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Abstract

Video-based multiple target tracking (MTT) is a chal-
lenging task when similar targets are present in close vicin-
ity. Because their visual observations are mixed and dif�-
cult to segment, their motions have to be estimated jointly.
Most existing approaches perform this joint motion estima-
tion in a centralized fashion and involve searching a rather
high dimensional space, and thus leading to quite compli-
cated joint trackers. This paper brings a new view to MTT
from a game-theoretic perspective, bridging the joint mo-
tion estimation and the Nash Equilibrium of agame. In-
stead of designing a centralized tracker, MTT is decentral-
ized and a set of individual trackers is used, each of which
tries to maximize its visual evidence for explaining its mo-
tion as well as generates interferences to others. Modelling
this competition behavior, a specialgameis designed so
that the dif�cult joint motion estimation is achieved at the
Nash Equilibrium of this game where no individual tracker
has incentives to change its motion estimate. This paper
substantializes this novel idea in a solid case study where
individual trackers are kernel-based trackers. An ef�cient
best response updating procedure is designed to �nd the
Nash Equilibrium. The powerfulness of this game-theoretic
MTT is shown by promising results on dif�cult real videos.

1. Introduction

Multiple target tracking (MTT) in video is a critical and
fundamental task in many real applications,e.g. video
surveillance, vision-based interfaces, and video analysis.
This task would not have been more dif�cult than tracking
a single target, if multiple targets had quite different visual
appearances or were not present in close vicinity. In prac-
tice, however, it is very common that those targets may look
similar and may occlude each other in video during their in-
teractions. As a result, it is understandable that losing tracks
and associating wrong tracks to some targets are common
experiences of the failures in vision-based MTT systems.

The challenge roots in the dif�culty that estimating the
motions of multiple targets cannot be treated independently
if they are present in close vicinity, because their visual ob-
servations (or visual evidence) are mixed and it is generally
very dif�cult, if not impossible, to �gure out the right asso-
ciations of these observations to the individuals targets (that
implies a general segmentation problem). To handle this
dif�culty, the motions of multiple targets have to be jointly
estimated from the mixed visual observations, which makes
MTT much more dif�cult than tracking a single target as
the solution space of MTT is much larger.

This joint estimation problem can be performed in a cen-
tralized fashion by formulating a joint observation model,as
treated in many existing methods [13, 9, 12, 7, 6, 11, 14, 19,
8]. Because the joint observation model evaluates hypothe-
ses of joint motion states, these methods lead to complicated
centralized MTT trackers that generally need to search a
rather high dimensional solution space.

This paper brings a new view to MTT from a game-
theoretic perspective, bridging the joint motion estimation
and the Nash Equilibrium of a game. It advocates a decen-
tralized methodology that solves MTT through the competi-
tion among a set of simple individual target trackers. These
individual trackers compete against each other for visual ob-
servations, and each individual tracker tries to maximize its
visual evidence for explaining its motion and also generates
interferences to other individual trackers. This can natu-
rally be formulated as agamein which individual trackers
areplayers, each of which estimates its own motion (i.e.,
choosing its ownstrategy) by optimizing its own objective
(i.e., utility or payoff). The solution to MTT is tied to the
Nash Equilibrium(N.E.) [10] of the game, where no player
can achieve a better payoff by choosing a different strategy.

The objective functions for the individual trackers can-
not be arbitrarily chosen, for example based on intuitions or
heuristics, as they characterize the game and its Nash Equi-
librium and thus in�uencing the solution to MTT. To make
this clear, speci�cally, this paper presents a solid and novel
case study where individual trackers are kernel-based track-
ers [2, 3]. Based on the kernel representation, we introduce
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aninterference modelthat describes the visual observations
of the individual tracker by considering the interferences
generated from other trackers, and then de�ne a joint mo-
tion estimation problem. The Karush-Kuhn-Tucker (KKT)
conditions of this joint optimization produce a �xed-point
equation. Naive iteration is not likely to reach the �xed-
point, as it may not converge. Therefore, inspired by thesu-
permodular gametheory, we construct a game whose Nash
Equilibrium corresponds to the �xed-point of the KKT con-
ditions. More important, we design an ef�cient iterative
best-response updating procedure that guarantees the con-
vergence to the N.E. under certain conditions and this is
provable. This best-response updating is done in a closed
form thus it is quite computationally appealing.

The proposed game-theoretic MTT method has many
merits. First, it is decentralized as each individual tracker
only needs to optimize its own objective, and the compli-
cated joint motion estimation is avoided. This decentral-
ized scheme greatly reduces the computational complexity.
In addition, the individual motion estimation is computed in
a simple closed form and is computationally very ef�cient.
Moreover, the proposed method is theoretically plausible
because of its convergence properties.

2. Related work

Multiple target tracking has been studied extensively in
literature and can be back-traced to [13]. Most work assume
that one target hypothesis can only claim a single image ob-
servation and one observation can only support one hypoth-
esis. This assumption can be referred as a probabilistic ex-
clusion principle [9] and used as a prior in the well-known
joint probabilistic data association �lter (JPDAF) [1, 12]
and multiple hypothesis tracking (MHT) [4]. Thus, the
key problem in multiple target tracking is to infer the opti-
mal joint motion con�guration in a high dimensional space.
This can be done in a centralized fashion by sampling or
sequential Monte Carlo [9, 14, 7, 6, 19, 11, 8], or evolution-
ary optimization [5], or in a decentralized manner [18] by
inferring on a Markov Network. Object detectors may also
be included [11, 17].

Different from these existing methods, we bridge the
joint motion estimation and the Nash Equilibrium of a
game. We construct anon-cooperative game[10, 15] that
characterizes the competition among a set of individual
trackers. The Nash Equilibrium of this game corresponds
to a local optimum of the joint motion con�guration and
can be solved by an ef�cient decentralized method.

3. Interference model

In this section, we introduce a new analytical interfer-
ence model for kernel-based trackers, which is a key com-
ponent in formulating the game-theoretic MTT. This inter-

ference model takes both target appearances and spatial re-
lations into consideration.

3.1. Joint likelihood maximization

Denote the motion parameters for thei th target by� i .
Its corresponding support is denoted by
 i , i.e. the set of
pixelsf xn g within the region of targeti . Thus, the motions
of a number ofN targets can be estimated by maximizing
the joint likelihood,

� � = argmax
f � 1 ;��� ;� N g

P(
N[

i =1


 i j� 1; � � � ; � N ): (1)

If no occlusion is present,i.e. 
 i \ 
 j = ; ; 8i; j � N . This
joint optimization can be done independently:

� �
i = argmax

� i

P(
 i j� i ); 8i � N: (2)

If occlusion is present,i.e. 
 i \ 
 j 6= ; ; 9i; j � N , we
can assign the pixels in the overlapped regions to different
targets probabilistically, thus

� � = argmax
f � 1 ;��� ;� N g

NY

i =1

P(
̂ i j� 1; � � � ; � N ); (3)

where 
̂ i is the probabilistic support of targeti . This is
equivalent to an energy minimization problem:

� � = argmin
f � 1 ;��� ;� N g

�
NX

i =1

ln P(
̂ i j� 1; � � � ; � N ): (4)

3.2. Kernel-based likelihood

Speci�cally, for a kernel-based tracker, a target is rep-
resented by a kernel weighted feature histogram [2]. The

motion parameters are denoted by�
4
= f y ; hg, wherey is

the location of the kernel center andh is its scale. Denote
by xn the 2D pixel location andzn

4
= jj x n � y

h jj . The kernel
functionk(z2

n ) in this paper is the Epanechnikov kernel:

k(z2
n ) =

�
1
2 c� 1

d (d + 2)(1 � z2
n ); z2

n < 1
0; otherwise

; (5)

whered = 2 andcd is the area of the unit circle. The nega-

tive derivative of the kernel is denoted byg(z2
n )

4
= � k0(z2

n ).
Following the notations in [2], for a single tracker with-

out interference, the model of targeti is described by an
M -bin histogramqi = f qim gm =1 ;��� ;M , and the target hy-
pothesis byp i (y i ) = f pim (y i )gm =1 ;��� ;M ,

pim (y i ) =
X

x n 2 
 i

k(jj
xn � y i

hi
jj2)� [b(xn ) � m]; (6)



where� [�] is the Kronecker delta function and the function
b(�) maps the pixel locationxn to a bin indexm. The Bhat-
tacharyya coef�cient� (y i ) is employed to measure the sim-
ilarity between a target hypothesis and the model

� (y i ) =
MX

m =1

p
pim (y i )qim : (7)

Since the distance from the hypothesis histogramp i (y i )
to the model histogramqi can be de�ned asd(y i ) =p

1 � � (y i ), the likelihood model for trackeri (in Eq. 2)
without considering interference can be formulated as:

P(
 i j� i ) / e1� � (y i ) : (8)

3.3. Kernel-based interference model

Due to partial occlusion, we need to consider the inter-
ference among theN targets,i.e. 
 i \ 
 j 6= ; ; 9i; j � N .
The observation model for trackeri is no longer solely de-
termined byy i but the joint motion con�guration of all
trackers (which is denoted byf y i ; y � i g = f y i ; � � � ; yN g to
highlight other trackers' interference to trackeri ). In view
of this, we generalize the kernel-based histogram model by,

p̂im (y i ; y � i ) =
1
Ci

X

x n 2 
 i

�
k(jj

xn � y i

hi
jj2)� [b(xn ) � m]�

qim (xn )k(jj x n � y i
h i

jj2)
P N

j =1 qjm (xn )k(jj x n � y j

h j
jj2)

)

; (9)

whereCi � 1 is a normalization term. The probability that
the pixelxn is within 
 i is approximated by

qim (xn )k(jj x n � y i
h i

jj2)
P N

j =1 qjm (xn )k(jj x n � y j

h j
jj2)

; (10)

whereqim (xn ) =
P M

m =1 qim [� (b(xn ) � m)] is the his-
togram bin value for pixelxn in the target modelqi . Please
note when using Epanechnikov kernel with a �nite sup-
port, if one tracker has no overlap with others, Eq.9 de-
generates to Eq.6. To avoid numerical problems, we set
qim = � > 0; 8m < M , where� is a very small value, to
guarantee non-zero binsqim (xn ) andqjm (xn ).

Thegeneralized Bhattacharyya coef�cientis de�ned as
�̂ (y i ; y � i ) =

P M
m =1

p
p̂im (y i ; y � i )qim . Then, the likeli-

hood model for targeti with interference is formulated as:

P(
̂ i j� 1; � � � ; � N ) / e1� �̂ (y i ;y � i ) : (11)

This interference model takes both the appearance sim-
ilarity and spatial relations into account. This interference
model down-weights those pixels that are in the overlapped
regions of different trackers and have ambiguous identities.

4. Game-theoretic multiple target tracking

Based on the interference model, we can formulate the
joint motion estimation (Sec.4.1) and construct a game
(Sec.4.2) whose N.E. corresponds to a local optimum of
the joint motion estimation and can be ef�ciently solved
(Sec.4.3). The algorithm is summarized in Sec.4.4.

4.1. Joint motion estimation

Assuming that the scales remain constant when multi-
ple targets approach to each other, based on the interference
likelihood model (Eq.11), the minimization of the joint en-
ergy (in Eq.4) is equivalent to:

max
f y 1 ;��� ;y N g

J1(y1; � � � ; yN ) =
NX

i =1

�̂ i (y i ; y � i ):(12)

Maximizing the joint likelihood is equivalent to optimizing
the joint kernel locations of all targets that maximize the
sum of the generalized Bhattacharyya coef�cients.

Denote the initial locations of the trackers byf y0
i ; y0

� i g.
Then, performing Taylor expansionw.r.t. p̂im (y0

i ; y0
� i ) and

plugging Eq.9 into �̂ i (y i ; y � i ), �̂ i (y i ; y � i ) can be approx-
imated by

�̂ i (y i ; y � i ) =
MX

m =1

p
p̂im (y i ; y � i )qim

�
1
2

MX

m =1

� q
p̂im (y0

i ; y0
� i )qim + p̂im (y i ; y � i )

r
qim

p̂im (y0
i ; y0

� i )

�

=
1
2

MX

m =1

q
p̂im (y0

i ; y0
� i )qim +

1
2Ci

X


 i

! i (xn )k(jj
xn � y i

hi
jj2)

qim (xn )k(jj x n � y i
h i

jj2)
P N

j =1 qjm (xn )k(jj x n � y j

h j
jj2)

; (13)

where! i (xn ) is determined by the initial status of trackeri
p̂im (y0

i ; y0
� i ) and the model histogramqi of targeti ,

! i (xn ) =
MX

m =1

� [b(xn ) � m]
r

qim

p̂im (y0
i ; y0

� i )
: (14)

Since only the second term in Eq.13 is related to the
variablef y i ; y � i g given the initial locations, we can ignore
the terms inJ1 that are not affected byf y1; � � � ; yN g. Then
we rede�ne the objective function and have:

max
f y 1 ;��� ;y N g

J2(y1; � � � ; yN )
4
=

NX

i =1

r i (y i ; y � i ); (15)

wherer i (y i ; y � i ) corresponds to the individual matching



of trackeri (as the second term in Eq.13):

r i (y i ; y � i )
4
= (16)

1
2Ci

X


 i

! i (xn )k(jj x n � y i
h i

jj2)

1 +
P N

j =1 ;j 6= i

qjm (x n )k ( jj
x n � y j

h j
jj 2 )

qim (x n )k ( jj x n � y i
h i

jj 2 )

:

Sincer J2 w.r.t. to f y1; � � � ; yN g is intractable, we fur-
ther approximate it with a lower boundJ3 � J2:

max
f y 1 ;��� ;y N g

J3(y1; � � � ; yN )
4
=

NX

i =1

~r i (y i ; y � i ); (17)

where

~r i (y i ; y � i )
4
= (18)

1
2Ci

X


 i

! (xn )k(jj x n � y i
h i

jj2)

1 +
P N

j =1 ;j 6= i
qjm (x n )
qim (x n ) k(jj x n � y j

h j
jj2)

:

This proximation means that the pixels in the occlusion re-
gions are further down-weighted as

1=

0

@1 +
NX

j =1 ;j 6= i

qjm (xn )k(jj x n � y j

h j
jj2)

qim (xn )k(jj x n � y i
h i

jj2)

1

A !

1=

0

@1 +
NX

j =1 ;j 6= i

qjm (xn )
qim (xn )

k(jj
xn � y j

hj
jj2)

1

A :(19)

This is reasonable, since we don't explicitly recover the oc-
clusion relations among the targets and a natural choice is
to reduce their contributions to the weighted histograms.

4.2. Game construction and formulation

Although it is natural to design a game to model the com-
petition among multiple trackers, the construction of the
game cannot be arbitrary,e.g.based on intuitions or heuris-
tics, because the equilibrium of the game may not neces-
sarily be a solution to MTT. For example, if we formulate
a naive non-cooperative game

�
N; f R2g; f �̂ i (y i ; y � i )g

�
,

where the players correspond to the individual trackers, the
strategy for each player is the motiony i 2 R2, and its util-
ity �̂ i (y i ; y � i ) is the generalized Bhattacharyya coef�cient.
This naive game is unable to assure a social optimal behav-
ior ( that corresponds to a good joint solution to MTT), be-
cause each tracker will try to solely increase its own utility.
Special care has to be taken in the game construction.

A local optimumf y �
1; � � � ; y �

N g of J3(y1; � � � ; yN )
4
=

r tot (y1; � � � ; yN ) is a good solution to MTT. The solution
must satisfy the Karush-Kuhn-Tucker (KKT) conditions,

@rtot (y1; � � � ; yN )
@y i

jf y �
1 ;��� ;y �

N g = 0 ; 8i � N: (20)

Thus, the N.E. of the game we construct must also satisfy
these conditions. In view of this, we design a gameG =�
N; f R2g; f r tot (y i ; y � i )g

�
. At the N.E.f y �

1; � � � ; y �
N g of

this game,8 playeri and its optimal strategyy �
i , we have

r tot (y �
i ; y �

� i ) � r tot (y i ; y �
� i ); 8y i , by de�nition of N.E..

Sincer tot is continuous,r y i r tot (y i ; y �
� i )jy �

i
= 0 ; 8i , is

held at N.E.. Consequently, the N.E. also satis�es the KKT
conditions ofJ3. Therefore, this construction of the game
is plausible, and maximizingJ3 is equivalent to �nding the
N.E.. Fortunately, this can be solved ef�ciently by a decen-
tralized best response updating, as described below.

4.3. Finding a Nash Equilibrium

To �nd a N.E., we design a decentralized synchronous
scheme to update the best response for each tracker.
Namely,8i , assuming all the other trackers' locationsy � i

are given, we �nd the best̂y i that maximizes the utility
r tot (y i ; y � i ), i.e. to solver y i r tot (y i ; y � i ) = 0 . The justi-
�cation of this iterative process can be found in Sec.5. We
have,8i ,

r y i r tot (y i ; y � i ) = r y i ~r i (y i ; y � i )+
NX

j 6= i

r y i ~r j (y j ; y � j ) = 0 :

(21)
Eq. 21 can be solved in a closed-form. To make the

derivation clear, we denote

� ii (xn )
4
=

! i (xn )

1 +
P N

j =1 ;j 6= i
qjm (x n )
qim (x n ) k(jj x n � y j

h j
jj2)

: (22)

� ji (xn )
4
=

! j (xn )k(jj x n � y j

h j
jj2)

(1 +
P N

l =1 ;l6= j
qlm (x n )
qjm (x n ) k(jj x n � y l

h l
jj2))2

; (23)

Then, we have

r y i ~r i (y i ; y � i )

=
1

Ci h2
i

X


 i

� ii (xn )g(jj
xn � y i

hi
jj2)(xn � y i );(24)

and fori 6= j , we have,

r y i ~r j (y j ; y � j )

= �
1

Cj h2
i

X


 j \ 
 i

� ji (xn )g(jj
xn � y i

hi
jj2)(xn � y i ):(25)

Please notey i merely in�uences~r j (y j ; y � j ) through the
overlapped regionf xn 2 
 j \ 
 i g and g(jj x n � y i

h i
jj2) is

uniform for Epanechnikov kernel.r y i ~r j (y j ; y � j ) acts as
a force of thej th tracker that pushes away thei th tracker.

Plugging Eq.24 and Eq.25 to Eq.21, we can solve the
bestŷ i giveny � i in a closed form. To make things clear,



we de�ne two more coef�cientswii (xn ) andwji (xn ) for
pixel xn 2 
 i ,

wii (xn )
4
=

1
Ci h2

i
� ii (xn )g(jj

xn � y i

hi
jj2); 8xn 2 
 i ;

(26)

wji (xn )
4
=

(
� 1

C j h2
i
� ji (xn )g(jj x n � y i

h i
jj2) xn 2 
 i \ 
 j

0 xn =2 
 i \ 
 j
:

(27)
We have,

r y i r tot (y i ; y � i ) =
NX

j =1

r y i ~r j (y j ; y � j )

=
X


 i

xn

NX

j =1

wji (xn ) � y i

X


 i

NX

j =1

wji (xn ) = 0 :(28)

Therefore, considering the interference of the targeti to all
the others targets and given the locations of other targets,
the best̂y i that maximizes the utility is

ŷ i =

P N
j =1

P

 i

xn wji (xn )
P N

j =1

P

 i

wji (xn )
; 8i: (29)

For each frameI ( t ) , whenN trackers approach to each
other, we can iteratively updatey i ; i = 1 ; � � � ; N by Eq.29.
This iterative process reaches an equilibrium that achieves
a local optimum of the joint motion estimation.

A geometrical explanation is the following. We can view
ŷ i as a combination of forceŝy i  j which is the solution to
r y i ~r j (y j ; y � j ) = 0 as

ŷ i  j =

P

 i

xn wji (xn )
P


 i
wji (xn )

: (30)

ŷ i  j acts as trackerj 's counter force to trackeri when con-
sideringy i 's interference in~r j (y j ; y � j ). This can be visu-
alized in Fig.1.

Figure 1. Illustration of force combination for̂y i .

4.4. Algorithm summary

We summarize our game-theoretic MTT algorithm. If a
subset of targets approach to each other, and their hypothe-
ses are overlapped (the distances less than a threshold), we

generate a game and use the algorithm in Fig.3 to search for
the N.E. If one target is isolated from others we use Mean-
shift tracker. The procedure is summarized in Fig.2.

Input : Frame I ( t ) , target modelsf qi g, and ini-
tial states of the set of individual trackers� ( t � 1) =
f y ( t � 1)

i ; h( t � 1)
i g for i = 1 ; � � � ; N

0
.

Output: Tracking results� ( t ) = f y ( t )
i ; h( t )

i g for i =
1; � � � ; N

0
.

1. Divide trackers into different groups if they are in
close vicinity.

2. For each group of trackers, if it has more than
one tracker in the group, generate a game and call
the algorithm in Fig.3, otherwise call Mean-shift
tracker [2].

3. For each individual tracker, searchh( t )
i with dis-

crete scale factorsf 0:95; 1; 1:05g to maximize its
generalized Bhattacharyya coef�cient�̂ (ŷ i ; ŷ � i ).

Figure 2. Procedure of game-theoretic MTT.

Input : Frame I , target modelsf qi g, and initial
states of the set of individual trackersf y0

i ; hi g for
i = 1 ; � � � ; N .
Output: Target locationsf ŷ i ; i = 1 ; � � � ; N g at the
equilibrium.

1. For each trackeri , determine
 i and calculate
p̂ i (y i ; y � i ) by Eq.9.

2. In order to calculater y i ~r i (y i ; y � i ) in Eq.24, for
each pixelxn 2 
 i , calculate

� ! i (xn ) by Eq.14,
� � ii (xn ) by Eq.22,
� wii (xn ) by Eq.26.

3. In order to calculater y j ~r i (y i ; y � i ) in Eq. 25
(note switch subscripti and j ), for trackerj 6=
i; 
 i \ 
 j 6= ; , for each pixelxn 2 
 i \ 
 j ,
calculate

� � ij (xn ) according to Eq.23,
� wij (xn ) according to Eq.27.

4. For trackeri , calculateŷ i giveny � i by Eq.29.

5. If all f ŷ i 8i = 1 ; � � � ; N g are stationary, exit;
otherwise go to Step 1.

Figure 3. Algorithm for �nding N.E. in game-theoretic MTT.



5. Game theoretic analysis

In the gameG we have constructed, the utility func-
tion of each player is the joint matchingr tot (y i ; y � i ) =
P N

i ~r (y i ; y � i ), which forces an individual tracker to take
other trackers' in�uences into consideration rather than only
focusing on its own interest.r y i ~r j (y j ; y � j ), i.e. the sen-
sitivity of trackerj 's matching w.r.t trackeri 's motion y i ,
can be regarded as a price trackerj charges trackeri and
counter reacts toy i throughŷ i  j .

To analyze whether the Nash Equilibrium can be
achieved by the best response updating for gameG =�
N; f R2g; f r tot (y1; � � � ; yN )g

�
, we resort to the follow-

ing de�nition and theorem in the supermodular game the-
ory [15, 16].

De�nition 1 A gameG = f N; S; f f i gg is a supermodular
(submodular) game if the setS of feasible joint strategies
is a sublattice, and each utility functionf i is supermodular
(submodular) function onS.

Theorem 1 In a supermodular (submodular) gameG =
f N; S; f f i gg, (a) there exists at least one Nash Equilibrium;
(b) if each player starts from any feasible strategy and uses
best response updating, then the joint strategies will even-
tually converge to a Nash Equilibrium.

For details about supermodular games, we refer the readers
to Chapter 4 in [15] and Chapter 7 in [16].

Based on the supermodular game theory, to show the
best response updating can reach a N.E., a suf�cient con-
dition includes 1) the solution of Eq.21 is a best response
of ŷ i given �xed y � i , and 2) the gameG is a super-
modular/submodular game. Condition 1 is satis�ed since
r tot (y i ; y � i ) is concave ony i in that the Epanechnikov ker-
nel functionk is non-negative and strictly concave. The de-
tails are given in Appendix A. The condition 2 can be satis-
�ed in certain
 i ; i = 1 ; � � � ; N where each utility function
is submodular function, which is given in Appendix B.

6. Experiments

We demonstrate the proposed game-theoretic MTT by
using both synthesized and real video (downloaded from
Google Video). The basic individual tracker is a Mean-shift
trackers with32 � 32 2D histogram in the Hue-Saturation
space. To purely evaluate the performance of the proposed
method, we do not incorporate motion dynamic prior, ob-
ject detectors, and background subtraction, although it is
easy to incorporate them. The method is implemented in
C++ and tested on Pentium IV 3Ghz PC. Empirically, the
best response updating converges very quickly within 3-10
iterations, so the computations are almost the same as that
in multiple independent Mean-shift trackers.

6.1. Example of best response updating

First, we show an example of the best response updating
for tracking the hands and the face in a sign language video.
The �rst 4 images in Fig.4 show the positions of the hands
and the face at the �rst 3 iterations and at the last iteration
during the best response updating. We observe that the sum
of generalized Bhattacharyya coef�cients

P 3
i =1 �̂ (y i ; y � i )

monotonically increases as shown in the last graph. But the
individual �̂ (y i ; y � i ) may be up and down. This is a rather
dif�cult case because the hands and the face share the same
skin tones. In our method, the competition ends up at an
equilibrium that gives a good estimation of them.

6.2. Synthesized video

We synthesize two videos in which there are 3 differ-
ent targets and 5 identical targets, respectively. The back-
grounds include random noise and 10-20 small targets that
are wandering randomly. Frame samples are shown in
Fig. 5. The trackers are drawn in different colors and a red
dash ellipse indicates the group of trackers that are engaged
in the game. The �nal motion̂y i are drawn at the centers
of the targets. From the test results, the competition among
the targets leads to an equilibrium and largely avoids the
coalescence problem.

6.3. Real video

We further test the proposed approach in real sign lan-
guage and sports videos. These are very challenging tests
for MTT. The hand gesturing in sign language video (Fig.6)
is fast and the hand shape is deformable. Since the color of
the hands and the face are quite similar, when the hands
moving in front of the head, it is very likely that indepen-
dent trackers will fail as shown in the 2nd row of Fig.6. On
the contrary, in our method, the interference from the face
tracker to the hands tends to push the hands away from the
face, which greatly alleviates coalescence phenomenons.

Sports video is another large category where the ath-
letes generally wear similar sports suits and may have very
complicated interactions. Therefore tracking the people in
sports video is a very dif�cult task. We show the track-
ing results forkid soccer , free style soccer and
volleyball . The proposed method can follow the people
with complicated occlusions. The comparison to the results
of independent trackers are in the supplemental materials.

7. Conclusion

In this paper we introduce a new view of game theory to
the study of multiple target tracking. The competition of in-
dividual trackers is formulated as a game and we bridge the
solution to the joint motion estimation and the Nash Equi-
librium of the game. Consequently, the maximization of the



Figure 4. Illustration of best response updating procedure: iteration #0, 1, 2, and 8.

Figure 5. Tracking synthesized video: (1st row) 3 differenttargets for frame #1, 15, 42, 427, and 500; (2nd row) 5 identical targets for
frame #1, 13, 19, 20, 25.

joint likelihood can be decentralized. The N.E. of this game
can be solved by an ef�cient iterative procedure in a closed
form. The proposed method achieves promising results in
tracking quasi-identical targets in both synthesized and real
video sequences. The future work includes the incorpora-
tion of motion dynamic models in the trackers' utilities and
faster algorithms for computing approximate N.E.
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Appendix

A. Proof of Eq. 29 is a best response

To show Eq.29 is the best response of̂y i given �xed
y � i , we need to show the solution̂y i of Eq. 21 is a
global optimum ofr tot (y i ; y � i ). We prove this by show-
ing r tot (y i ; y � i ) =

P N
j =1 ~r j (y1; � � � ; yN ) is concave.

Denotey i = f ui ; vi g, given y � i are �xed, ~r i (y i ) =
~r i (ui ; vi ) and ~r j (y i ) = ~r j (ui ; vi ). Note g(jj x n � y i

h i
jj2) is

positive and uniform for Epanechnikov kernel. From Eq.24
and Eq.25, we have

@~r i (ui ; vi )
@ui @vi

= 0 ;
@~r i (ui ; vi )

@ui @ui
=

@~r i (ui ; vi )
@vi @vi

= �
X


 i

wii (xn ):

@~r j (ui ; vi )
@ui @vi

= 0 ;
@~r j (ui ; vi )

@ui @ui
=

@~r j (ui ; vi )
@vi @vi

= �
X


 i

wji (xn ):

So in the Hessian matrix of
P N

j =1 ~r j (ui ; vi ), the elements

on the diagonal are�
P N

j =1

P

 i

wji (xn ) and 0 for ele-

ments off the diagonal, it is negative de�nite which indi-
cates it is concave overy i = f ui ; vi g.

B. Conditions for G being a submodular game

To show a game is supermodular (submodular) game we
need to show the joint strategy space is de�ned on a sublat-
tice and all utility functions are supermodular (submodular)
functions on the joint strategy space. Any non-empty com-
pact subset ofRn is a sublattice ofRn [16]. So the �rst
requirement is satis�ed in our gameG. For the second con-
dition, we have this theorem [16]:

Theorem 2 Let X � Rn andf : X ! R. The functionf
is supermodular iff it satis�es increasing (decreasing) dif-
ferences onX . If f is twice differentiable,f is supermodu-
lar iff @2 f

@xi @xj
� 0, or submodular iff @2 f

@xi @xj
� 0, 8i; j .

Thus, denotey i = f ui ; vi g, we need to examine
@~r i (y i ;y � i )

@ui @uj
, @~r i (y i ;y � i )

@vi @vj
, @~r i (y i ;y � i )

@ui @vj
, and@~r i (y i ;y � i )

@vi @uj
for i 6=

j . In addition, we need to check@~r i (y i ;y � i )
@uk @ul

, @~r i (y i ;y � i )
@vj @vl

,
@~r i (y i ;y � i )

@uj @vl
, and@~r i (y i ;y � i )

@vj @ul
for j; l 6= i . Whether these con-

ditions hold depends on thef 
 i ; i = 1 ; � � � ; N g and can be
checked analytically. We observe the constructed gameG
is submodular when the occlusion regions are small and the
kernel centers are not occluded. Due to the page limit, we
are unable to list the derivation of each term, these condi-
tions can be checked as a by-product in best response up-
dating givenf 
 i ; i = 1 ; � � � ; N g.
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