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Capacity and Reliability Function for Small Peak
Signal Constraints

Bruce Hajek Fellow, IEEE,and Vijay G. SubramaniaiMember, IEEE

Abstract—The capacity and the reliability function as the the squared peak constraint converges to one-half the maximum
peak constraint tends to zero are considered for a discrete-time eigenvalue of the Fisher information matrix. They also showed
memoryless channel with peak constrained inputs. Prelov and 51 if the Fisher information matrix is nonzero, the asymptot-

van der Meulen showed that under mild conditions the ratio of . . . T - .
the capacity to the squared peak constraint converges to one-half ically optimal input distribution is equiprobable symmetric an-

the maximum eigenvalue of the Fisher information matrix and tipodal signaling. We prove, under a set of technical conditions
if the Fisher information matrix is nonzero, the asymptotically somewhat different from those of [18], that the asymptotic be-
optimal input distribution is symmetric antipodal signaling.  havior of both the capacity and channel reliability function can
Under similar conditions, it is shown in the first part of the o jgentified. Two examples of the capacity result are given:
paper that the reliability function has the same asymptotic shape L .

as the reliability function for the power-constrained infinite application to a Rician channel and t_o a channel com.posed of
bandwidth white Gaussian noise channel. The second part of the Parallel subchannels. We then examine the asymptotics of the
paper deals with Rayleigh-fading channels. For such channels, capacity for the block Rayleigh-fading channel for which the
the Fisher information matrix is zero, indicating the difficulty  Fisher information matrix is zero, and relate this example to the

of ransmission over such channels with small peak constrained 4 herformance of nonbursty signaling schemes for certain
signals. Asymptotics for the Rayleigh channel are derived and .
broad-band fading channels.

applied to obtain the asymptotics of the capacity of the Marzetta ” - i ]
and Hochwald fading channel model for small peak constraints, ~ The paper is organized into two parts, as follows. The first
and to obtain a result of the type of Médard and Gallager for part of the paper consists of Sections II-VI. Section Il presents

wide-band fading channels. the theorems giving the limiting normalized capacity and lim-
Index Terms—Fisher information, peak constraints, Rayleigh iting normalized reliability function and two examples are con-
fading, reliability function, Shannon capacity. sidered. Preliminary implications of the regularity assumptions

are given in Section lll, and the theorem regarding normalized
capacity is proved in Section IV. Upper and lower bounds on
the optimal probability of error are given in Sections V and VI,
ONSIDER a discrete-time memoryless channel with inpyiéspectively, yielding the proof of the theorem regarding nor-
alphabet equal to the-dimensional Euclidean spa@* malized reliability. The upper bounds follow by random coding,
for somen and output space an arbitrary measurable spacewhile the lower bounds follow by sphere-packing, a low-rate
Assume that given a symbal is transmitted, the output hashound, and straight-line bound. The expression for the limiting
densityq(y|z), relative to some fixed reference measur&bn normalized capacity is the same as obtained in [18].
Givene > 0, the peak constrained channel is obtained by re- The second part of the paper consists of two sections dealing
stricting the input alphabet to the ball of radiasn R". For with Rayleigh-fading channel models. Section VII describes
many channels this means that the energy of each transmitfiggl asymptotic capacity of a multiple-antenna block Rayleigh-
symbol is constrained t6'. The peak constrained channel is itfading channel of the type considered in [12], and Section VIII
self a discrete memoryless channel, so that the channel capagglies the results of Section VIl to provide additional under-
and reliability function are well defined. The focus of this pap&dtanding of the limitations of nonbursty spread-spectrum sig-
is to study the asymptotic behavior of the capacity and religaling over wide-band fading channels with sufficiently fast
bility function ase — 0. Prelovand Van der Meu|en[l8]ShOW8any|eigh fading. Section VIII complements the work of [7],
that under mild regularity conditions the ratio of the capacity t@hich constrains burstiness by constraining the fourth moments
of the signal coordinates arising in a time—frequency decompo-
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Regularity Assumption RA(xg, €9, Dp): The function X4 Y,
log q(y|x) is continuously differentiable im with T Hy -
1V, ) = V(y, D) < Ly)ullle - 2l) @)
X5 Y2
for some nondecreasing functiaf-) such thatu(r) — 0 as H2
r — 0 and some measurable functidénon 2. Let B(y, x) =
L(y) + IV(y, 2)||. Then °
®
Eacg [GEOB(Y,JOO)] S DO~ [ J
Some remarks about the regularity assumption are in orde Xn H, Yn
Condition (1) implies that the gradient(y, =) is uniformly

continuous inz for eachy. On the other hand, ifog g(y|z)
is twice continuously differentiable im, then (1) is satisfied Fig. 1. A discrete-time memoryless channel.
by takingu(r) = r and L(y) an upper bound on the spectral

radius of the Hessian dbg (y|x) with respect tar. For the Rayleigh-fading channel ife = 0. This channel satisfies the

purpose of this paper, condition (1) need only be satisfied forconditions of Theorem I11.1; in fact/(y, z) is given by
andz in some neighborhood ofy, but for ease of exposition

it is assumed the condition holds for alland . Often in this
paper the constant, is taken to be zero.

Define C. to be the capacity of the channel with peak con-
strainte, described above, and defigg, = lim._,g f—z if the
limit exists. Here &s” stands for “small signal.”

Theorem II.1: Suppose the regularity assumptio
RA(0,%, D,) holds for someeg > 0 and some finiteD,.
Then Cs, exists andCys = %IO, where [, is the maximum  Example (Parallel SubchannelsConsider the channel
eigenvalue of the Fisher information matd for ¢ evaluated depicted in Fig. 1. The transmitter chooses an injut =
atz = 0, given [2] by K = Eo[V (Y, 0)V (Y, 0)T]. (X, Xs, ..., X,,) and each coordinate(; is transmitted

tprough a subchannelf; to yield the outputY;. The sub-

Zhannels are statistically independent but are tied together

VP xrolly—cz||®

@+ T=lP)?

"/Zwim”y_axllz
@2 Tel)?

ayre—(a?+v%)@se
a2 +~2 =2

+

Viy, z) =2
(y7 ) ayim —(@* +v%)Tim
o242 ||=||

+

and satisfies (1) with(r) = r. Therefore(Cys = j—z Ifa=0
thenCss = 0. A higher order expansion far. in this case is

ngiven in Section VII.

Remarks: The investigation of channel capacity and mutu
information in the limit of small signals has been of interest f 4 .
along time. The most closely related to this paper is that of [1 rough the peak constraint on the input vectomamely, the

See [18] for comments on early papers including [10], [11], anrgquwement _thaﬂX|| < - for somee > 0. This can quel a.
. . ; ' remote-sensing scenario where a low-power measuring device
[17]. There is also a variety of more recent work involving in

. . . . ] _ﬁends measurements to a set of collection centers. Assume that
formation for certain random processes with small input signa

S L "
[13]-{16]. each of the subchannels satisfies the conditions of Theorem

[I.1. The Fisher information matri¥ for the overall channel
The basic setting of Theorem II.1 is the same as that of [18}.block diagonal, with the blocks being the Fisher information

Both assume that the densiyz|y) is continuously differen- matrices for the subchannels. The maximum eigenvalue isf

tiable inz. On the other hand, the exact technical conditions atteus the maximum of the eigenvalues of the blocks. Therefore,

rather difficult to compare, and in practice one or the other may, for the overall channel is the maximum®f; over the sub-

be easier to verify. The conclusion of Theorem Il.1 is the sanchannels. Moreover, i€, > 0 then an asymptotically optimal

as the conclusion of the corollary in [18] (with the parametesignaling scheme is to use only one of the subchannels (one

K of [18] set equal td). The same technical conditions as irwith maximum value of”,), and to use antipodal signaling on

Theorem II.1 are used in Theorem 1.2, giving the asymptoti¢eat subchannel.

of the reliability function. The proof of Theorem II.1 helps pre-

pare the reader for the similar proof of Theorem 11.2. Remark: Closely related to the capacity for small peak signal

constraints is the notion of capacity per unit cost studied by
Example (Rician Channel)Say thatZ = Z,. + jZi» has Verdl [22] with the cost of an input symbolbeing the energy

the complex normal distribution with meam and variance |x||?. The capacity per unit energyg is the supremum over

var, and write Z ~ CAN(p, var), if Z.. and Z;,, are inde- of C. /€%, whereC. is the capacity subject to the constraint that

pendent, Gaussian random variables with meBng§:) and the average energy per symbol of each transmitted codeword be

Im(p), respectively, and with variancer /2 each. Consider a at moste2. Moreover, the supremum oveis achieved as — 0

discrete-time memoryless channel such that for inpuh one
channel use, the outpit is given byY = (o« + H)X + N,
whereH ~ CN(0, %), N ~ CN(0, o%), anda? + 4? = 1.
Without loss of generality it is assumed that > 0. This
channel is the Rician-fading channel éf > 0 and the

[22]. Every valid codeword in the definition @f. has peak en-
ergy per channel use at mestind therefore average energy per
channel use at most, soC. < C. for all ¢ > 0. Therefore,
Css < Cg. The inequality can be strict. For example, for the Ri-
cian channeCg = (a®++?) /0% whereag’,, = o? /o2, Verdu
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also noted that’g, is lower-bounded by, /2, and he discussed denote the set of all probability measures:8h Given a mea-
an interesting connection between the channel capacity per witey.. € P, let
energy and the significance of the Fisher information in signal
estimation. aolne) = [ atwielnc (ds).

Next considered is the first-order asymptotics of the relia-
bility function for channels with small peak constraints underhere is a one-to-one correspondence betw@emnd 7.. To
the same regularity assumptions regarding the channet. For eachy,. € P, correspondg. € P given by u(A) = p(eA)
0, let P.(N, R) be the minimum average probability of error forwhereA is a Borel subset dP. Equivalently, a random variable
any block code with peak constraintblock length/V, and rate  Z has distributiory. if and only if ¢Z has distribution..

at leastR. The reliability functionE<(R) is then defined as [5, . - ..
y () [ Lemma lll.1: Given finite positive constanty, Dy, 71 < 1,

. 160
P | N2, N3, c1, andn > 3, supposaR A(0, €, Do) holds, and sup-
E<(R) = lim sup log P (N, R)' posef: .[0, +00) —> R satlsfles the folllowmg t.hree conditions:
N—oo N a) f is three times continuously differentiable oér 1,
Define L+m] with [f"(r)] < 6cq, for r € [1—n1, L+m].
e b) 1£(r)| < ma(L+ )", for r € [0, +00).
E*(R) = lim 28 1 (1 " <
0 € o) IS+ [/ W]+ /(D] < ns.
if the limit exists. The main result is presented in the followind Nen. for allz € €D
theorem. Y 1
| B (M) =+ oK ) @
Theorem 11.2: Suppose the regularity —assumption q(Y'|0) 2

RA (0, €, D,) holds for somez > 0 and some finiteD,,.

2 2 i
ThenE*(R) is well defined and whereo(e®) /e — 0 ase — 0, uniformly overz € ¢D and over

all functionsf satisfying the given assumptions. In addition

¥R O<RsS oY |10) EEZTKEZ] |,
E*(R) =1 (/T — VR, ¢ <RrR<C, Eqy [f( «7[0) )} =f1)+ 5 + o(e”)
0, R > C. (4)

Remarks: The functionE*(R) has the same shape as th&hereZ is a random variable i#» su_ch thaeZ has distribution
reliability function of the power-constrained infinite-bandwidthe: "jlr‘do(ﬁ?)/_62 — 0 ase — 0, uniformly overp. € 7. and
additive white Gaussian noise channel [5, p. 381]. Referer@¢er all functionsf satisfying the given assumptions.

[5, Example 3, pp. 147-149, and Exercise 5.31, p. 541] dis- _Proof: The idea of the proof is to apply Taylor’s th(_aorem,
cussed a similar case where instead of the inputs being sni4 first some moments af¢(Y'|x) under £, are examined.
the channel transition probabilities were almost independent i€ continuous differentiability dbg q(y|z) in « yields that

the input. This channel, Reiffen’s very noisy channel, also has (ylz) 1
DYI¥) _ exp </ TV (y, tr) dt) . (5)
0

a reliability function with the same shape. Finally, [23], [24]
showed that the reliability function for the Poisson channel in 9(y]0)
the limit of large noise also has the same shape. All these ch&ppose is so small that(¢) < 1. In view of (1), if |z]| < ¢
nels can be viewed as infinite-bandwidth channels or as vefido < + < 1, then
noisy channels, so perhaps it is not surprising that they all have
the same reliability function. A somewhat more technical reason |#*V (y, tz)| <€||V(y, tz)||
for why they have the same reliability function is that, as shown <c([|[V(y, 0)|| + L(y)u(e)) < eB(y, 0).
in the proof, the relevant log-likelihood ratios under the relevant
measures asymptotically have the same exponential momentiasrting this into (5) yields that fdfz|| < ¢
if they were Gaussian. Intuitively this makes sense because the
log-likelihood ratios are sums of a large number of random vari- e~ BWw: 0 < aylz) < B0, (6)
ables that tend to be small. q(410)
The limit £*°(R) is related to the reliability function per unit ysing (5) again yields that fdfz|| < «
energyE ¥(R) defined by [6], just ag’,, is related to the ca-
pacity per unit energ@’z. Therefore £5°(R) < E P(R) by the q(y|x) = exp(zTV(y, 0) + 8(z, y)) @)
same reasoning we used to deduce @at< Cp. q(y|0) ’ ’

where, also using (1),
I1l. PRELIMINARY |IMPLICATIONS OF THE REGULARITY

ASSUMPTIONS
Let Ag(y|z) = %18 — 1. Let D denote the unit ball cen-
tered at the origin IrR™ and leteD denote the ball of radius < ! I OVt < I
Let P denote the set of all probability measuresiand letP. =</, (W)ulte) dt < L{y)eu(e)-

|6(x, y)| =

/0 STV (y, t2) — Vi, 0))dt
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Note that the first moment ag(Y |x) underEy is simply
given by
Eo[Aq(Y|r)] = (8)

Next, we investigate higher order momenta\f( Y'|z). Expand

831

for all » € [0, +o0). Therefore, the bound (11) applied for=
3 andk = n yields that

(y|0) )|] < (const) €2

wheneverz € €D, if e is so small thau(e) < 1 ande <

€
Pl

exp(-) in a power series, assume thats small enough that This completes the proof of (3).

u(e) < 1, and use (7) to obtain

Aqlyle) = 2"V (y, 0) + a(z, y)

where the error termy is bounded by

9)

oz, )| < Lg)eu(e) + Y ———

=2

Therefore, given any > 1, if € is so small thati(¢) < 1 and
e < g/n then

|z, v)| < L{y)eu(e) + € (n/ep)?el/MBW 0
which means that
ez, )| < emax(e, u(e))A(y)

for some function4d on 2 with £, [A"] bounded by a finite
constant depending only cfiy, Dy, andn. Using (9) and the
observation just made with = 2 yields that

Eo[Aq(yl2)?] = 2" Kz + o(e?) (10)
where theo(<?) is uniform over allz € €D. Similarly, if £ > 1
EollAq(Y [0)[*] = Eolle" V(Y, 0) + (e, Y)|¥]

so that ife < % andu(e) < 1then

EollAq(Y, @) < FE[(IIV (Y, 0)]] + A(Y) max(e, u(e)))"]
< *(const)

for all z € ¢D, where the constant in (11) depends only on

e, D,, andk.
Taylor’'s theorem can now be applied to prove (3). Write

F)=f)+ (W= 1)+ 5 /(1D = 1) + e(r).

The proof of (4) is similar. To begin, integrate each side of (9)
againsty, to yield the similar equation

aWlne) | _ e
q(ylzo) 1= eE[Z]"V(y, 0) + Blue, v)

wherecZ has distributiory:., and

Blpes ) = [ ol v (o),
Therefore, it follows thals (., ¥)| < emax(e, u(e))A(y).

Using (12) we can establish (8), (10;, and (11) witheplaced
by 1., and apply Taylor’s theorem to obtain (4). The proof of

Lemma lll.1 is complete. O

12)

Lemma Ill.1 and its proof can be generalized to functions
of several variables. The following is a version that applies to
one function, rather than a family of functions, since that is the
only generalization that is needed in this paper. The proof is a
straightforward modification of the proof of Lemma lll.2 and is
omitted.

Lemma 111.2: Given finite positive constan,, Dy, 7, and
n > 3. SupposeRA(0, €, Dy) holds, suppose > 1 and
supposer: [0, +o0)® — R, such that all derivatives of’
up to order three exist and are continuous in a neighborhood
of (1,..., )T, and

|F(T17 (R

o (4

J
Z (147

)
- Z Z {37 371

whereo(€?) /e2 — 0 ase — 0, uniformly overz;, o, ...

. 1)} z] Kxj + o(e?)

, g€

Replacingr by 1 + Ag¢(Y'|z) and applying (8) and (10) yields b

(3), except it remains to show that the contribution of the error

terme(r) is covered by the(e?) termin (3). Ifr € [1—n1, 1+1],

IV. PROOF OFTHEOREMII.1

then Taylor's theorem and the Mean Value theorem imply thatGiven . € Pe, let X be a random variable with probability

e(r) = & f"(€)(r — 1)® for some¢ in the closed interval
with endpointsl andr, Therefore e(r)| < ci|r — 12 if r €
[1—n, 14+m].fref0,1—n)U(l+mn, +oo)then

|e(r)]

1
() = F) = fD)(r = 1) = 5 (D = 1)
<1+ 1) +mmax(, | — 1], |r — 1)
<l ="
for co = 7’]2(7%1 — 1)” + 773(771_1)71 Thus,

<cjr— — 1"
le(r)| < e|r 1|3+02|T 1]

measurg:. and letY” denote the corresponding channel output.
ThenY has the probability density(y|u.). By well-known
results in information theory [S}Cc = sup, p I(X; Y).
The first step of the proof is to establlsh thE(tX Y) =
h(Y) — h(Y|X) whereh(Y') is the relative entropy of and
h(Y|X) is the conditional relative entropy &f given X, both
relative tog(y|0)

S qYlpe),  q(Y|pe)
"(Y)“EO[M) tog q<Y|o>} (13)
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To establish thaf (X; Y) = A(Y) — h(Y|X) we need only Calculation yields thaf(1, ..., 1) = 1 and
show thath(Y) > —oc.

2
Application of Lemma Ill.1 withf(r) = 7 log(r) shows that o°F 1,...,1)= P {pip; — Liizjypi} -
not only arer(Y) and h(Y'|X) finite for sufficiently smalle, Irir; L+p
but also Lemma 1112 and the fact-log(1 — s) = s + o(s) thus yields
- 2 h
W) =~ B2 KE[Z) + o) hat :
Buip. p) = 2PEIZ = BV KE =B o

2(1+p)

whereZ has distributionP. Select/ = 2, p; = ps = 0.5, letxy
be the eigenvector corresponding to the maximum eigenvalue of
K (which isiy), and letz; = —z1. Then

62
I(X;Y)= 5 E[(Z — E[Z)TK(Z — E[Z])] + o(¢?) E[(Z - E[Z)YK(Z - E[Z])] = I,.

where again the(<?) term is uniform inu. Thus, taking limits For this choice of?, combining (16) and (17) yields that
yields that

MY |X) = —g E[ZT"KZ] + o(c?)

whereZ has distributior:, and eachv(<?) term is uniform in
. Using these approximations b{Y") andi(Y| X) yields

E¢(Reé? '
. O 1 ’ BE) s ory Pl o), (18)
lim —~ = = sup E[(Z - E[Z)YK(Z - E[2])].  (15) € 2(1+p)
e—0 € 2 HEP
. o e : : Therefore,
SinceK is positive semidefinite, it can be diagonalized by a uni- N
tary transformation. For a diagon&l, and therefore in general, liminf E[Re —pR+ plo (19)

itis clear that the right-hand side of (15) cannot exceed half the e=0 S 2(1+p)

largest eigenvalue. To attain equality, it is necessary and Su‘ﬂikingp e [0, 1] to maximize the right-hand side of (19) and

cient that&[2] = 0, P[||Z]| = 1] = 1, andZ be distributed ,sinq7. /5 — ¢ completes the proof of Lemma V.1, [
within the eigenspace of the largest eigenvalue. For example, if

Z is a unit eigenvector corresponding to the largest eigenvglue
of K, then choosind’ to be+z and—a equiprobably achieves
the supremum in (15)’ and the theorem follows. The prOOf of Theorem I1.2 is Completed in this section by
providing a complement to Lemma V.1. First, a subsection with
V. RANDOM-CODING UPPERBOUND ON ERRORPROBABILITY  SOmMe further implications of the regularity assumption is given.
Next a sphere-packing lower bound on error probability is given
which matches the random coding bound for rates greater than

VI. L OWER BOUNDS ONERRORPROBABILITY

The following lemma is established in this section.

Lemma V.1 (Random-Coding Boundjor R > 0 or equal to%, and a low-rate lower bound on error probability
B[R is given which matches the random coding bound&at 0+.
lim inf 5— > b(R) The sphere-packing bound and the low-rate bound then combine
=0 € by well-known arguments [2], [4], [5], [20], [21] to provide a
whereb(R) denotes the right-hand side of (2). straight-line bound. The straight-line bound for rates befgw
Proof: Let P be a distribution onD with finite sup- and the sphere-packing bound for rates abgveexactly match
port {z1, z2, ..., z;} and respective probability masseshe random coding bound.
p1, ..., 0y, let0 < p < 1, and letR > 0. The well-known

random coding bound for finite input channels [5, pp. 138-148]. Further Implications of the Regularity Assumptions

yields that The regularity assumption at a point implies that the regu-

E“(R) > —pR + Eo(p, P) (16) !arity a;sumption (with a ch'ange of constlant) holds uniformly
in a neighborhood of the point, as shown in the next lemma.

where Lemma VI.1 (Local Uniformity of the Regularity Assump-
J (Y |exn) =~ Lo tion): Suppose RAO, €, Do) holds. Then, for some > 0
Ey(p, P) = —log Ey Z Dk <Q(TO;> andep > 0, RA (zg, g, Do) holds for all||zo|| < 7.
j=1 q Proof: Concentrate on the second part of the regularity

] assumption, since the first part does not dependBy (1)
The functionEy[p, P] can be expressed as

B(y, xo) = L(y) + |V (y, o)l

Y |ex Yl|ex

e, . )] < L() + IV, Ol + Liwyu(r)
whereF is defined on0, o) by < (1 +u(r)Bly, 0).

By (6), if  is so small thai:(») < 1 then

7 1+p
Flry, ... ry) = {Z pﬂ’;T”} . q(ylzo) < exp(rB(y, 0)).
=1 B

q(y]0)

Eo(p, P) = —log Ey [F <
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1 andr < %y, and selecty > 0

Selectr so small that:(r) <
= ¢y. Then

so thatr + eo(1 + u(r))

[ (y10)
[ [r+eo (L+u(r)]B(Y, 0>}
g

E., [CEOB(Y,JJO):| — B, Q(y|$O)CeOB(Y,Jz0):|

IA

E
Ey
E

) egB(Y,O):| < Do. 0O

Letz, # € ¢D and) € R. Define the densitys* onQ by

q(ylz) q(y|2) =
Ja@lz) q(@|2)t=>m (dy)

w)) #(y) =

wherem denotes the reference measure(brand letE; ; de-
note expectation for the probability measul?gi on 2 with

LetAy s = log (4313).
Lemma VI.2: Let RA(0, gy, Dy) hold. Then
oz [ e ataleymam)

=M o TR - )+ o)

Al’l‘.’L‘ <

[(Al

densityw ;

) (x — 2)'K(z — )+ o(e?)
&) +o(e?)

where in each equation tiaée?) termis uniform over, & € €D
and overX in bounded subsets of the real line.

(x —2)T'K(x —

Proof: It suffices to prove the lemma fox restricted to
(—o0, 0.5] and for A restricted t0[0.5, +c0). By symmetry, it
suffices to consider only one of these cases, so we establish the 1\ A

lemma under the added assumption that> 0.5. By Lem-
ma 1.1 and the continuity of<,, = E,[V(Y, 2)V(Y, z)T] at

x = 0 it suffices to prove the theorem far = 0. In summary,

it must be shown that

<q<Y|x>)A] ALY g o) (20)

—log E
550\ g(Y]0)

E3 o[A1,2,0] = <)\ - %) T Kz 4 o(?) (21)
E3 o[(A1,2,0)°] =27 Kz + o) (22)

where theo(¢?) terms are uniform inc € D and in A over
bounded subsets §.5, +c0).
Take ¢o(s) = s*

833

The left-hand side of (21) is
x)
Eo |91 (3645
|
[0
(r) =

vv

Ey [</)2 q<§ x))}

q(
for ¢1(r) = 7*log(r) and¢a(r) = *. The left-hand side of
(22) is the same, but witkhz(r) = 7*(log(r))? in place of
¢1(r). Equations (21) and (22) thus follow by applying Lem-
ma lll.1. O

Based upon the result of Lemma VI.2, define the distance
d(z, ) betweenz andz by d(z, ) = (z — 2)TK(z — 7).
Letz, & € ¢DY and)\ > 0. Let E. ’A denote expectation
for (Yl, Y, ..., Yy)wherely, .. YN are mutually indepen-

dent, and’,, has densityu’\ ~( ) Denote the corresponding
measure o2 by Pjﬁ, and let
(Y, |xn
AN,w,i = AN,a: z Z 103 < Y :xn;>

Also define

N

dy(e, &) =Y d(zn, in).

n=1
Similarly, let EY denote expectation for independent
Y1, ..., Yy with Y, having density ¢(y.|z.), and let

PY denote the corresponding probability measurédn The
following lemma holds.

Lemma VI.3: Let a = N¢2. The following hold:

Ez[e™~=3] = exp <—Q dy(z, &)+ ola, e)>

MAns sl = (A - %) In(@, ) +ola, ) (23)
for AMAN 2,2 =dn(x, &) + ola, € (24)
D(PmN Py = % dn (@, &)+ ola, ¢) (25)

where in each equation

lo(a, €]

lim lim =0

e—0a—o0 a

uniformly overz, z € <D" and over\ in bounded subsets .
Proof: The first three equations are immediate from
Lemma VI.2. The fourth is the same as the second withl .
O
Remark: Take A = 0 in (23) and (24) to see that under

. Note that forA in a bounded subset of P;, Ay . z has, up to small-order terms, mear% dy(z, Z)

[0.5, o0) the constants in Lemma l11.1 can be selected so thamnd variancely (z, ). The first equation of Lemma V1.3 thus
¢o satisfies the hypothesis of the lemma for)aih the bounded showsthat\ y .., z asymptotically has the same exponential mo-

set. Thus,

Ey [(q(Y|x))>‘] =1+ 7)\()\2_ ) 2Kz + 0(62)

q(Y'|0)

where thex(¢?) term is uniform inz € ¢D andX in the bounded

subset 0f0.5, +c0). Since—log(l + s) = —s + O(s
is proved.

%), (20)

ments undef’; as if it had a Gaussian distribution.

B. Sphere-Packing Lower Bound on Error Probability
The following lemma is established in this subsection.
Lemma V1.4 (Sphere-Packing Boundjor0 < R < Ci

RcQ] (\/Z )

limsup ——

e—0



834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

Proof: Let £ > 0 satisfy argument is by contradiction. If false, then for afy> 0 the
B[R thresholdr can be taken to lie in the bounded interval
B <limsup —7—. e [g — V2pE +5, g +S} (29)

Then it suffices to show thab < (v/Cs, — VR)2. By the for some subsequenceof- 0 and arbitrarily large:. By (27),
choice of E there existss > 0 arbitrarily small such that for for anyé > 0 andé > 0
some sequence witt,, — 400 asm — —+oo, there exist —aE 5, pN
. . —20) < An. g
(Nm = %, M,,, = ¢*®) codes with the maximum proba- ¢ - “’r{a(T ) S Axz 0 <ar}
bility of error pyax < e~%=E. Here we can use the maximum > E} [ee[“(T_Q‘S)_ANJvO}

I{a(‘r—?é)ﬁAN,,, 0<a‘r}:|
error probability because a code wizl/ codewords and av-

> PN a(r —26) < AN 20 <at}

erage error probability can be thinned to a produce a code with ="=0
M codewords and a maximum error probabiflg; For brevity, x far=28) plY [e(l_Q)ANm 0} (30)
the subscriptsr will henceforth be dropped from, IV, andA/. .

The decoding set$F,, I, ..., Fiyy) partition the output WherePibl_e is defined as in Lemma VI.3 (with = 1 — @

space2’Y. Let 0 denote theV vector of all zeros. The idea of andz = 0). )

the sphere-packing bound (and the reason for the name) is thakhe next step is to specifyso that theP,**~* term in (30)
the decoding setB; cannot be too small, or else the probabilitys at least;. To that end, le# be defined by
of error will be too large. This limits the number of the sets, 1

and hence the rate of the code. In the setting of this paper, <— - 9) p=1—206. (31)

there is a natural measure of the size of these sets, namely, the 2
probability measuré®ly . It must be checked th& > 0 as required, and for application

Since P)¥ (V) = 1, there exists a codeword indéxsuch ©0f Lemma V1.3 it must also be checked tifeis bounded for all

thate defined by = P (F;) satisfiesa < . On the other Sufficiently smalle and large enough. But sincer < § +

hand, writez = (1, 2, ..., zx) for theith codeword, define o(a, ¢), it follows thatt > & + o(a, ¢), so that¢ > 0 for
e sufficiently small andz sufficiently large (depending oé).

dn(z, 0) 1 al T Also, 6 is bounded from above sineeis bounded from above
P= 0 T a Z Ty Kan andp is bounded from below. Thus, Lemma V1.3 can be applied
n=t with A = 1 — § andz = 0. ChebycheV's inequality, (26), (23)
and defineg3 by 3 = P)(F¢). Theng < e*F. Itis useful and (24) yield that theP, ;' ~* term in (30) is at leas}. The
to view the numbergr and 3 as the Type | and Type Il error £}’ term in (30) is, by the first equation of Lemma VI.2 with
probabilities for the test of hypotheség: (Y1, ..., Yy)has A =1—-6andz =0
measure’)’ versusH;: (Y1, ..., Yy) has measur&). Since (1—6)
refinement cannot decrease divergence distance € <— 5 P + ofa, 6)) .

r r 3 1-23
D(PY||Fy’) = Blog <1/—> + (1 - B)log <—/> Thus,
—« a
1 (1—0)e
> (1 _ /3) 10g(M) _ h(ﬁ) e—aE > 5 e@a(‘r—?é)e—T pato(a,¢€)

2 (1= fak —log(2). whered is given by (31). This gives

Thus,D(PY||PY) > aR + o(a). Combining this with (25) of 112
) [/ pIT
Lemma V1.3 (with# = 0) shows that E L 5 [; - 5} + O(6) + o(a, €).
p> 2R+ o(a, €)/a. (26)  Recall thatr < £ + o(a, €), SOZ — & < o(a, ¢). Thus, fore
This inequality is used later when Chebychev’s inequality %ufflmently small and: large (depending o6)
applied to get a large deviations lower bound. pl1 7
By the Neyman—Pearson lemma, there is a threshelmithat VE+0(8) < 202 o
PelAn 20 < a1} < Po(Ff) < e7°F (27) so that
1
Po{Anz 0> ar} SPo(F) < o= (28) 7 < g — V2E+0(6)p

Next, large deviations type lower bounds are applied to (2®Which is a contradiction to (29) faf sufficiently small. Thus,
and (28). The standard method of changing the measure #nel inequality
applying the law of large numbers under the new measure is p
applied. This is done uniformly im (subject to (26)). TS5~ V2E+o(a; o)
Let us examine (27) first. By (23) and (24) of Lemma V1.3 established. Since (28) remains true i increased, we can
with A = 1 andz = 0, (26), and Chebychev’s inequality, it fol- 3nd do assume
lows that the threshold must satisfy- < £ +o(a, ¢). Equation p p
(27) will be used to show that < £ — \/2pE + o(a, ¢). The T= maX{5 — V20E +o(a; ¢), —5} - (32)
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By (28), for anyé > 0 andA > 0 does indeed tend to zero exponentially:irit follows from the
¢ R > PNTa(r +26) > Ay > ar) reasoning used to derive (26) th&t (z, ) grows linearly ina.
- 0, ; =0 ’ By the Neyman—Pearson lemma
> EY |:6)\{An,z,0—a(T+25)}I{a(T+26)>AV o>a‘r}:| . N N
N, Pmax(®, £) 2 min{Fy {An, 2,5 > 0}, P {An 2,5 < 0}}.
> Pl Malr +28) > An 0 > ar} (35)
x AT By [AMaeo] (33) Both terms on the right-hand side of (35) can be bounded below
By Lemma V1.3, (26), and Chebychev's inequality, if we sele@S follows. Forany > 0 andA > 0
A so that PN {Ay o5 > 0} > EN [I{QéaZANV$Vi>0}e)\(AN,a:,5=—26a):|
T+5=(A-1)p (34) =c e plA 260 > Ay, 55 > 0]

N _ _ ENA I:e)\AN,a:,i]
then theF, ' termin (33) is at Ieas§ for ¢ small enough and z,2

all sufficiently largea. Applying this and Lemma V1.3 yields >e 0L B [Aes]
—a —Aa(T )‘(A L a+o(a, € —A(1— =
e~ okt > %C Aa(T+26) pato(a, ) :%C—Qkéaeydlv(w,m)—l—o(a, €) (36)
where is given by (34). Thus, foe sufficiently small and all \yhere by Chebychev's inequality and (23) and (24) of Lemma
a sufficiently large V1.3, the second inequality holds fersmall enoughg large
o (7 1)\? enough, and selected such that
=5 <— + 5) + 0(5) 1
<)\ - —) dn(z, Z) = ba. (37)
Using (32) to substitute for yields 2

By symmetry, the second term in (35) is also bounded by the

2
rR<P(q_ 2E +0(6) right-hand side of (36). Equation (37) implies that= 5 +
-2 p ’ O(§). Substituting this into the lower bound of (36) yields the
+ lemma. O
SinceR > 0 it must be that /£ < 1 for ¢ sufficiently small The main result of this section is given by the following
Sinceé > 0 is arbitrary andp g Iy lemma
VR+VE < 1/% =/C., Lemma V1.6 (Low-Rate Bound)for anyR > 0
€ 2
which establishes the sphere-packing bound. O lim sup L};F) < %
e—0 <
C. Lower Bound on Error Probability for Low Rate Codes Proof: Select any’ > 0 such that
€ 2
The Bhattacharyya single letter distandg(x, &) for =z, E < limsup E(Re ).
# € R4 is defined by 0 2
R _ It suffices to show that? < S=. There exist > 0 arbitrarily
dp(z, 7) = _10g/ Vayle)g(y|z)m (dy). small such that for some sequence— oo, there exist codes

with block lengthV = % and withe®t codewords withp,,,...c <
. ¢~ Note that for any codeword

~ ~ 2 N

dp(z, T) 8d(a:, Z) + ofe”). In(z. 0) = Z T K, < Ia

It follows that forz, € «DY, the Bhattacharyya distance be- n=1
tweenz andz, is given by% dn(z, &)+ o(a, ¢). Methods sim- becaus® < xI Kz, < €1, for eachn.
ilar to those used to prove the sphere-packing bound in the preFix an integerd/. Then for large enough there are at least
vious subsection are applied to prove the following lemma re4 words in the code, denoted By*, ..., z*}. Letz* denote
garding the maximum.,.(z, &), of the Type | and Type Il the sum of thes&/ codewords. The minimum pairwise distance

Using Lemma V1.2 with\ = 3, for z, & € ¢D we get

errors for the hypothesis testing problé?f versusPyY. d* for theseM codewords satisfies (Plotkin bound)
. .
LemmaVL5:Leta = 5. Then & < Z Z dy (@™,
pmax(xy :i') 2 e—éd;v(m,i‘)—o(a,e) M m=1 (=1

where _ 1 Z Z Z m K — a:ﬁ,,)

|O(a76)|:0 m= lllnl

lim lim
e—0a—o00 a

uniformly overz, & € DV, M( M 221 Ay (e,
Proof: If no subsequence of.....(x, ) converges t® at M "

a rate exponential il there is nothing to prove. Passing to a < 2 Z dn(z™, 0) < 2M Ipa

subsequence if necessary, it can be assumedpthaiz, ) TM-1 T

d]\f(fl‘? 0)
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Now -2 can be made arbitrarily close toby selectingl/  where for a matri¥/, V' denotes the transpose of the complex

M-—1
large. Thus, by Lemma (VI.5) conjugate oft. Therefore,
I ) —1
Dmax = €XP <—azo + o(e, a)) . (38) oY|Z) exp 1r {(IT + LZZ7) ﬁZZTYYT}
q(Y'|0) det™ (Ir + £ 277)

Thus,E < L& = &= as required.
Thus, as tends to zero

D. Straight-Line Bound and Completion of Proof of p M. ;
Theorem I1.2 AqY|2) = 3 [T(ZZYYT) = NTr(ZZ7)] + ofp). (39)

The straight line traced b§72— — R as R ranges over the
interval [0, =] starts from the low rate bound & = 0+ and
meets the sphere-packing boundrat= CT As explained in
the beginning of this section, the bounds of Lemmas V1.4 a
V1.6 can be combined by a well-known argument [2], [4], [5]
[20], [21] based on a simple extension of the sphere-packi
bound for list decoding. The result is that

Since Aq(Y'|Z) is linear inp asp — 0, it is quadratic ine

ase? — 0. Thus,V(y, 0) is identically zero, so the Fisher

ri}r\gormation Iy is zero, and, therefore, as in the special case
= N = T = 1 discussed in Section I, /¢ — 0 as

¢ — 0. However, (39) is similar to (9) witl replaced by, so

W& can proceed as in Sections Il and IV. Using (13), (14), and

the factr logr = (r — 1)2/2 + o((r — 1)?) yields

E¢[Re?] < Cs C

~R, for0<RZ 45. MY |Z)

lim sup 5 <
e—0 € 2 5

I ¥ ty )2 2

This and the sphere-packing bound imply that forfaf- 0 o <2M2> BE[(Ix(ZZ2YYT) = NT(ZZT)) ] + olp)

E¢[Re?]

2
- <2§4 2) E[E[Te(ZZYY1)? + N2 Tv(ZZ7)?

lim sup < Bb(R)

0 —ONTH(ZZNTZZTYY )] + o(p?),
whereb(R) denotes the right-hand side of (2). Combined with
Lemma V.1, this proves Theorem I1.2. while

VII. Low SNR ASYMPTOTICS OFCAPACITY FOR BLOCK EO[Tr(ZZTYYT)] = NTr(ZZT) + o(p)
RAYLEIGH FADING and

Consider the model of [12]. There aié transmit antennas, Lol I(ZZYY")?] = N*Tx(ZZ%)? + NT{(ZZ")*} + o(p).
N receive antennas, aril symbol periods during which the
N x M matrix H of fading coefficients is constant. The modefISO,
for each channel use of this discrete-time memoryless channel
is given by Y

(”—) BolEA(T(Z21Y YY) = NTe(Z 7)) + ol p*)

M 2M?
Y;n =V M Ziernn + Win7
ol Z _(.r Yy h2 2 2
m=1 =\| —= Eo[Ez[TI‘(ZZ YY )] +N Ez[TI‘(ZZ )]
. o 2M2
i=1,....,T,n=1,..., N

— 2N EZ[Te(ZZNEZ[T(ZZYY D] + o(p?)
whereZ is the channel input taking values@” andY is the
channel output taking values &V7. The fading coefficients while
H,,, and additive noise variabléd’;,, are all mutually inde-
pendentCA/(0, 1) random variables. Assume the transmittedo[E[Tr(ZZTYY)]?]
signal satisfies the constraifitt(ZZ%) < MT, so that the = N2E[Te(ZZN]? + NTH{E[ZZ'?} + o(p).
signal-to-noise ratio (SNR) at each receive antenna, averaged
over thel” output samples, is at mogt The notation for this Combining the above calculations yields
section adheres to that in [12]. To map to our notation think of

X = /457 as the input signal and set= /pT so the peak B(Y|Z) _ p’N EITe{(ZZ7)2Y] + os?)

constraint become$r(X XT) < ¢2. 2M2
The conditional probability density for the channel is giveand ,
by 7 __P N 1712 2
1 h(Y) = =53 TIE(ZZT)]"} + o(p).
p _
exp <—Tr { (IT ta7 ZZT) YYT}) By Marzetta and Hochwald [12, Theorem 2] it can be as-
qYZ) = sumed that the inpuf has the formZ = ¢V, where¢ is a

T N 14
mINdet (IT + a7 ZZT) T x T isotropically distributed unitary matrix independent of
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V,andV is a7 x M random matrix that has nonnegative en- Capacity in nats vs. Peak SNR
. - L 0.06 . . . .

tries on the main diagonal and zeros off the main diagonal. Th

input constraint becomdg/||? < MT, whereV is the main

diagonal ofl”, which has dimensiomin(M, T'). Let

o
o
0

o
o
&

_Q
&= { L [f/f} , if i <min(M, T) g
0, else ‘§ 003
and use properties of the distribution ¢ro get §0.02»
£l Zk: i 0.01}
E[zZY;; =E Z ¢kidk¢£j] = 0=
=t % 0.2 0.4 0.6 0.8 1
Therefore, Peak SNR
2 2212 Fig. 2. Capacity in nats as a function @for the peak-constrained Rayleigh-
n dy, E HVH fading channel.
T[E[ZZTP] = = =
r[E] Il T T . . .
Al Therefore, ifC(M, N, T, p) denotes the capacity per unit
SO, time for the Marzetta and Hochwald model (obtained by di-
=1%o |2 viding the mutual information by’), then
E[Te{(ZZ)?)] = ZZZZ {‘Vk‘ ‘Vk, } ;
Elpi i Pirdin]- (40) ity P = (T—21)N7 it 7> 2.

The coefficient ofE[|Vi[*|Vis|?] in (40) is given by Note that the limiting normalized capacity is proportional to the
2 number of receive antennag, while it does not depend at all
Z Z Elpudi &) =E Z ik P on the number of transmit antennas. Also, the capacity per unit
P g i time increases linearly with’ — 1. Such a large rate of increase
0, it k£ K with 7" reflects the fact that if very little energy is transmitted,
= { 1 T every increase iff’ is very valuable in helping the channel to be
- estimated.
so that Hassibi and Hochwald [8] consider the use of training-based
L4 strategies. Comparing a tight bound they found for the capacity
ET{(ZZ")} =) E UVk‘ } - of training-based schemes to (41), it follows that for snpall
k the training-based strategy using one transmit antenna achieves
Hence, about half of the peak-constrained channel capacity. This is con-
sistent with the fact that the strategies of [8] do not use a highly
(2, Y) peaked input distribution. Hassibi and Hochwald point out in [8]
[ - 11217 thatthis is far from the capacity for average, rather than peak, en-
EHW” . ; ;
N - 5 ergy constraints, for which the capacity tends to zerp @dher
o2 ? <Z E [|V’“| D - T +0(P)- than asp? [19].
k Although this paper focuses on the asymptotics of capacity
, as the peak energy tends to zero, we briefly discuss computing
Next, find the distribution onV to maximize the coeffi- the capacity numerically for finite values of the peak constraint
cient of p? in this expression for/(Z; Y). For a given for M = N = T = 1. Following the proof of [1], after re-
value of E[||V]|?] and given the constraintV||> < M7, moving the average energy constraint, it is not hard to show that
the quantity >, E[[Vi]Y] is maximized over distributions a capacity achieving distribution for the peak-constrained dis-
on V by taking V to be distributed over the two point setcrete memoryless Rayleigh channel is discrete with a nonzero
{(0, ..., 0", (VMT, 0,0, ...,0)7}. Thatis, either the zero mass ab. The capacity calculation problem is then equivalent
signal is sent, or the peak energy is all put into the first transntit finding the locations and masses of the components of the
antenna. Maximizing over the one-dimensional family of sudtistribution in order to maximize the mutual information. The
distributions forV yields that the optimal “on” probability is conditional gradient algorithm given in [1] can be used to nu-
given by merically compute the capacity. Fig. 2 dispIa§7$1, 1,1, p)

) 1/2 it 7T —1 as a function of the peak SNR(not in decibels), and Fig. 3
]%V:NMﬂQQHW®>_{ _
1 if T > 2.

displaysC(1, 1, 1, p)/p. The limiting slope ag — 0 in Fig. 3
is 1/8, as required by (41). To appreciate how much smaller
More generally, the single antenna used could be randontiys capacity is than the capacity of an additive Gaussian noise
chosen, but the distribution &f is not optimal if the event that channel, or more generally a Rician channel, recall the first ex-
more than one antenna is used has positive probability. ample of Section Il. As a function @f the capacity of the Rician

7

7
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0.02 Capécity/Peak SNR vs. Peak ISNR reasonable to takescc with 7" fixed with valueZ” > 2. For ex-
) ample, ifT.,;, = 10 ms for 100-Hz doppler spread aid,;, =
1 MHz for 1s delay spread, thefi = 10*. The asymptotic re-
= 0.015 sult (41) yields (forl” > 2 fixed) that the capacity per unit time
5 of the wide-band fading channel with peak energy constraint per
§ coherence block is given by
< o.01 , ,
g P (TCOhWCOh - 1) +o < P ) ]
8 2N2W N2W
0.005
Thus, adV — oo for fixed P/N,, Tcon, andWe,,, the capacity
. . per unit time tends to zero. This result was first derived by [7].
% 0.05 Pea?(.1SNR 0.15 0.2 The model of Médard and Gallager is more extensive in that it

allows for continuous dependence among blocks in both space
Fig. 3. Capacitydivided by p as a function ofy for the peak-constrained @nd time. While Médard and Gallager constrain peakiness by
Rayleigh-fading channel. imposing a fourth moment constraint on the transmitted sym-
bols, we impose a peak constraint on the energy transmitted per
block.

IX. CONCLUSION

i Under mild regularity conditions, both the capacity and
_E reliability function of channels with small peak constraints are
closely related to the Fisher information in a straightforward

Bandwidth

"""" way. The asymptotic shape of the reliability function is the same
as observed earlier for the power-constrained infinite-band-
------ width white noise channel [5, p. 381], Gallager's very noisy
channel with finite inputs [5, Example 3, pp. 147-149], and the
very noisy Poisson channel studied [23], [24]. These channels
Coherence Time are similar in that they can be viewed as very large bandwidth
Time or very large noise channels, and the relevant log-likelihood
ratios asymptotically have the same exponential moments as
Gaussian random variables. These channels are among the very
few channels for which the reliability function is completely
known.

Two extensions of the first part of the paper may be possible,
but are left for future work. Recently, [3] extended Wyner’s re-
sults to identify the reliability function region for the two-user

In this section, the result of the previous section is applied taultiple-access problem. Such an extension might hold in the

find the asymptotic capacity of a wide-band time-varying multisetting of this paper. Another idea is to find a single result that
path channel with Rayleigh fading and a burstiness constraintiagludes the setting of this paper, Gallager’s finite input very
the transmitted signal. A reasonable picture of a wide-sense-staisy channel, and discretized versions of the Poission and in-
tionary and uncorrelated scattering (WSSUS) channel is shofiriite bandwidth white Gaussian noise channels. Thelsat

in Fig. 4. LetW be the signal bandwidtlF, be the power of the the theorems of this paper would be replaced by any closed
input signal, andV, be the noise power spectral density. Theounded subset G2™. Gallager’s model correspondes to taking
time—frequency plane is divided into blocks of duratibn, D to be the set of unit vectors pointing along the coor-

and bandwidthV..,, where:.y is the coherence timewidth dinate axes in positive directions, and takiqay|z) linear in
andW,, is the coherence bandwidth. Ignore the effects of ine: ¢(y|z) = q(y|0) + 27V (y) for small ||z||. In addition, an
tersymbol interference and edge effects between blocks, to average constraint for each codeword could be imposed. The
rive at the following model. Assume that during each bloclkcapacityC., would be given by maximizing a quadratic form
T = T.onWeon Symbols can be transmitted and the channel gaivolving K subject to constraints. Such generalization in not
for a block is Rayleigh distributed and identical for all symbolpursued in this paper, for apparently it would require a different
of the block. The gains for different blocks are assumed indproof technique for the reliability function results. It might in-
pendent. Assume that the transmitted signal energy in each eolve showing that a large but finite input alphabet suffices to
herence block is peak constrained’%@. Such constraint is sat- approach capacity and error exponents to within

isfied by modulation schemes that are not bursty in the time—fre-As shown in the second part of the paper, small peak signal
quency plane, such as direct-sequence spread spectrum. Sisgenptotics are informative in the case of Rayleigh fading,
there arelW coherence blocks per unit time, the capacity paven though the Fisher information matrix is zero. In particular,
unit time is given byWé(l, 1, T, p), wherep = ﬁ Itis an expression for the asymptotic capacity in the case of block

Coherence
Bandwidth

Fig. 4. Avisualization of the WSSUS channel in a time-frequency band.

channel has slopa? atp = 0, so slope one for the Gaussia
channel.

VIII. A PPLICATION TO BROAD-BAND FADING CHANNELS
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fading with multiple transmit and multiple receive antennas[11] ——, “Weak signal transmission in a memoryless channBkgbl.
shows that within the class of transmission strategies with

constant transmit energy per fading block, the training sequengey

based scheme comes within a factor of two of optimality, in the

range of low SNR. Also, a simple result of the type of [7] is
obtained.
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