Instruction-level Timing Error Prediction Model
for 5-stage Pipelined ALPHA Processor

Yuanbo Fan, Chao Yan

Department of Electrical Engineering and Computer Science
Northwestern University

{yuanbo, chaoyan2012}@u.northwestern.edu

ABSTRACT

In this project, we build an instruction-level timing error
prediction model for a 5-stage pipelined ALPHA processor
which supports timing speculation. This model predicts if
an instruction produces a timing error given the information
of instruction sequence and data usage.

Keywords. Computer Architecture, Timing Speculation,
Timing Error, Timing Error Prediction

1. INTRODUCTION

Timing error is defined as a violation in circuit-level timing
constraints during program execution. In traditional pro-
cessors, timing error may cause catostrophic system failure.
Processors which support timing speculation are augmented
with timing-error detection and correction techniques so that
they able to recover from timing errors.

However, the recovery cost is very high. Also, based on
some existing work, for a specific processor, timing error is a
strong function of programs. Therefore, an effective timing-
error prediction model can be built based on the information
of how the programs are executed on the processor. Then,
the compiler can apply this model to generate codes that
have lower probability of producing timing errors by using
instruction scheduling and instruction selection. Moreover,
if the model is implemented in the hardware, it can predict
timing error at run-time. With some padding techniques, it
can avoid the full recovery cost due to timing errors.

In this project, we use machine learning algorithms to build
an instruction-level timing error prediction model for a 5-
stage pipelined ALPHA processor which supports timing
speculation. This model predicts if an instruction has tim-
ing error given the information of instruction sequence and
data usage.

2. LEARNING PROCESS
2.1 Dataset

Table 1: Description of test programs

Name Descriptin
copy copy memory contents of N elements
objsort object sorting algorithm
parsort parsort algorithm
fib compute Nth fibonacci number
fib_rec compute Nth fibonacci number recursively
evens compute even numbers that are less than N
insertion insertion sorting
parallel compute first N multiple of M
sort bubble sorting algorithm
saxpy integer SAXPY

We use ten instruction-level test programs to build ten test
sets. In each set, we select nine programs for training and the
other one for testing. Then, the programs are executed on a
5-stage pipelined ALPHA processor. During the execution,
we collect the information for each instruction including the
opcode, two operand values and some control signals which
indicate the data dependence and branch information. Also,
a threshold delay is set, so we can label each instruction by
if it produces a timing error.

/*
TEST PROGRAM #3: compute first 16 fibonacci numbers
with forwarding and stall conditions in the loop|

long output[16];

void
main(void)

long i, fib;

output[0] = 1;
output[1] = 2;
for (i=2; i < 16; i++)
output[i] = output[i-1] + output[i-2];

data - 8x1000
lda $r3,data
1da $r4,data+8
1da $r5,data+16
lda $r9,2
1da $r1,1
stq $r1,0($r3)
stq $r1,0($r4)

loop: ldg $r1,08r3)
ldq $r2,0($r4)
addg $r2,$r1,3r2
addg $r3,0x8,$r3
addg $r4,0x8,3r4
addg $r9,0x1,3r9
cmple $r9,0xFf,$r10
stq $r2,0(8r5)
addq $r5,0x8,3r5
bne $r10, loop
call_pal 0x555

Figure 1: An example of instruction-level programs

Each input instance in the training and testing set consists
of several parts, including the current instruction and N-1
preceding instructions. N is defined as the instruction win-

Table 2: An example of collected instruction information

Opcode and Two Operands Control Signal

Timing Error

Idqr3 0 0100 True
ldg r4 0 0001 False
addq rl r2 0010 False
addq 0x8 r3 0010 True
addq 0x8 r4 0010 False
addq 0x1 r9 0010 True

cmple 0xff r9 0100 False

Table 3: An example of instances

Opcode ra rb c0 ¢l ¢2 Branch Error
8 0 0 1 0 0 0 0
8 4095 0 1 0 0 0 0
8 4096 0 1 0 0 0 0
19 0 10 0o 1 0 0 0

45 0 4096 1 3 2 0 0
41 0 4096 1 0 0 0 1
45 256 4096 1 0 1 0 0
16 4096 8 0 1 0 0 0
16 0 1 0 1 0 0 0
16 1 4095 5 0 0 0 0
61 44 4294967264 2 2 2 1 1
19 1 10 0O 1 0 0 0

dow size which means the number of instructions which have
effect on if the current instruction produces a timing error.
Each instruction contains an opcode and two operands. For
each operand value used in the instructions, we use both
number- and bit- representation, because we think differ-
ent representation may result in different models, specially
while using Multilayer Perceptron algorithm. Table 3 shows
an example of instances when the instruction window size is
1. Each opcode is encoded into a number, and operand val-
ues are in the format of number representation. There are
three numbers (c0, cl and c2) representing control signals
and a binary number which indicates if it is a taken branch.
The last number represents if there is a timing error.

2.2 Learning Algorithms

We use both J48 Decision Tree and Multilayer Perceptron
classifier in the WEKA packages to build the model. The
results and comparison will be shown in next section.

2.3 Software Packages

We use Synopsys tools to simulate the gate-level execution
of programs and the WEKA to run machine learning algo-
rithms on the dataset.

2.4 Validation

In each set, nine programs are used for training, while the
other one is used for testing. Thus, the learned model can be
validated by using 10-fold cross validation using the train-
ing set, which represents how the model performas on the
programs which are similar to the training programs. Also,
it can be validated using the testing set, which shows how
the model predicts timing errors of programs which it has
never seen during training.

3. RESULTS & ANALYSIS

In this section, we compare the models learned by both J48
Decision Tree and Multilayer Perceptron algorithms in terms
of correct classification rate, time taken to build models, how
different data representation affects the performance of the
model, and the different validation results.

3.1 Instruction Window Size

We measure the correct classification rate across different
instruction window size (1, 2 and 3). Instruciton window
size of 2 gives the highest classification rate, as Figure 2
shows.

Correct Classification Rate vs. Instruction Window Size

1.000
0995

0,990

[t
]

5 0.085

#0.980 ¢
.
§ o975
S
I
i

ficati

tCl

S
0970

0.965

0.960

1 2
Instruction Window Size

Figure 2: Classification Rate vs. Instruction Window Size

3.2 Time Consumption

Time taken to build model using J48 vs MLP

5000
4000

2 3000

Time (s)

2000

1000

Figure 3: Time taken to build model using J48 and MLP

Figure 3 shows the time taken to build the model using J48
and MLP. As we can see, building model using MLP takes
3.3 J48 vs. MLP

much longer time.
niiliiiii-‘; csilllllll '::p

Figure 4: J48 vs. MLP with different input representation

When we use different data representation to build the model,
the Decision Tree model is always better. However, you can
see an improvement in correct classification rate of MLP
model when using bit representation in Figure 4.

Figure 5: J48 and MLP with different validation

When we do 10-fold cross validation using training sets, both
models show very high classification rates. However, once
we validate the models using testing sets, the Decision Tree
model has a significant decrease in correct classification rate,
which the Multilayer Perceptron model still has relatively
high rates, as shown in Figure 5. Therefore, even the Deci-
sion Tree model has better performance for programs which
are similar to the training programs, the Multilayer Percep-
tron model is more robust to new programs.

3.4 C(lassification of Timing Errors

Figure 6: MLP with different error rates

We believe that the timing errors can be classified into two
categories. One category is strongly linked to the operation
, for example, addition, subtraction, load and store, while
the other one is related to the data used in the operation.

Also, different data representation of inputs have a strong
effect on the performance of Multilayer Perceptron model as
proved above. The figures above show the different perfor-
mance of Multilayer Perceptron model with different input
representation under different error rates. The left one de-
cribes the correct classification rate of Multilayer Perceptron
model when the error rate is 10%, and the right one shows
the classification rate when the error rate is 20%.

We can clearly see, when the error rate is 10%, the mod-
els with different input representations have similar perfor-
mance. However, the error rate increases to 20%, the perfor-
mance of Multilayer Perceptron model with bit representa-
tion outperforms, which indicates that the errors are caused
by the data usage.

4. CONCLUSIONS

Both algorithms achieve good prediction results in the ex-
periments.

Each algorithm has it own advantages and disadvantages.
e Building J48 Decision Tree model is much faster than

building Multilayer Perceptron model, especially when
the input dimension is high.

e J48 Decision Tree model performs better when pre-
dicting program which are similar to the training pro-
grams.

e Multilayer Perceptron model is more robust to the new
programs.

The Decision Tree model is much easier to interpret. We
can easily learn how the model is built from the inputs by
studying the hierarchy of nodes in the output decision tree,
while the Multilayer Perceptron model is like a blackbox.

Machine learning algorithms are also effective to learn inter-
esting charateristics of timing errors.

5. REFERENCES

[1] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge. Razor: a low-power pipeline based on
circuit-level timing speculation. In Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages 7—18,
2003.

[2] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant,

C. Tokunaga, S. Das, and D. Bull. Razor ii: In situ

error detection and correction for pvt and ser tolerance.

In Solid-State Clircuits Conference, 2008. ISSCC 2008.

Digest of Technical Papers. IEEE International, pages

400-622, 2008.

J. Xin and R. Joseph. Exploiting locality to improve

circuit-level timing speculation. Computer Architecture

Letters, 8(2):40-43, 2009.

[4] J. Xin and R. Joseph. Identifying and predicting
timing-critical instructions to boost timing speculation.
In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-44 ’11, pages 128-139, New York, NY, USA,
2011. ACM.

[5] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge.
Opportunities and challenges for better than worst-case
design. In Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, ASP-DAC 05,
pages 2—7, New York, NY, USA, 2005. ACM.

[3

