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Abstract

While many approaches have been proposed to estimate
and remove blur in a photo, few efforts were made to have
an algorithm automatically understand the blur desirabil-
ity: whether the blur is desired or not, and how it affects the
quality of the photo. Such a task not only relies on low-level
visual features to identify blurry regions, but also requires
high-level understanding of the image content as well as
user intent during photo capture. In this paper, we propose
a unified framework to estimate a spatially-varying blur
map and understand its desirability in terms of image qual-
ity at the same time. In particular, we use a dilated fully con-
volutional neural network with pyramid pooling and bound-
ary refinement layers to generate high-quality blur response
maps. If blur exists, we classify its desirability to three lev-
els ranging from good to bad, by distilling high-level se-
mantics and learning an attention map to adaptively local-
ize the important content in the image. The whole frame-
work is end-to-end jointly trained with both supervisions of
pixel-wise blur responses and image-wise blur desirability
levels. Considering the limitations of existing image blur
datasets, we collected a new large-scale dataset with both
annotations to facilitate training. The proposed methods
are extensively evaluated on two datasets and demonstrate
state-of-the-art performance on both tasks.

1. Introduction

Image blur is very common in natural photos, arising
from different factors such as object motion, camera lens
out-of-focus, and camera shake. In many cases it is un-
desired, when important regions are affected and become
less sharp; while in other cases it is often desired, when
the background is blurred to make the subject pop out, or
motion blur is added to give the photo artistic look. Many
research efforts have been made to either detect the un-
desired blur and subsequently remove it [22, 11, 37, 4],
or directly estimate the desired blur and then enhance it
[2, 38, 23, 8, 21]. However, there are rather limited efforts
to have an algorithm automatically understand whether such
blur is desired or not in the first place, which would be very

Figure 1. Problem statement. Given the natural photos in the left
column, we generate their corresponding blur maps and estimate if
the blur is desirable. Brighter color indicates higher blur amount.

useful to help users categorize photos and make correspond-
ing edits, especially with the dramatic growth in the number
of personal photos nowadays. It can also be used to estimate
photo quality and applied in photo curation [31], photo col-
lage creation [20], image quality and aesthetics [15], and
video summarization [16].

Understanding blur desirability in terms of image qual-
ity nevertheless is not trivial and in many cases very chal-
lenging, as it not only requires accurate spatially-varying
blur amount estimation, but also needs to understand if the
blurry regions are important from the perspective of im-
age content and sometimes user’s intent when capturing the
photo. Take the examples in Fig.1 for instance, both images
in the first and second row are with depth-of-field effect.
Yet the first one is regarded as a good photo while the sec-
ond one is considered bad by most people, only because we
think the blurry runners are the subject intended to be cap-
tured and more important than other content in the scene.
The blur desirability in the third example is somewhere in
between, as even though the tennis racket and the right arm
of the player are blurred, her major body and face are clear,
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which conveys the most important information in the photo.
Motivated by this observation, we propose a novel al-

gorithm for image blur understanding by fusing low-level
blur estimation and high-level understanding of important
image content at the same time. Given an image, our ap-
proach can automatically determine if blur exists in the im-
age, and if exists, can accurately estimate spatially-varying
blur amount and categorize the blur desirability in terms of
image quality to three levels: Good, OK, and Bad, as shown
in Fig.1. Specifically, we propose a unified ABC-FuseNet,
a deep neural network that jointly learns the attention map
(A), blur map (B), and content feature map (C), and fuses
them together to detect if there is blur on important content
and estimate the blur desirability. The pixel-wise blur map
estimation is based on a dilated fully convolutional network
(FCN) with specifically designed global pyramid pooling
mechanism. The local and global cues together make the
blur map estimation more reliable in homogeneous regions
and invariant to multiple object scales. The entire network
is end-to-end jointly trained on both pixel-wise blur map
estimation and image-level blur categorization.

Solving such a problem is in need of a large dataset
with both pixel-level blur amount annotation and image-
level blur category supervision. Considering the limitations
of existing blur image dataset in both quality and quantity,
we collect a new dataset SmartBlur, containing 10, 000 nat-
ural photos with elaborate human annotations of both pixel-
level blur amount and image-level blur categories, to facili-
tate our training and evaluation. Contributions of this paper
are summarized as follows:

• To the best of our knowledge, our work is the first at-
tempt to detect spatially-varying blur and understand
image blur in terms of image quality at the same time.
In particular,we propose an end-to-end trainable neural
network ABC-FuseNet to jointly estimate blur map, at-
tention map, and content feature map, which are fused
together to understand important content in the image
and perform final blur desirability estimation.

• We collect a large-scale blur image dataset SmartBlur,
containing 10, 000 natural photos with annotations of
both pixel-level blur amount and image-level blur de-
sirability, which we plan to release in the future. Be-
sides the tasks addressed in the paper, SmartBlur can
serve as a versatile benchmark for various tasks such
as blur magnification and image deblur. Data is re-
leased at https://github.com/Lotuslisa/
Understand_Image_Blur.

• The proposed approach is extensively evaluated on
SmartBlur as well as a public blur image dataset [23].
Experimental results show it significantly outperforms
the state-of-the-art baseline methods on both blur map
estimation and blur desirability categorization.

2. Related Work

Most existing work focused on local blur detection, as-
suming the users already know the blur category (desired or
undesired) [8]. Different cues and hand-craft features are
used to estimate blur amount, such as image gradients [38],
local filters [23], sparse representation [24], local binary
patterns [33], and relevance to similar neighboring regions
[29]. Nevertheless, those hand-craft features are error-prone
as they are not robust to various conditions and are lack
of semantic information. In recent years, neural networks
have proved their superiority to the conventional counter-
parts [12, 27, 32, 6]. Park et al. [21] improve the accuracy of
defocus blur estimation by combining handcrafted features
with deep features from a convolutional neural network
(CNN). This work limits its application to defocus blur esti-
mation, and often fails when detecting blurs caused by cam-
era shake. In addition, all the above-mentioned methods do
not estimate whether the detected blur is desired or not in
terms of image quality.

More recently, Yu et al.[34] learn a deep neural network
to detect photographic defects, including undesired blur.
However, there is no explicit understanding on the image
content in their learning. As a result, the model sometimes
still mis-classifies good depth-of-field effects into undesired
defects. It also suffers from low accuracy due to limited
training data in terms of both annotation quality and quan-
tity. Although image blur analysis has been an active re-
search area for recent years, we found that there are very
limited number of high-quality blur image datasets [19, 1].
The most widely used blur image dataset-CUHK [23] only
has pixel-level binarized annotations. The scale of CUHK
is also small (1000 images).

3. The SmartBlur Dataset

To train and evaluate the proposed ABC-FuseNet, we
need a large-scale dataset with both pixel-level blur amount
and image-level blur desirability annotations. However, ex-
isting datasets only contain limited number of images with
coarsely-annotated blur amount, and no annotations on blur
desirability, as shown in Table 1. Therefore, we collect a
new dataset SmartBlur, which contains 10, 000 natural pho-
tos with elaborate human annotations of both pixel-level
blur amount and image-level blur desirability to supervise
the blur map estimation and blur desirability classification.
SmartBlur provides a reliable training and evaluation plat-
form for blur analysis, and can serve as a versatile bench-
mark for various tasks such as blur magnification and im-
age deblur. In this section, we describe the data collection
and annotation with detailed statistics. More details can
be found in the supplementary material. SmartBlur will be
publicly available to promote research in blur analysis.

https://github.com/Lotuslisa/Understand_Image_Blur
https://github.com/Lotuslisa/Understand_Image_Blur


Dataset CUHK[23] CERTH[19] Portland[18] SmartBlur
# of Images 1000 2450 2976 10,000
Blur Type 1,2 1,2,3 3 1,2,3

Blur Amount
Pixel-wise

binary
Image-wise

binary
Image-wise

binary
Pixel-wise
multi-level

Blur Desirability X X X !
Image Source Natural Natural+Synthetic Synthetic Natural

Table 1. Comparison of blur image datasets. For Blur Type, 1, 2,
3 indicates motion blur, defocus, and camera shake respectively.

3.1. Data Collection

To collect a large and varied set of natural photos, we
download 75, 000 images from Flickr which carry a Cre-
ative Commons license. Then we select 10, 000 images for
further annotation. When selecting these 10, 000 photos,
we try to balance the number of images of different image
blur desirability levels: Good blur, OK blur, Bad blur, and
No blur (if there is no blur in the image). We also try to
have photos with different blur types: object motion, cam-
era shake, and out-of-focus. These 10, 000 images are cap-
tured by various camera models in different shooting con-
ditions, and cover different scenes. Image resolution ranges
from 500×300 to 1024×720. To our knowledge, SmartBlur
is the largest blur image dataset with richest annotations.

3.2. Data Annotation

For each image in SmartBlur, we have two levels of an-
notations: pixel-level blur amount and image-level blur de-
sirability. We train professional annotators on both labeling
tasks. Each image is labeled by 3 annotators, and we check
and merge the final annotations to make sure they are cor-
rect. As shown in Fig. 2, for pixel-level blur amount an-
notation, we label each region in the image with four blur
amounts: No Blur, Low Blur, Medium Blur, and High blur.
This is distinctly different from the existing datasets, which
only indicate the pixel-level or image-level blur existence.
We classify them based on the visual appearance with pre-
defined criteria: No blur - no visible blur; Low - the blur is
visible, but people can still see the details in blurred region;
Medium - the details are not clear anymore; High - not only
details are missing, the textures are largely changed, and the
shapes are distorted. The boundary of each region is anno-
tated based on the blur amount, instead of object semantics.
For image-level blur desirability, we label each image with
four categories: good-blur, ok-blur, bad-blur, or no-blur.
Good-blur indicates the blur is manipulated by photogra-
phers to create visually pleasing effects. The blur in good-
blur images often appears on the background or unimpor-
tant objects. Ok-blur indicates the blur is on some small or
unimportant regions, or with negligible small amount. Such
blur is not created on purpose, and is usually generated due
to imperfect capture conditions or limited expertise of the
photographer. Bad-blur indicates the blur is on the impor-
tant objects with non-negligible amount. Such blur is not
desirable and significantly degrade the image quality. No-

Figure 2. Annotation Samples from SmartBlur.
Bad-Blur Ok-Blur Good-Blur No-Blur Total

Training 1568 1583 3777 1422 8400
Validation 200 200 200 200 800

Testing 200 200 200 200 800
Total 1968 1983 4177 1822 10,000

Table 2. Dataset split and image amount for different categories.

blur indicates the whole image is sharp, with no blur in it.
Annotation samples are shown in Fig. 2.

SmartBlur consists of 1, 822 no-blur images, 1, 968 bad-
blur images, 1, 983 ok-blur images, and 4, 177 good-blur
images, making it with 10, 000 images in total. We ran-
domly split it into three portions: training, validation, and
testing. The image amount for each set, as well as for each
category is described in Table 2. For evaluation and vali-
dation, we random select the same amount of images from
each blur type to balance the data of different categories.

Compared with existing datasets, SmartBlur has the fol-
lowing advantages: 1. It is the first dataset that has pixel-
level blur amount annotations with multiple levels, from
low, medium to high. 2. It is the first dataset that has image-
level blur desirability annotation in terms of image quality.
3. It is the largest blur image dataset, with all natural photos.

4. Proposed Approach
In this paper, we introduce the problem of automatically

understanding image blur in terms of image quality. Such
a task not only relies on low-level visual features to detect
blur regions, but also requires high-level understanding of
the image content and user intent. In this section, we pro-
pose ABC-FuseNet, a unified framework to jointly estimate
spatially-varying blur map and understand its effect on im-
age quality to classify blur desirability.

4.1. Approach Overview

The architecture of ABC-FuseNet is provided in Fig. 3.
ABC-FuseNet is a novel network to fuse low-level blur es-



Figure 3. Architecture of ABC-FuseNet. It jointly learns the blur map, attention map, and content feature map, and fuses them together to
detect if there is blur on important content and estimate the blur desirability.

timation and high-level understanding of important image
content. Given an image, our approach automatically deter-
mine if blur exists in the image. If blur exists, we accurately
estimate spatially-varying blur amount and classify its blur
desirability into three categories ranging from good to bad,
by distilling high-level semantics and learning an attention
map to adaptively attend to important regions. In particu-
lar, ABC-FuseNet jointly learn the attention map, blur map,
and content feature map, and fuse them together for blur
desirability classification. We use a dilated fully convolu-
tional neural network (upper branch in Fig. 3) with pyramid
pooling and boundary refinement module to generate high-
quality blur response maps. The local and global features
together make the blur map estimation more reliable in ho-
mogeneous regions and invariant to multiple object scales.
Attention map estimation is based on the fully convolutional
network (middle branch in Fig. 3). The entire network is
end-to-end trained on both pixel-level blur map estimation
and image-level blur desirability categorization.

4.2. Blur Map Estimation

The blur map is estimated with fully convolutional neu-
ral networks (FCN), building on top of Inception-V2 [28]1.
Accurate blur map estimation is faced with two main chal-
lenges. First, it is difficult to detect blurs in small re-
gions, because the feature map resolution is reduced by
the repeated combination of max-pooling and downsam-
pling (striding) performed at consecutive layers in the CNN,
which is originally designed for image classification. To
effectively enlarge the receptive fields without sacrificing
much spatial resolutions, we remove the downsampling op-
erator and replace the regular convolution in Inception 4a

1While other networks such as ResNet [9] and VGGNet [25] can also
be utilized as the backbone network, we choose Inception-V2 for its rela-
tively smaller model size.

with dilated convolutions [5]. In addition, we combine the
high-level semantic features with the low-level features af-
ter the first convolution layer to keep spatial resolution and
make better estimation of blurs in the small regions. Specif-
ically, the high-level features are upsampled by bilinear in-
terpolation and then concatenated with the low-level fea-
tures along the channel dimension. To further obtain better
blur region boundaries, several boundary refinement layers
with dense connections are appended after upsampling.

The second challenge is to detect blurs in multiple scale
objects and in the homogeneous regions, which show al-
most no difference in appearance when they are sharp or
blurred. A standard way to deal with the challenge of vari-
able scales is to re-scale the CNN for the same image and
then aggregate the feature or score maps [14, 7], which sig-
nificantly increases computation cost. Inspired by [36], we
adopt a pyramid pooling module to combine the local and
global clues together to make the final blur detection more
reliable in the homogeneous regions and invariant to multi-
ple object scales. Such strategy provide hierarchical global
prior, containing information with different scales and vary-
ing among different sub-regions . To be specific, we pool
four-level features from Inception 5b: 1 × 1, 2 × 2, 3 × 3,
6×6. To maintain the weight of global feature, we use 1×1
convolution layer after each pyramid level to reduce the di-
mension of context representation to 1/4 of the original one.
Then we upsample each pooled feature map into the same
size as Inception 5b and concatenate them together as the
final pyramid pooling feature.

4.3. Blur Desirability Classification

As understanding image blur relies on both low-level vi-
sual features to estimate blur responses map, and high-level
understanding of the image content and user intent. We fur-
ther learn content feature map to facilitate blur desirability



classification. Specifically, we extract semantic feature map
from res5c of ResNet-50 [9] with pretained weights (lower
branch in Fig. 3). To understand if blur is on the impor-
tant content in the image, we estimate an attention map at
the same time to adaptively localize the important content.
The attention map estimation is based on the fully convolu-
tional networks. We pre-train the attention map branch with
salient object segmentation datasets [35] to obtain the initial
weights.

After learning the blur map (Bm), attention map (Am),
and content feature map (Cm), we fuse these three maps to-
gether and feed them to a light classifier to estimate the im-
age blur category. Here we propose a dual attention mecha-
nism to extensively exploit the blur responses and high-level
semantics when concatenating these three maps together.
To be specific, we stackBm×Am,Bm×(1−Am), andCm

in the channel direction to form the final input of the blur
category classifier, which contains two convolution layers,
two dropout layers, and one fully connected layer 2. The
whole ABC-FuseNet is end-to-end trainable, in which the
blur map estimation and blur desirability classification are
jointly trained with both supervisions. We conduct exten-
sive ablation study in Section 5 to verify the efficacy of the
proposed mechanisms.

For blur map estimation, we apply sigmoid function on
the last layer output of blur map estimation branch. Then,
we compute theL2 loss between the estimated blur map and
the ground truth blur map. As the blur amount for each pixel
is annotated with four different levels in SmartBlur, we nor-
malize these amounts into 0, 1/3, 2/3, and 1 respectively.
The loss function of the blur map estimation is:

LBm
=

1

2N

N∑
i=1

P∑
p=1

∥∥∥∥ 1

1 + exp(−bi(p; Θ))
− b0i (p))

∥∥∥∥2
2

(1)
where bi(p; Θ) is the estimated blur amount for pixel p in
image i, and Θ indicates the parameters of the blur estima-
tion branch. b0i (p) is the ground truth blur amount for pixel
p in image i.

For the image blur desirability classification, we convert
each blur category label into an one-hot vector to generate
the ground truth supervision of each training image. The
loss of the blur desirability classification LBc is computed
by the softmax cross-entropy loss. We note that, there is no
supervision for the attention map estimation. The attention
region in each image is estimated by the weakly supervised
learning from the image blur category. To this end, the total
loss of the ABC-FuseNet is:

L = LBm + λLBc (2)

2Detailed architectures are described in the supplementary material.

5. Experiments
To verify the efficacy of ABC-FuseNet for both blur

map estimation and image blur type classification, we ex-
tensively evaluate the proposed methods on two datasets,
CUHK [23] and SmartBlur. In this section, we discuss the
experiments and results: 1. We first evaluate and compare
ABC-FuseNet with the state-of-the-art methods on CUHK
[23] for the task of blur map estimation. Experimental pro-
tocol and implementation details are provided. Here we
show our proposed method significantly outperforms the
existing methods in terms of both quantitative and quali-
tative results regardless of the blur sources (object motion,
camera shake, or defocus). 2. We then evaluate the pro-
posed methods on the SmartBlur dataset for both blur map
estimation and image blur type classification. We compare
with the state-of-the-art methods and conduct thorough ab-
lation studies to verify the efficacy of ABC-FuseNet.

Implementation details. To train the ABC-FuseNet, we
first pretrain the blur map estimation and attention map es-
timation branches with salient object segmentation dataset
[35] to obtain the initial weights. Afterwards, we further
train the blur map estimation branch with the SmartBlur
dataset. The loss function is optimized via batch-based
Adam [13] and backpropagation. The hyperparameters, in-
cluding initial learning rate, weight decay penalty multi-
plier, and dropout rate are selected by cross-validation, and
are set to be 0.001, 0.05, and 0.5 respectively. The batch
size is 12 images for training. Then we test the performance
of blur map estimation on two datasets, CUHK and Smart-
Blur. Detailed results are described in Sec. 5.1 and Sec. 5.2
respectively. After obtaining the initial weights of blur map
and attention map estimation branches, we jointly train the
network with both blur map supervision and blur desirabil-
ity supervision. The hyperparameters, including the coeffi-
cient of blur type classification loss λ, initial learning rate,
weight decay penalty multiplier, and dropout rate are se-
lected by cross-validation, and are set to be 0.1, 0.01, 0.01,
and 0.5 respectively. The batch size is 4 images for train-
ing. To improve the generalization and robustness of the
network, we apply various data augmentation techniques to
all the training processes: 1. horizontal flip, 2. random crop,
3. random brightness, 4. and random contrast.

5.1. Evaluations on CUHK Dataset

Experiment Settings. We first verify the reliability
and robustness of our algorithm on a public blur detection
dataset CUHK [23]. It contains 1, 000 images with human
labeled blur regions, among which 296 images are partially
motion-blur and 704 images are defocus-blur. It was the
most widely used blur image dataset with pixel-level binary
annotations (1 indicates blur, and 0 indicates clear). As
most of the existing blur detection methods are not learn-
ing based and do not have training images from CUHK,



Figure 4. Quantitative Precision-Recall comparison on CUHK for
different methods, tested on all blur types.

for a fare comparison with the baselines, we only train the
ABC-FuseNet on our collected SmartBlur dataset and di-
rectly test the trained model on the 1, 000 images of the
CUHK dataset, without finetuning on the CUHK dataset at
all. Such treatment also guarantees that our method is eval-
uated on the same amount of testing set as the baselines.

Experimental Results. We extensively compare the per-
formance of our method with the state-of-the-art baseline
methods [2, 3, 17, 23, 24, 26, 29, 30, 33, 38, 21, 8], using
publicly released implementations. While most of the base-
lines use hand-crafted visual features, work [21] combined
hand-crafted features with deep features to estimate the de-
focus blur map. The quantitative performance is evaluated
using the precision-recall curve.

Fig. 4 and Fig. 5 show the quantitative Precision-Recall
comparison on CUHK for different methods. Fig. 4 is
the precision-recall curve tested on 1, 000 blur images, in-
cluding both motion blur and defocus blur. Fig. 5 is the
precision-recall curve tested on 704 defocus blur images.
Note that baseline Park et al. [21] is designed for the defo-
cus blur detection. From the comparison we can see that,
for the performance tested on the 1, 000 images with differ-
ent blur sources, our method consistently outperforms all
the state-of-the-art baselines by a large margin, which ver-
ifies its efficacy in detecting blur from different levels and
sources. For the results tested on 704 defocus blur images,
our model also significantly outperforms Park et al. [21]
and Shi et al. [24]. The average precision on CUHK be-
fore/after joint training are 0.869 and 0.868, respectively.
Joint training would focus the blur map estimation on more
important semantic regions, which might not be reflected in
average precision uniformly evaluated over the entire im-
ages. However, it could significantly improve blur desir-
ability classification (Fig. 9).

For qualitative comparison, we show visual results of
some challenging images in CUHK for different methods
[23, 24, 38, 21, 8] in Fig.6. We can see that the estimated

Figure 5. Quantitative Precision-Recall comparison on CUHK for
different methods, tested on defocus blur.

blur maps of our method are the most accurate and clos-
est to the ground truth. It works with different blur types
(object motion in the first three rows, defocus in last four
rows), and with complex scenes and multiple objects (sec-
ond, fourth, seventh, and eighth rows). For the homoge-
neous regions, baselines show some erroneous estimation
results due to the insufficient textures in such regions, while
our method avoid this problem by estimating blur map with
multiple scale features using the pyramid pooling module.
More visual results comparison will be shown in the sup-
plementary material.

5.2. Evaluations on SmartBlur Dataset

Experiment Settings. We now evaluate the performance
of ABC-Fusenet on our SmartBlur dataset for the tasks of
both blur map estimation and blur desirability classification.
As described in Section 3, SmartBlur is a large-scale blur
image dataset containing 10, 000 blur images from different
blur sources and blur levels, with the annotations of both
pixel-levle blur amount and image-levle blur type.

Experimental Results on Blur Map Estimation. The
experiments on SmartBlur dataset including two tasks: blur
map estimation and image blur type classification. We com-
pare the performance of the first task using blur map esti-
mation branch before joint training with the state-of-the-art
baseline methods [23, 24, 21]. For quantitative compari-
son, we utilize the average precision (AP) by averaging the
precision over all recall levels. As most of the baselines
are designed for blur existence estimation (without estimat-
ing blur severity), for a fair comparison, we binarize the
ground truth blur map and compute the precision-recall by
varying the threshold for all the methods. The AP for our
method and baselines are 0.822, 0.616, 0.607, and 0.785 re-
spectively. Our method outperforms all the baseline meth-
ods with a large margin, verifying the efficacy of ABC-
FuseNet to detect blurs from different levels and sources.
For qualitative comparison, We show visual results of some
challenging images in SmartBlur for ABC-FuseNet and the
baseline methods [23, 24, 21] in Figure. 7. These images
have blurs from different sources (defocus, camera shake,



Figure 6. Visual comparison of blue map estimation on CUHK. The blurred regions have higher intensities than the clear ones.

or object motion) and amounts (low, medium, or high). The
results further demonstrate that our method can produce
high-quality blur maps with accurate boundaries. Further-
more, our method can estimate different blur amounts that
are consisent with ground-truth annotations (third row). An
interesting observation is that for the image blur from cam-
era shake (second row), all the baselines fail to detect the
uniform blur over the whole image. Baselines [3, 23, 21]
tends to output high responses based on the object features,
instead of blur amount. Baseline [24] mistakenly estimate
the whole image as a clear one. By contrast, our method is
robust to different blur sources and can detect the uniform
camera-shake blurs over the whole image.

Baseline Methods for Image Blur Classification. To
verify the effectiveness of the proposed methods, we ex-
tensively compare ABC-FuseNet with the state-of-the-art
methods and conduct thorough ablation studies. Here we
introduce the baselines: Baseline 1: Direct classification
with CNN [34]. Yu. et al [34] build a classifier based on
GoogLeNet [10] to directly classify if the image has unde-
sired blur. Considering our ABC-FuseNet extracts content
features from ResNet − 50, for a fair comparison, we fol-
lowing the idea in [34] and replace the base net of Baseline
1 with ResNet − 50. We finetune the network with blur
category supervision from SmartBlur. Detailed network ar-
chitecture is in the supplementary material.

To verify the efficacy of fusing low-level blur estima-

tion and high-level understanding of important image con-
tent for the image blur categorization, we build another four
baselines based on the different combinations of the blur
map (Bm), saliency map (Sm), and content feature map
(Cm) to conduct extensive ablation studies. Take Baseline
5 as an example, we show its framework in Fig. 8. Other
baselines share the same pipeline with different combina-
tion of the blur map, saliency map, and content feature map.
The combined maps are fed to a light network to perform
the final image blur categorization. Here we summarize
the configuration of different baselines: Baseline 2: Bm;
Baseline 3: Bm+Cm; Baseline 4: Bm + Sm; Baseline 5:
Bm+Cm + Sm. All the baselines separately generate blur
map, saliency map, or content feature map, and then per-
form blur type classification. Such two-stage treatment is to
provide a comparison with the proposed end-to-end train-
able ABC-FuseNet. To be specific, saliency map is gen-
erated by training the attention map estimation branch of
ABC-FuseNet on the salient object segmentation datasets
[35]. Blur map is generated by training the blur map esti-
mation branch of ABC-FuseNet on the SmartBlur dataset,
with the initial weights pretrained on the salient object seg-
mentation datasets [35]. Content feature map is extracted
from res5c of ResNet− 50 [9].

Experimental Results for Image Blur Classification.
For quantitative analysis, we compare the classification ac-
curacy of ABC-FuseNet and baselines in Fig. 9. From the



Figure 7. Visual comparison of blue map estimation on SmartBlur. The blurred regions have higher intensities than the unblurred ones.

Figure 8. Framework of Baseline 5.

Figure 9. Comparison of image blur classification accuracy.

Figure 10. Results visualization of ABC-FuseNet.

results we see that, ABC-FuseNet achieves the accuracy of
0.814, outperforming all the baselines by a large margin.
The poor performance of Baseline 1: Direct CNN and Base-
line 2: Bm implies the necessity to combine low-level blur

responses with high-level semantics for image blur catego-
rization. When combining Bm and Cm together, the per-
formance obtain large improvement, from around 0.72 to
0.762. Baseline 4: Bm + Sm is more accurate than Baseline
2: Bm, verifying that the salient map helps better localize
the important content and understand the image blur. Base-
line 5: Bm + Cm + Sm outperforms Baseline 1 to Baseline
4, but it is less accurate than ABC-FuseNet, proving that
joint the training of the whole network significantly improve
the blur classification accuracy. For qualitative analysis, we
visualize the estimated blur map and attention map, and the
classification results in Fig. 10. Our model correctly classi-
fied the desirability in both cases, because of its understand-
ing on the important content in the image, as demonstrated
in the attention maps.

6. Conclusions

In this paper, we introduce the problem of automatically
understanding image blur in terms of image quality and de-
compose this problem into two steps: generating spatially-
variant blur responses, and understanding if such responses
are desired by distilling high-level image semantics. We
propose an end-to-end trainable ABC-FuseNet to jointly es-
timate blur map, attention map, and semantic map, and fuse
three maps to perform final classification. We also propose
a new dataset-SmartBlur, containing 10,000 natural photos
with elaborate human annotations of both pixel-level blur
amount and image-level blur desirability. The proposed
methods significantly outperform all the baselines for the
tasks of both blur map estimation and blur classification.
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