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Abstract—In this paper we characterise the maximal convex A A
subsets of the (non-convex) rate region in 802.11 WLANS. In .
addition to being of intrinsic interest as a fundamental prgperty
of 802.11 WLANSs, this characterisation can be exploited to llow
the wealth of convex optimisation approaches to be applied
to 802.11 WLANS, especially to utility fair resource allocdion
problems.
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I. INTRODUCTION > >
S S
We establish a number of fundamental convexity properties

of the rate region of 802.11 WLANSs. Firstly, we establislfig. 1. lllustrating the rate region (shaded) of an 802.11AMLwith two
a simple constraint that determines the station transemissptations. The complement of the rate region in the positfeant (unshaded)

L . Is strictly convex. Also shown are the maximal convex subsetresponding
attempt probabilities on the rate region boundary. Segom@ 15 o different boundary points.
show that, while the rate region is hon-convex, its complame
in the positive orthant is strictly convex. This property is

illustrated in Fig. 1 where the shaded area indicates the rat Il. NETWORK MODEL

region and the unshaded area above the rate region boundafhe 802.11e standard extends and subsumes the standard
indicates its complement in the positive orthant. Thirde gp2.11 DCF (Distributed Coordinated Function) contention
obtain a complete and explicit characterisation of the maki ,echanism by allowing the adjustment of MAC parameters
convex subsets of the rate region, two such subsets bejRgi were previously fixed, includingIFS (called ATFS in
indicated by the hashed areas in Fig. 1. It is important te NA302.11€),C Wi and CWinas. In addition, 802.11e adds a
here that “obvious” constraints do not yield convex subse{op mechanism that specifies the duration during which a
of the rate region, let alone maximal subsets. Examples @htion can keep transmitting without releasing the channe
constraints for which it is straightforward to show (proofgnce it wins a transmission opportunity. In order not to
omitted due to lack of space) that convexity does not resylfjease the channel, a SIFS interval is inserted between eac
(for WLANSs with n > 2 stations) include: frame-ACK pair. A successful transmission round consists
1) Constraining the maximum transmission attempt probaf multiple frames and ACKs. By adjusting this time, the

bilities, i.e. enforcingr; < 7,45, for stationi; number of framess that may be transmitted by a station at each
2) Constraining the maximum value of" , 7, wheren transmission opportunity can be controlled. A salient deat
is the number of stations in the WLAN; of the TXOP operation is that, if a large TXOP is assigned
3) Constraining the maximum value of the WLAN collisionand there are not enough packets to be transmitted, the TXOP
probability; period is ended immediately to avoid wasting bandwidth.
4) Constraining the minimum value of the WLAN idle We consider an 802.11e WLAN with stations. As de-
probability P; .. scribed in [1], [2], we divide time into MAC slots, where each

Our results complement the recent observation in [3] thMAC slot may consist either of a PHY idle slot, a successful
the 802.11 rate region is log-convex. As well as being (yfan_smlssmn oracollldlng_tra_nsmlssmn (where more tham o
interest in their own right, our results provide the basis feptation _gttempts o t.rarllsm|t 5|multaneously). {getzlenote the
applying powerful convex optimisation methods to the asialy probability that stgtpry attempts a transmission. The mean
and design of fair throughput allocations for 802.11 WLANEroughput of station is
— we discuss this in more detail in Section VI below. 6i(r) = Psuce,iDi

The paper is organised as follows. We first introduce our’ 0Pigie + > iy Ts.iPsuce,i + Te(1 — Pigte — Pouce)
network model in Section I, then consider the rate region o _ n
boundary in Section IlI. In Section IV we establish that th%here?dle o [T (1= Tkl Poueci = T;szln’“#ﬁl — ),
complement of the rate region is strictly convex and in $ecti ~ *“°¢ — izt Poveey 7 = [n .. 7]", Di is the mean

V characterise the maximal convex subsets of the rate regi<'§rli'.mber of bits _sent by stat|01r_1|n a su_ccessful transm|ss_|on,
We summarise our conclusions in Section VII. o is the PHY idle slot duration7; is the mean duration

of a successful transmission by statiorand 7. the mean
This material is based upon works supported by the HEA PRTétimdrk duration of a CO||ISIF)h. Note th"ﬂjsyi anc! D; '.’:lre allowed to )
Maths project and Science Foundation Ireland under GranORWN.1/1901. depend on the station to encompass situations where station




may transmit different sized TXOP bursts on winning @oint. To determine the turning point of/ X, differentiating

transmission opportunity. A/X with respect to)\ yields
We will assume that frame transmissions are of duration I
T,, in which case the collision duratiofi, is invariant of X — /\<Z;‘_1 el DO o | FPP (1 + L;JV))

the station attempt probabilities (if stations use frames of

different duration then the duration of a collision woulgéad X2

on the specific set of stations involved in a collision and 8o @nd setting this derivative equal to zero we have thatthe

the attempt probabilities). A TXOP burst by statibnonsists corresponding to the turning point is the unique positivet ro

of a sequence ofN; = T /T, frame transmissions each ofof

durationT. andL; = D;/N; is the size, in bits, of the payload _» A y; Aoy n Aoy

of each frame. We suppose that there are upper/lower bounds LW H (1 + LN) +1l-a= H (1 + LN)

on the admissible TXOP burst sizeg. 1 <N, < N; < N;. i=1 v L i=1 vt
It will prove useful to work in terms of the quantity, =  gypstituting, we therefore have that the turning poiret, (the

7i/(1 — 7;) rather thanr; — observe that;; € Ry := [0,00)  poundary of the rate-region) satisfies
for 7; € [0,1). With this transformation we have th#}q. =

1/ 15— (1 + zx) and Pyyce,s = @ Pigie and i x} N 1—a .
2 L 1+ [o(+a))
si(a, N) = N;z; E 1) i=1 i j=1 J
o X(z,N) T where z* = X\*z, as stated in the lemma. Note that this
where boundary condition can also be rewritten in termsrofs
n n Yt A-a[LA-7)=11e, 3 7+ (1 -
X(@N)=a+Y (Ny—Dap+ [[0+2) -1 @ DPiae=1 u
; kl;[l This lemma generalises the result for ALOHA networks

of [4], [5] (which is for the specific situation where = 1,
N; = 1 andL; = 1). Observe that the TXOP burst siz&s do
not play a role in determining the boundary, although they
will influence the value of the throughput vectefz*, N).

with @ = ¢/T.. For a fixeda, the throughputs scale with,
so henceforth we assume tHat = 1.

IIl. RATE REGION

The rate region is the sét of achievable throughput vectorsg  Tangent Hyperplanes to Rate Region Boundary
s(z,N) = [s1 ... sp)T as the vector of attempt rates ranges . Th h | Lo h
over domain[0, co)™ and the vectotNV of TXOP burst sizes Lemma 2: The tangent hyperplane to poistz*, NV) on the

range over[[;_, [N, N¢]. In this section we establish somdate region boundary is the set

basic properties of the boundary of the rate region. n 1
Tx*)=¢seR}: bi(x*)s; = =——— (5)
(a*) n ; (%) T )

A. Rate Region Boundary

L h
Lemma 1. The boundary of the rate region is the set 0\{‘\, ere -
throughput vectors(z*, N) with «* € B, where bi(z*) = LIN (H”Ni(l__:x*) n 14_1:1;*) ©)
B:{xERﬁ:h(m):l} 3) iV j=1 J i
d Proof: Taking the derivative of the station throughput with
an respect to the;, from (1) we have
o l-a _ o .
W)= o+ 0] @) osi(x) [ EE (X - Vo= Do = T, (4 ay) k=i
= =1+ O~ | -4 (= Do+ 2Tl (L)) ki
Proof: Take a vectory, with y;, > 0 normalised such
that>,y; = 1, and setz; = AZ;, where\ > 0 andz; = The normal vector b(z*) to the tangent hyperplane

yi/(L:N;). From (1), the vector of station throughputs is theat point s(z*,N) on the rate region boundary solves
s = A/X(\z, N)y. Since), X (e, N) are scalars it can be seen>_,—; bi(¢*)0si(z*, N)/0xy = 0 Vk = 1,...,n. Making use
that varying) adjusts the position of the throughput vector off Lemma 1 characterising boundary points, it can be verified
the ray in directiony passing through the origin. To determindhat the vectob(z*) stated in the lemma is one such normal
the rate region boundary we need to find the value\ ¢hat Vector. u
maximises\/X (AZ, N). By inspection of the first derivative

it can be verified thah/X is monotonically increasing in the IV. CONVEXITY OF NONACHIEVABLE REGION

TXOP burst sizesV;. '[hgrefore at the rate region b_oundary Let R denote the complement of the rate regiBinin the

we must haveN; = N;,i = 1,...,n; henceforth, this will
be the standing assumption when we refer to the boundar
can also be verified by inspection of the second derivatigé th
A/ X is a concave function ok and so has a unique turning R={u€eR} :u=As(z*,N),A\>1,2* € B}

)})ositive orthant.R is the set of nonachievable throughput
vdctors lyingoutside the rate regionR, and is given by



We now show that while the rate regiddis non-convex,R where we use the boundary property f. Now define the

is strictly convex. following

Lemma 3: The setR is strictly convex. n o

Before proving Lemma 3 we note the following fact in [5] o 0, - 2 e, Ji#] 1+z7 v j n
using Bessel’s inequality. S S % Lo

Lemma 4: [5] Let vectorr € R™ be such thad <r; <1 » .
forj=1,...,nand>}  r; = n _ 1. Let vectorz ¢ R* Itcanbe ve'r|f|ed using the bounndary propertyaofthat 0 <
satisfyr”> = 0. Then ", Sz <. rp<lforj=1,....,nand} \_ r; = nJ 1 with z and

Proof: Lemma 3 A supportlng hyperplane of sek at " orthogonal. Then by Lemma 42 Y mz < 0 as
boundary point:* is such that (i) seR? is entirely contained "eauired. u
in one closed half-space and (i} lies on the hyperplane. By
the Tietze-Nakajima Theorem [6], the open and connected sef- MAXIMAL CONVEX SUBSETS OF THERATE REGION
R is convex if for every boundary point* there is a locally ~ We are now in a position to state our main resuilt.
supportlng hyperplane. This is satisfied if for all € B and Theorem 1: For any points(z*) on the boundary of rate
y* € B sufficiently close tac*, s(y*, V) lies above the tangent "€gion R, the set
planeT (z*). That is, it is suff|C|ent to show that

1 { Zaz sz<1sl>0}

Zb )si(y™, N) > T 0t " o
ITj=1 T is the maX|maI convex subset @t containings(z*), where
for all y* sufﬂmently close tor*. Substituting for; (z*) from  a;(z*) = HHJ L ”“(Hz ),
(6), the LHS can be rewritten as Proof: For any pomts(X ) on the boundary of rate re-

T+ = X, V) e of the nonachievable sét (due to the convexity of?, Lemma
=t I v 3). It follows that the setC(z*) of points lying below the
Condition (7) is satisfied if the term in brackets is greatant hyperplane at(z*) lie within rate regionR i.e. C'(z*) C R.

1 (ZTL (N; — Dyf + [T, (1 +a) X y_> gion R, the tangent hyperplane is also a supporting hyperplane
)

unity, i.e. provided The setC(z*) is given by
H(Hx) : >H1+y)+a—1 C)=14s:S bi(@)si < = 5; >0 (9)
=1 flte ’ ; IT=: (1 +2)
Letting y; = 27 + 51' and using Lemma 1 for points* and  sybstituting from (6) for the);(2*) yields the expression for
y*, this condition becomes C(z*) in the statement of the theorem. Sin€éz*) is formed

n by the intersection ofR’} and the (unique) supporting half-
> H L+z5+4d;) (8) space to the union oR and the boundary of, maximality
j=1

jﬁl1+x <1+Z

follows. ]
Expand the RHS as This theorem in illustrated in Fig. 1 for a WLAN where
N; = N, i = 1,..,n. In Fig. 1(a) the boundary point is

n ) n j—1 5

- ) bi : the symmetric one wher (2%) = s;(x*), Vi, j = 1, ...
1 J Yy e; 7 ’ ) y ey 10
_1;[ ;) ; 1+ ] + ;; (I+a7) (1 +23) e The supporting hyperplane is indicated by the’ 4e and

the hashed area indicates the maximal convex subsdt of
wheree involves cubic and higher terms. Condition (8) the'&ontammg s(z*). Fig. 1(b) shows an asymmetric example

can be rewritten as where s;(z*) # s;(z*) wheni # j. We summarise the
5 symmetric case in the following corollary to Theorem 1:
ZZ 1+x (1 +at ) +£<0 Corollary 1: When N; = N, i = 1,...,n, the maximal
j=li=1 convex subset associated with the symmetric boundary point

for some ¢ that involves cubic and higher terms. Fér s(z*)i.e s;(*) = s;(z*) =s*, 4,5 =1,...,nis
sufficiently small, the sign of the LHS is determined by the

quadratic term. {s: Zsi <1/a*, s; >0}
Sincey* € B, from the first-order conditions on points P

on the boundary we get that the perturbatiomeeds to be N1 (14atyn—1

orthogonal toVA(z)|s—z-, .6 31| 6:0h(x)/0%;]p—e- = 0 Wherea™ = ——<r-—

whereh(x) is given by (4). Now we have

Oh(z
Z 0 (%cl

=1

1 1—a
= T~ " In this section we briefly illustrate use of the results of the
o= Z L + zj <1 t; iem + 2] previous sections in the design of fair throughput allaoai
nos n in mesh networks of 802.11 WLANS. In previous work [3],
Z 1_: - Z [7] we established the log-convexity of the rate-region of
j=1 T3 \i=1 1;&] mesh networks of 802.11 WLANSs. By working in terms of

VI. APPLICATION TOUTILITY-BASED OPTIMISATION
)>




log-transformed rates, this then implies that one can use th
Network-Utility-Maximization (NUM) framework of Kelly [$

for the class of utility functiong/(-) such thatU (exp(+)) is

concave. The commonly used iso-elastic/constant relaitke
aversion family of utility functions [13], [14], [11], [15][10],

[9] given by

Clique 1 Clique 3 Clique 4

Fig. 2. Topology for numerical example with four cliques rgarg three
flows.

T
log(z) z>0,a=1

1—a_q
z >0 >0 1
U(x):{ - 20 a20af

_ _ We illustrate this using a specific network with three flows
satisfy the above requirement only when > 1. The re- gshown in Figure 2 and using two utility functions from the

quirement thatU/ (exp(-)) is concave wherlU(.) is already power risk aversion family [10], namely; = 0.1 and 8 = 1
concave is a stringent one and excludes from consideratging U/, (z) = 1 — exp (— (209 = 1) /0.9), and @ = 2.0

many families of utility functions used by economists to rebd and 3 = 1 giving Us(z) = 1 — exp ((z71=1)). We will

user behaviours [10]. For example, compare this with théog(-) utility function corresponding to
(i) Hyperbolic absolute risk aversion family of utility fan proportional fairness. In all cligues we assume that 1/9
tions [11], which is given by and that the TXOP value is set to 1, i.e., its minimum possible
value. For flow 1 we assume thdt/T, corresponds to 12
[

(ﬂ + E) e ~1|, 8+ ! Mbps wherever the flow is active; the corresponding numbers
gl for flow 2 and flow 3 are assumed to be 6 Mbps and 12 Mbps,
o respectively. From symmetry of the problem it is clear tha o

for a # 0 anda # 1 (via limits for @ € {0,1,+00}).  ¢44 find the various utility optimal solutions by choosing th

We do, however, _note that since these utility funCt'Oné;ame operating point for flow 2 in cliques 2 and 3; let this
are related to the iso-elastic family, for the casexof 1 be z%. Then we have that} = o = a/z}. The optima that
2 1 — +#3 — 2"

we can find a suitable transformation (translakeg]-)) result are as follows: for proportional fairnes$ = 0.2094;

U(x)

:1—a

- that will have the required concavity; _for utilty 1 23 = 0.3767; and for utility 2 25 = 0.3516.
(i) Linear exponential family of utility functions [12],igen Given these operating points for the different cliques, cae
by use Theorem 1 to then find the optimal solution using standard
U(z) = = — Bexp(—az), = >0 convex optimization techniques. The boundary of cliquéng, t
respective optimizers and the maximal convex subsets from
where s, a > 0; and Theorem 1 for this problem are illustrated in Figure 3. Note

(i) Power risk aversion family of utility functions [15[10], that only the proportionally fair optimizer can be deteredn
which is based on the Weibull distribution and is givemising the log-convexity ideas in [3], [7]. In this simple exale
by one can directly calculate the optimizers but the same idea
1 Lo _q carries through to the more general topologies presented in
U(x) =— [1 — exp (—B <7)>} , B,a >0, [7]. Algorithmic means to adjust the operating points inteac
B I-a cligue, preferably in a distributed or decentralized mantee
for z > 0 where the edge cases 6f= 0 anda = 1 are achieve the optimal utility is topic for future research.
defined via limits.

For suitable parameter settings these families have the de- VII. CONCLUSIONS
creasing absolute risk aversion property [13], [14], thayeh  In this paper we characterise the maximal convex subsets
d3U(z)/dz® > 0 and are increasing and concave, and theref the (non-convex) rate region in 802.11 WLANSs. In addition
fore fit empirically observed user behaviours [10]. Yet foto being of intrinsic interest as a fundamental property of
most parameter settind$(exp(-)) is not a concave function 802.11 WLANS, this characterisation can be exploited tovall
for these families, and thus utility optimisation cannot bthe wealth of convex optimisation approaches to be directly
addressed via the approach in [3], [7]. Since the originapplied to 802.11 WLANS. In particular, standard utilitpeed
motivation for the NUM framework [8] was to bring in fairness approaches can be applied for the important class o
economic considerations to rate allocation in networkis thutility functions wherelU (exp(-)) is not concave.
potentially represents a major deficiency that can adddesse
using the results in the present paper. With this in mind, we REFERENCES
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