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Introduction

Three broad class of problems:

• Broadcast channel - DL of most systems, typically
“centralized”, MAIN FOCUS.

• Multiple-access channel - UL of most systems, usually
distributed but sometimes “centralized” (eg. HSUPA).

• General wireless network - mesh, adhoc or sensor network,
typically distributed algorithms used, interference management
a key component of scheduling.
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Setting

• Scheduling done at discrete times - some framing structure.

• Centralized scheduler - knowledge of queue-lengths, QoS and
channel conditions.

• Generous resource allocation mechanisms - scheduler has
access to a generous bag of modulation and coding schemes.

• Power is allocated to each user:
– From a common pool on the DL.

– Limiting the net received power based upon per user limits on the
UL.

• Bandwidth-time slices allocated to each user
– CDMA - spreading codes across time.

– TDMA/FDMA - time and/or frequency.

– OFDM - time-carrier slices.
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Simple Case

Consider best-effort/rate-adaptive traffic - TCP flows

Two key notions emerge:

• Fairness versus efficiency trade-off

• Opportunistic scheduling/Multi-user diversity
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Fairness versus efficiency

Assume a static channel and a TDMA-case with a total of I users in the
system.

• User i gets rate Ri when he is allowed to transmit.

• User i is allowed to transmit ρi fraction of the time.

• Thus, throughput for user i is Ti = ρiRi.

• Let utility obtained for user i be based only on throughput - Ui(ρiRi),
concave, increasing function.

Let us choose ρi to solve the following problem:

max
P

i∈I Ui(ρiRi)

subject to
P

i∈I ρi ≤ 1 ρi ≥ 0, ∀i ∈ I
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Choose the following family of utility functions - Ui(x) ∈ Uα(x) for α ≤ 1:

Uα(x) =

8<:
sgn(α)xα

|α| , α ≤ 1, α 6= 0

log(x), α = 0

Solution ρi =
R

αi
1−αi
iP

j∈I R

αj
1−αj
j

. Couple of interesting cases:

1. Max Rate scheduler (αi = 1 ∀i) - i∗ = arg maxi∈I Ri, ρi∗ = 1,
ρi = 0, ∀i 6= i∗, User throughput - Ti∗ = Ri∗ , Ti = 0, ∀i 6= i∗, Sum
throughput - maxi Ri (maximum).

2. Proportionally Fair scheduler (αi = 0 ∀i) - ρi = 1
|I| , User throughput -

Ti = Ri
|I| , Sum throughput -

P
i∈I Ri

|I| (arithmetic mean).

3. Equal throughput scheduler (αi = −∞ ∀i) - ρi =
R−1

iP
j∈I R−1

j

, User

throughput - Ti = 1P
j∈I R−1

j

, Sum throughput - |I|P
j∈I R−1

j

(harmonic

mean).
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Multi-user diversity

Consider I users with i.i.d. channels under the following two cases,
both with ρi = 1

|I| :

1. Round-robin scheduling - User throughput E[R]
|I| , Sum

throughput E[R].

2. At time k schedule user i∗ = arg maxi∈I Ri(k) - User
throughput E[maxi∈I Ri]

|I| , Sum throughput E[maxi∈I Ri].

This gives substantial improvement in throughput - asymptotically
log(|I|) under some conditions on the distribution.

Thus, by choosing good times to schedule, every user’s throughput
is improved - for time-varying channels. In fact, as the number of
users increases, the gain increases (slowly) to infinity.
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Abstract Model of a Wireless Network

Setting:

Wireless communication system with d users.

Time-varying channel conditions captured by stochastic state
ek ∈ S at time k, stationary and ergodic with stationary distribution
γ.

∀e ∈ S we have a rate-region R(e) ⊆ K ⊂ <d
+ where K is compact

with R(e) convex, coordinate-convex and closed for all e.

Steady-state capacity region

R̄ :=˘
w ∈ <k

+ : ∃v(e) ∈ R(e) ∀ e ∈ S s. t. w =
R
S v(e)γ(de)

¯
. (1)

R̄ is convex, coordinate convex and compact.
Note: Technology details (including feedback capabilities) are abstracted into the rate-regions.
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General Analysis for Best effort traffic

Problem Statement

A Gradient-based Algorithm

Convergence to ODE

Some Examples

Analysis of ODE

Simple Numerical Results



Wireless Scheduling - IEEE VTC Dallas 2005 10'

&

$

%

Problem Statement

Assume that the d users (in the model) have rate-adaptive streams that
want to share the above channel fairly and efficiently.

Summarize this as follows

sup
w∈R̄

U(w)
4
=

dX
i=1

Ui(wi). (2)

Assume Ui(·) increasing, strictly concave and continuously differentiable
utility function on <+.

Hence, there exists unique w∗ maximiser to (2) characterized by

∇U(w∗)T (w − w∗) ≤ 0 ∀w ∈ R̄. (3)

Question: Can we achieve w∗ using only online policies?
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A Gradient-based Algorithm

Let Vk ∈ R(ek) be the rate vector selected at time k.
Consider the IIR filtered average throughput

Wk+1 = Wk + µ(Vk −Wk)

Wk+1 = µ

kX
l=0

(1− µ)lVk−l

where µ ∈ (0, 1) controls the time constant in the averaging.

U(Wk+1) ≈ U(Wk) + µ∇U(Wk)T (Vk −Wk) when µ � 1.

Would like to optimise U(Wk+1) given U(Wk). Best choice given past
decisions (myopic and greedy view) choose

Vk = arg max
w∈R(ek)

∇U(wk)T w. (4)

More generally we will consider choosing Vk = F (Wk, ek).
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Convergence to ODE

We are interested in the case where µ � 1 and will be looking at
asymptotics as µ → 0.

Define the continuous time process

Wµ(t) := W[t/µ], t ≥ 0, where [x] := sup{i ∈ Z : i ≤ x}.

Let

F̄ (w) :=

Z
S

F (w, e)γ(de).

Theorem 1 Under the assumption that F̄ is continuous and that Wµ(0) → w0 in
probability, it follows that any limit point W of {Wµ} satisfies the ODE

Ẇ = F̄ (W )−W. (5)
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Define

Ξµ(t) =
1
√

µ
(Wµ(t)−W (t)) and

Lµ(t) =
√

µ

[t/µ]X
k=1

`
F (W (kµ), ek)− F̄ (W (kµ))

´
.

Assume (C1) that Lµ =⇒ L, where L is a zero-mean Brownian motion.
Mixing conditions on ek will imply this.

Additionally assuming (C2) that F (w, e) is continuously differentiable in w

with bounded derivative ∂wF (w, e).

We then have

Theorem 2 Assume C1-C2 and that the solution to (5) exists for all t ≥ 0,
and that Ξµ(0) → ξ0 in probability. Then Ξµ =⇒ Ξ satisfying

Ξ(t) = ξ0 + L(t) +

Z t

0

∂F̄ (W (s))Ξ(s)ds. (6)
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Some Examples

Complete knowledge of current channel state:

This is the original algorithm that we designed in (4) and

F (w, e) = arg max
u∈R(e)

∇U(w)T u.

Define a compact and convex set Q ⊂ <d
+ to be strictly-convex if for all

a ≥ 0,
Pd

i=1 ai = 1, there is a unique maximiser of aT u in Q.

Under strict convexity of R̄

F̄ (w) = arg max
u∈R̄

∇U(w)T u.

Note:

1. Gradient-based scheduling algorithm - related to the conditional gradient/Frank-Wolfe algorithm.

2. With convex rate regions assumption (4) is an “easy” problem to solve.

3. If every rate-region is a simplex, then we can restrict attention to a TDM-type algorithm where only one user is chosen at any
given time.
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Analysis of ODE

We consider the ODE
Ẇ = F̄ (W )−W, (7)

where based upon the various examples given before F̄ (W ) takes the form

F̄ (w) = arg max
u∈Q

∇U(w)T u, (8)

for some convex, coordinate convex, and compact subset Q ⊆ R̄.

Denote by w∗(Q) the (unique) maximiser of the following problem

sup
w∈Q

U(w).

Under these conditions we have the following result

Proposition 1 Under strict-convexity of Q, it follows that w∗(Q) is the
unique equilibrium point of the differential equation (8) and W (t) → w∗(Q)

as t → +∞ starting with any state W (0) = w0 ∈ Q.
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Numerical Results

Given state e ∈ [0, 1], (R1(e), R2(e)) = (1− e, 0.5e). The continuity
assumption is satisfied for the TDM-type scheduling algorithm with current
rates.
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Figure 1: Trajectories of the different algorithms and comparison with the respec-
tive ODEs for Case 2.
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Figure 2: Trajectories of ODEs for Case 2.
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General Analysis for real-time traffic

Review of stability

General framework for stabilizing policies

Largest weighted delay policy

Minimum draining time policy

Exponential Rule
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Review of Stability

Rate Region: Assuming the earlier model this is the set of rate
vectors that can be served by the channel/system.

Stabilizing policies: Set of policies that will keep queues stable for
all rate vectors within the rate region. Classic Example of Rybko
Stolyar:

Buffers b2 and b4 given higher priority at stations.

System unstable for λ = 1 if ρ1 = λ
µ1

> 0.5 and ρ2 = λ
µ2

> 0.

However, stabilizing policies exist for ρ1 + ρ2 < 1.
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Stability Definitions

Many related definitions exist:

1. Queueing system modelled as a Markov Chain - then positive
recurrence of Markov Chain or Harris recurrence.

2. Policy π stable if there exists Bπ < +∞ such that
supt≥0 supi E[W π

i (t)] < Bπ, i.e., expected workload is bounded.

3. More general definitions are to show that time to empty (hitting time to
0) is finite, or has finite mean.
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Proof methodologies

1. Using Lyapunov functions: Generalized Foster-Lyapunov Criterion
There exists V (X) ≥ 0, norm-like with

E[V (X(t + 1))|X(t)] < +∞

E[V (X(t + 1))− V (X(t))|X(t)] < −c for ‖X(t)‖ ≥ b

2. Using Fluid Limits: Let S(n) denote process S with initial condition
such that ‖S(n)(0)‖ = n.
Suppose there exists ε > 0 and an integer T > 0 such that for any
sequence of processes {S(n), n = 1, 2, · · · }, we have

lim sup
n→+∞

E[
1

n
‖S(n)(nT )‖] ≤ 1− ε.

Then S is stable.
Fluid limit s(t) is obtained as limit of sequence of these scaled
processes. The key idea is to show that s(t) starting from ‖s(t)‖ = 1

hits 0 in finite time T and stays there.
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Largest Weight Delay First

First, we concentrate on TDM channels (Simplex rate regions) to illustrate
good policies.

Tassiulas and Ephremides 1993 - Dynamic Server allocation to Parallel
Queues with randomly varying Connectivity.

System - N users each with mean number of packets served mn, i.i.d.
service rates and i.i.d. arrivals, i.i.d. connectivity of queue to server.

Policy - serve the longest connected queue first (LCQ). Proof of stability

using Lyapunov function V (x) =
PN

n=1

x2
n

mn
.

With statistically identical arrival, service and connectivity processes and a
binary arrival process, LCQ minimizes delays - stochastically smallest.
Uses a sample-path coupling argument.
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Modified Largest Weighted Delay/Workload First

M. Andrews, et al.: At time t serve user i∗ = arg maxi γiV
β

i (t)Ri(t)

where β > 0, Ri(t) is the rate for user i at time t and Vi(t) = Qi(t) + Wi(t)

with Qi(t) the queue-length of user i and Wi(t) the delay of the
head-of-the-line packet.

Proof uses fluid limit coupled with Lyapunov function
L(y) = 1

1+β

P
i γiy

1+β
i . Additionally, show that in the fluid limit, after a

finite time a Little’s law relationship holds, namely, λiwi = qi to prove
stability for the delay-based policy using the queue-length based policy.

(Myopic and greedy) Policy tries to minimize drift of Lyapunov function at
every instant.
Properties:

1. Under heavy traffic (arrival rates close to boundary) with Resource Pooling M-LWDF minimizes L(V ) over all policies - nice
property for online policy that does not know arrival rates.

2. Using Large Deviations one can show an optimality property for such a policy too.
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Minimum Draining Time Policy

Agrawal and Leelahakriengkrai: Arrival process assumed to be such that

∀T (Ai(t + T )−Ai(t)|A(s), s ≤ t) ≤ Zi ∀t, E[eθiZi ] < +∞

E[(
Ai(t + T )−Ai(t)

T
− λi)

+|A(t), s ≤ t] < ε ∀t

Let L be a control set - N-dimensional, bounded, closed and convex, not
necessarily R̄. Then

L = ∩k∈KSk

Sk = {x ∈ RN
+ :

NX
n=1

xn

rk
n

≤ 1} − a simplex

K can be an infinite set.
Given w ∈ RN

+ there exists k ∈ K - corresponding to simplex Sk such that

<
1

rk
, w >= max

l∈K
<

1

rl
, w >=

NX
n=1

wn

rl
n

.
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Minimum Draining Time Policy

At time t ≥ 0, channel H(t) = h and workload W (t) = w, policy π

selects bit rate rπ(h, w
‖w‖ ) from Rc(h) such that

1. w
‖w‖ ∈ Rk implies

<
1
rk

, rπ > = max
r∈Rc(h)

<
1
rk

, r >

Rk = {w ∈ RN
+ :<

1
rk

, w >= max
k∈K

<
1
rk

, w >}

2. rπ
i = 0 if wi = 0.

3. “Continuity” of policy in w
‖w‖ .

If L = R̄, then minimum Draining Time (MDT) Policy.
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Minimum Draining Time Policy

Stability by using Lyapunov function - L(w) = maxl∈K < 1
rl

, w >.

E[
L(W (t + T ))− L(W (t))

T
|W (s), s ≤ t] ≤ ε0 if L(W (t)) > b ∀t ≥ 0

(L(W (t + T ))− L(W (t))|W (s), s ≤ t) ≤ Z ∀t ≤ 0

M-LWDF special case of this:

L = {x :

NX
i=1

x2
i

R̄i
≤ 1}

rπ = arg max
r∈Rc(h)

NX
i=1

wiri

R̄i

M-LWDF for more general rate regions than simplexes. By good choice of
L we can tune the delays properly.
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Exponential Rule

Choose

r = arg max
r∈Rc(h)

< w, r >

wi = γie
aiWi(t)

β+(W̄ (t))η , η ∈ (0, 1)

W̄ (t) =
1

N

NX
n=1

aiwi(t)

Proof: Uses local fluid limit - separation of time-scales.
Allows for good tuning of delays - the W̄ (t) term allows for equalizing the
weighted delays.
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Detailed Example - HSDPA Scheduling

Motivation for physical setting - Optimization Set

Additional Motivation for cost function

Restatement with additional constraints

Optimal Power Allocation

Dual Formulation

Optimal Algorithm

Key Steps

Suboptimal Algorithms

Results



Wireless Scheduling - IEEE VTC Dallas 2005 30'

&

$

%

Problem Statement

Given e - channel gain by interference plus noise

max
r∈R

< w, r > (9)

where w ≥ 0 and

R(e) =


r ≥ 0 : ri = niB log

„
1 +

piei

ni

«
,

ni ≤ Ni ∀i,
X

i

ni ≤ N,
X

i

pi ≤ P

)
,

(10)

where pi is the amount of power assigned to user i and ni the number of
codes assigned to user i.

Gaussian broadcast channel - CDMA with orthogonal codes over
flat-faded channels.

Li and Goldsmith[IT, March’01] - characterization of rate region.
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Motivation - Physical Setting

WCDMA evolution - High-Speed Downlink Packet Access (HSDPA), Release 5.

1. Co-exists with UMTS - partitioned resources.

2. Fine grain scheduling (2msec) at the base-sites.

3. Fixed spreading factor (16) Walsh codes. Upto 15 codes assigned. Can
code-division multiplex (CDM) multiple users in one time-frame.

4. Dedicated reverse channels give (regular) channel quality feedback (quantised
SINR of pilot is typically used) and transmission feedback.

5. Transmitter has big bag of modulation and coding schemes to choose from -
Use turbo codes and under Gaussianity assumption (knowing channel)
come close enough to achieving Shannon capacity.

6. Shared control channels to indicate users scheduled to and modulation format:
Modulation schemes - QPSK, 8-PSK, 16-QAM, MCS signalled using shared
control channel.

7. User equipment has different capability based upon class - number of codes
that they can simultaneously decode (at least 5!).
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Additional Motivation - Cost Function

Let Wi,t be measure of throughput acheived by user i up to time t.
Let Qi,t be queue-length of user i at time t.

1. Since rate region is convex different choices of w ≥ 0 help trace out
capacity region.

2. Rate Adaptive Sources[AgrawalSubramanian02, Stolyar03,
WhitingKushner02] - Choosing

r∗t = arg max
rt∈R(et)

X
i

ci(Wi,t)
α−1ri,t α ≤ 1

yields asymptotic convergence of Wt to W∗ = arg maxr∈R̄ U(r).

3. Stabilizing Policies[Tasioulas et al., Agrawal et al., Stolyar et al.,
Shakottai et al., YehCohen, ...]: Choosing

r∗t = arg max
rt∈R(et)

X
i

di(Qi,t)
p−1ri,t p > 1

yields a stabilizing policy - Lyapunov function
P

i di(Qi,t)
p.
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Problem restatement - Additional constraints

Solve for (n∗,p∗) that yield

V ∗ = max
(n,p)∈X

V (n,p)

subject to X
i

ni ≤ N (N ≤ 15) (11)X
i

pi ≤ P (12)

where

V (n,p) =
X

i

wini log(1 +
piei

ni
) (13)

X = {(n,p) ≥ (0,0) : ni ≤ Ni ∀i} (Ni ≥ 5) (14)

Relaxing integral constraints on n.
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Additional constraints:

1. Max SINR (per code)

piei

ni
≤ si ⇔ pi ≤

nisi

ei

2. Max rate per code constraints

ri

ni
= log

„
1 +

piei

ni

«
≤ (R/N)i ⇔ pi ≤

ni

ei

“
e(R/N)i − 1

”
Equivalent and they arise from a spectral efficiency / modulation order
constraint.

Can be written as pi ≤ si(ni)
ni
ei

. Thus, we have

X =


(n,p) ≥ (0,0) : ni ≤ Ni, pi ≤ si(ni)

ni

ei
∀i

ff
For convexity of X need si(ni)ni to be concave in ni.



Wireless Scheduling - IEEE VTC Dallas 2005 35'

&

$

%

Optimal Power Allocation

Assume
P

i Ni > N , else set codes Ni, optimize over power.

Power optimization for given code allocation

Need to find p∗ that solves

V ∗(n) = max
p≥0:pi≤si(ni)

ni
ei
∀i

V (n,p)

1. Check if problem is non-trivial, i.e.,
P

i
si(ni)ni

ei
> P , else solution is

obvious. Note that we may not fill the power budget in this case.

2. Using a dual formulation get a water-filling solution.

∃λ̃ ≥ 0 s.t. p∗i =
ni

ei

»„
wiei

λ̃
− 1

«
∧ si(ni)

–+

∀i,
X

i

p∗i = P.

3. In conjunction with value of p∗. leads to a simple finite-time algorithm
(complexity O(M log M)) to determine λ̃.
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Figure 3: Algorithm Illustration.
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Dual Formulation

Define

L(p,n, λ, µ) =X
wini log

„
1 +

piei

ni

«
+ λ(P −

X
pi) + µ(N −

X
ni)

Dual function
L(λ, µ) = max

(n,p)∈X
L(p,n, λ, µ)

Dual problem: Solve for

L∗ = min
(λ,µ)≥0

L(λ, µ)

Define L(λ) = minµ≥0 L(λ, µ), this is convex.

(Using Slater’s Condition)
No duality gap and existence of Lagrange multipliers.



Wireless Scheduling - IEEE VTC Dallas 2005 38'

&

$

%

Optimal Algorithm

The solution to the optimization problem takes the following steps:

1. Given λ and µ for every n construct p∗(n) with (n,p∗(n)) ∈ X with
p∗(n) = arg maxp:(n,p)∈X L(p,n, λ, µ). Note that this is not the same
as the optimizing power vector from earlier. (Trivial)

2. Find L(λ, µ) = maxn≥0:ni≤Ni L(n,p∗(n), λ, µ). (Easy but important)

3. Find L(λ) and µ∗(λ) = arg minµ≥0 L(λ, µ). (Simple but reveals key
structure)

4. Find λ∗ = arg minλ≥0 L(λ) - Numerical search, unimodal function
(convex) with 0 ≤ λ ≤ max wiei, thus, Golden section method works
well, there are means to speed up search.

5. Given λ∗ find feasible n,p to solve for primal. (Easy except for ...)
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Key Steps

We have

L(n,p∗(n), λ, µ) =
X

ni (wih(wiei, si(ni), λ)− µ) + µN + λP

When si(ni) ≡ si (constraints (1) and (2)), easy to optimize over n to yield

L(λ, µ) =
X

[µi(λ)− µ]+ Ni + µN + λP

where µi(λ) = wih(wiei, si(ni), λ).

Optimizing over µ is now very easy!

1. Order users in decreasing order of µi(λ) - Πλ ordering.

2. Pack code budget as per Πλ order.
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Figure 4: Example of µ∗(λ) computation.
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We get the following structure for the optimal solution

Lemma 1 For constraints of the type (1) and (2), an optimal code
allocation can be found with the following properties:

1. For the case of Ni = N at most two users will be scheduled.

2. If a certain condition holds or at most two users are involved in a tie,
then at most dN/Nmine+ 1 users will be scheduled, where
Nmin := mini Ni. All but two users will have their full code allocation.

Remark: For the HSDPA constraints this yields that a maximum of 4 users
need to be scheduled - the simplest setting in the standards!!!
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Suboptimal Algorithms

Owing to processing requirements - only 2 msec to schedule, code, etc. -
it would be good to have lower complexity algorithms that perform
well-enough.

1. Truncated Optimal: Guess at λ∗, compute code, get optimal power
allocation.

2. Greedy: Extend single-user scheduling method (eg. HDR) by
sequentially adding users.
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Numerical Investigations

Simulation set-up:

40 users with average e chosen as per measure distribution with
maximum code capability of 5.

Real e varied over time by i.i.d. processes with the Clarke spectrum with
10Hz Doppler.

Power budget 11.9W and code budget 15.

Considered utility maximization problem for different αs and infinite
buffers.
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Figure 5: Empirical CDF of users throughputs for α = 0.
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Figure 6: Optimal gives 38% improvement over greedy.
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CDMA broadcast channel

1. Optimal code and power allocation via dual formulation

• Power

• Code

• µ∗

• λ∗ one-dimensional numerical optimization.

2. Structural properties - need to consider at most dN/Nmine+ 1 users.

3. Optimal power allocation given a code allocation.

4. Lower complexity sub-optimal algorithms.

5. Naive extension of TDM policy significantly underperforms optimal
CDM policy.
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Other examples

• GPRS and EDGE: These are TDM systems: algorithms are a simple
sorting type, followed by picking of the maximum.

• UMTS:
Problem is similar to that of HSDPA but the functional relationship between power and

code is different.

Power budget is what is obtained after the common and dedicated channel powers have
been removed.

Code budget relationship is different since different spreading factor codes are used:
need

P
i 2−SFi < 1 −

P
j∈ resv 2−SFj .

• HRPD/HRPD-A: With HRPD since it is TDM rate-regions, solution is
easy, with HRPD-A can use the same formulation to decide the set of
users to schedule.

• M. Andrews et al.: Possible to extend rate-adaptive streams policy to
cases with minimum and maximum rate guarantees - use counters to
detect overflow and underflow and use an exponential weight for this.
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Conclusions

A broad class of scheduling policies have at the heart a gradient
problem to be solved.

This problem is a weighted rate maximization over the current
(possible) rate region.

In the case of rate-adaptive sources, these algorithms converges
to utility maximizing solutions.

In the case of real-time sources, these algorithms are stabilizing
in nature, and by tweaking the parameters appropriately, good
delay performance can be obtained.
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