy i) @i(yisy i) @i(yisy i) @ (yizy i) ;
@@y ' @ve@y ' @u@y ,and @v@y fori &
j. In addition, we need to chec@'@gﬁié’u g @@(Dyy‘gv oy
@i(yiy i) @i(yiy i) i ; _
@y @y ,and @y @y fOI‘],! 6 i. Whether these con
ditions hold depends onttie j;i=1; ;Ngand canbe

checked analytically. We observe the constructed géme

is submodular when the occlusion regions are small and the
kernel centers are not occluded. Due to the page limit, we

are unable to list the derivation of each term, these condi-

tions can be checked as a by-product in best response up-
dating givenf ;i =1; iNg.
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