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Abstract—In this paper we establish for the rst time that ~modi ed queueing discipline and use of the standard 802rlL1e
the rate region of a large class of 802.11 mesh networks is log TXOP packet bursting mechanism.
convex, immediately allowing standard utility faimess mehods — Aqqitional contributions of the paper include (i) exterrsio
to be generalised to this class of networks. This creates a . . .
solid theoretical underpinning for fairness analysis and esource of the nite-load 802_'11 th_TOUQhPUt model in [18] to include
allocation in this practically important class of networks. For TXOP packet bursting, (ii) a lower bound on the 802.11
the special case of max-min fairness, we use this new insightrate region in terms of the channel idle time (this bound is
to obtain an almost complete characterisation of the fair rde  tight, analytically tractable and allows operation closeettie
allocation and a remarkably simple, practically implemen@ble, 10 ragion boundary to be achieved in a fully decentralised
method for achieving max-min fairness in 802.11 mesh netwés. s
manner) and (iii) an almost complete characterisation ef th
max-min fair rate allocation in 802.11 mesh networks, bagd
upon the observation that all ows have a bottleneck WLAN
|. INTRODUCTION at the max-min fair allocation.
The paper is organized as follows. We start by surveying
related work in Section Il after which we describe our networ
del in Section lll. Results on the log-convexity of theerat
%egion are presented in Section IV, which is immediately

Utility fairness provides a exible framework within which
network designers can select a suitable fairness policg. diw
the most commonly considered fairness policies are max-

fairness and proportional fairness, both being speciaéxa T ) ) .
brop g sp ollowed by the characterization of max-min fair solutians

belonging to the class of!; )-proportionally fair utility Section V. We then describe in Section VI a decentralized

functions. The bulk of the networking literature on utility hani ¢ hi in fai Simulation based
fairness considers networks with a convex rate region,esin'g1ec anism 1o achieve max-min fairness. simuiation base

maximising user utility then yields a convex optimisatiask. :gsultt)s arz presen.te? n Sectl(;]n Vclilﬁ Secttl?nkVIII dﬁ;:ﬂ?esse
While this allows for consideration of utility fairess inned  U'1e-Pased max-min farness when difierent finks use

networks and TDMA wireless networks, it excludes g802.1f1es: In Section IX we discuss in detail the impact of relgxi
wireless networks our modeling assumptions followed by a discussion on hidden

In view of the ubiquity of 802.11 wireless networks, an&erminals in Section X. Finally we conclude in Section XI.

their great practical importance, it is of considerableiast
to extend consideration to include such networks. In thjgepa Il. RELATED WORK

we achieve just such an extension. We do this by establishin , : . .
for the rst time that the rate region of a large class of 802.1 While faimess in 802.11 networks has been the subject

. i . . of a considerable body of literature, a large part of this
wireless mesh networks is log-convex, immediately allayin; : : . ) ,

. : LT literature is concerned witluinfairnessbehaviour in 802.11
utility fairness methods based on convex optimisation to tﬁeetworks due to hidden terminals. exposed terminals tu
generalised to include 802.11 networks. » &XP O

This extension is, by itself, generally not enough to allo gpload/download unfairessc, see for example [1], [17], [S]
the practical realisation of utility fair policies in 802.1 ‘fﬁO], [13] and references therein. The CSMA/CA scheduling

mesh networks. What we also require are liahtweight easl[lsed in 802.11 differs fundamentally from wired networks du
: ' ) Ieq - ightweight, {df carrier sense deferral of the contention window countdow
implemented methods for achieving the utility fair alldoat

%rtld the occurrence of colliding transmissions — both of Wwhic

In th? second par_t O.f the paper we present new IIghtWe'gact to couple together the scheduling of transmissions by
algorithms for achieving max-min fairness. We focus on max

; . . N ._stations in a WLAN and lead to the rate region being non-
min fairness since (i) it is one of the two (the other bein 9 9

. : . €IN8H hvex. Proportional fairness over a single 802.11 hop is
pro_ppmonal f_gwness) most commpnly con5|dereq falrne%snsidered by [24], but this work makes the simplifying
policies and (ii) we are able to ob_tam rer_narkably simple anégsumption that every wireless station in a WLAN is always
complete results for max-min fairness in 802.11 netVvorkgélturated, which cannot be expected to hold in general and

Briey, we show that max-min faimess can be achieved b an unreasonable hypothesis for multi-hop networksitytil

using per ow queueing at ea_ch wireless station and at & rness (including max-min fairness) has been considfred
transmission opportunity sending one frame of data fronmeac

. .~ random access wireless networks using the Aloha MAC, see
backlogged queue. No message-passing between station

iS . .
required and no propagation of shadow prices/multiplie 116], [11], [27] and references therein. Aloha requithat

! L 1dle and transmission slots are of the same duration and so
This can be readily implemented on standard hardware via, a
does not encompass standard 802.11 frame structure where
This material is based upon works supported by the Sciencadation (|) it is common for transmissions to be more than an order

Ireland under Grant No. 07/IN.1/1901. of magnitude longer than the idle slot duration in order to



improve throughput ef ciency and (ii) the mean transmissio wherePjqe (C) = Qk2N © (2 k(c)) is the probability that
duration is not identical at all stations but instead degend slot is a PHY idle slot,

on the packet size and PHY rate selected. While it has been Y 1 (©)
known for some time that Aloha networks have a log-convex Psueei (€) = i(C) @ (@)= Pae (07—
rate region [9], [27], it has only recently been establistieat k2N (c)nfig v
the 802.11 WLAN rate region is also log-convex [15]; it isthi  Psucc (¢) = Psuce;i (€) = i(c) ()]
fundamental result that underpins the max-min fair analfcsi i2N (c) i2N (c) k2N (c)nfig
802.11 mesh networks in the present paper. = Pue (0) X i(C)( )
i2N (c i(c
I1l. NETWORK MODEL is the probability that (a) slot is a successful transmission
A. Network Architecture with Psycc:i (€) the probability that statiom has a successful

transmission,T = [ 1(¢) :: n(c)(c)]T is the vector of

we cor(;S|der a mesflj network forr]medhfrom a set of Inte£l'ttempt probabilitiesD; (c) is the mean number of bits sent
ponnegte ) WLANS an ' assume t _at the WLANs are no y stationi in a successful transmission, is the PHY idle
interferingi.e. that they either transmit on orthogonal channe ot duration, Ts(c) is the mean duration of a successful
or are physically separated so that transmissions on the sg e

; . qransmission (including time to transmit each data frame,
channel do not interfere. Traf c is routed between WLANSs Vigo eive the MAC ACK and wait for DIFS) and (c) the

?eSh points iquped_wnr:l mult|plev\;ﬁg|£s_. Communicatiqflean duration of a collision. Hereafter, where the mearsng i
etween mes points in the same ) IS peer-to.—p(_aer cfear we will often drop the argument to WLAN quantities
that sending a packet from mesh pointo mesh pointj . i1 otational clutter

involves a single transmission (rather than routing viarsred
access point). We assume that all stations within a WLAN
are within sensing distance of one another there are no C. Incorporating TXOP
hidden terminals; we comment later on incorporating hiddenLater, we will make use of the TXOP packet bursting
terminals. Such a mesh network is illustrated, for exampli, 802.11e/n to facilitate achieving max-min fairness. Wit
in Figure 1. In this example the network is formed from siTXOP, the length of time during which a station can keep
inter-connected WLANSs such that three orthogonal channetansmitting without releasing the channel once it wins a
are suf cient to achieve a non-interfering allocation. transmission opportunity is speci ed as a control paramete
In order not to release the channel, a SIFS interval is iadert
between each packet-ACK pair and a successful transmission
round then consists of multiple packets and ACKs. By ad-
S suion justing the TXOP time the number of packets that may be
transmitted by a station at each transmission opportuity c
be controlled. We can readily generalise the above throuighp
expression to support TXOP packet bursting as followstligirs
observe that when TXOP packet bursting is used colliding
transmissions end after sending the rst packet in a burdt an
so T is unchanged. However, the durati®g of a successful
transmission now depends on the size of the TXOP packet
burst. To encompass situations where stations may transmit
s different sized bursts on winning a transmission oppotyuni
Clique2, Frequeney2  _aue 3 Frequeney | we let Ts; denote the mean duration of a successful trans-

@ Mesh point

Clique 6, Frequency 1

Clique 1, Frequency 1 )

¢ Kouanbaig ‘p anbiy

mission by stationi. The throughput of station is then
Fig. 1. lllustrating class of mesh networks considered. )
5 (T) = 5 7 Pide Di
| - "
Pigde + v Tsi 7-—Pie + T(1 Pide  Psucc)

It will prove useful to work in terms of the quantity; =

B. Station throughput i=(1 i) rgther than;. With this transfg)rmationeye have that

Consider WLAN c in the mesh network and letp, =1= on (LX) andPsuce = oy Xi= oy (1F
N(c) = fl:in(c)g denote the set of stations in they ) and so
WLAN with n(c) the number of stations. Following [18],
we divide time into MAC slots where each MAC slot may si(x;N) = Nixi Li 1)
consist either of a PHY idle slot, a successful transmission X T
or a colliding transmission (where more than one statiomhereN; = Tg; =T, L; = D;=N; and
attempts to transmit simultaneously). Let(c) denote X
the probability that statiori attempts a transmission in a X =a+ (N Dxe+  (Q+x) 1 (2
slot. The mean throughput of statioris then €.g.see [18]) k2N k2N
o (T) = Pascei ()Di () with a= =T, x=[xg;:5%a]" andN =[Ny; 5N [T, We

P ide (O + Ts(O)Psucc (O + T(O(L Pige (O Psuce (0)) @S0 have that the mean fraction of time spent by staition



successful transmissions is at least one packet is available to send. It is the attempt
N; X; probability ; which is relevant for the foregoing throughput
X

ti = () expressions.

which is simply a rescaling of the station throughput expres When i = i a station is said to beaturatedand sends
sion (1), a packet at every transmission opportunity, otherwise it is

In the foregoing we have implicitly assumed that packégtsaturated_F_or unsaturated stations the attempt probability
losses only occur due to colliding transmissidmes i depends jointly on the offered load and We will assume

Assumption 1:Packet losses from sources other than colifl@t when a station is unsaturated the throughput is equal
sions can be neglected. to the offered load.e. that stations have suf cient buffering

We discuss relaxing this assumption and including chanfBft queue over ow losses can be neglected when a station is
noise losses in Section IX below. In addition, we will geriigra unsaturatetl We also assume that the corresponding attempt
make the following assumption probability ; is the just value that makes throughput expres-

Assumption 2:Frame transmissions in WLAN are of Sion (1) equal the offered loade. _
durationT (c). Assumption 3:Let U denote the set of unsaturated stations

A TXOP burst therefore consists of a sequence of frame tra#32 WLAN andS the set of saturated stations, mithiS = N
missions each of duratioh. This assumption yields the usefu@NdU\S = ;. Letyi = ;=1 ). The attempt rate at a
technical bene t that the collision duratioh is invariant with Saturated statiop 2 S is theny; and the vector of station
the attempt rates; used in a WLAN — if stations used frames2{témpt rates lies in the s&t = [x;;ys] 1 [X,;yn] with
of different duration then the duration of a collision wouldi = Yi fori 2S and0 otherwise. Lets; denote the offered

depend on the speci ¢ set of stations involved in a collisiofp@d at unsaturated statior2 U. If a solution(x;N ) 2 X

and so on the attempt rates. More importantly, however, it M, whereM =[1:Nj] :: [1;Nn], exists to the throughput
is also a natural assumption in the context of 802.11e whéiglance equations

TXOP bursts are speci ed in terms of their duration in second Nix; Li .

(which, in turn, is motivated by consideration of time-bése Si = X T g8i2u (4)

fairness when stations use different PHY rates). With th{?en the offered load o can be serviced by unsaturated

assumpthn,Ni_can be interpreted as the m_ean.number Qtationi 2 U with the attempt rat&; and burst-siz&l; solving
transmissions in a burst arld as the mean size, in bits, of

the payload of each frame. the balance equations.

Note that for solutions to (4) to exist it is necessary and
suf cient that the seC be non-empty where

D. Constraining burst size ( )
Before proceeding, it is important to note that it is c= (x;N)2X M :s Nixi Li 8i2U
necessary to suitably constrain the sipg of allowed X T

TXOP packet bursts. To see this, say we i =
n; with > 0, ni > 0 and look at the behaviour ¢ Realisation in 802.11e/n

as I 1 . It can be veried thatdsi=d equals . N -
P S I q Following the approach taken in Bianchi-like throughput
nixi ; p jan X Li models é.g.see [18] and references therein), transmissions by
X ' i (N 1)x; +a+ YjZN 1+x) 1 T an 802.11 station can be modelled as a renewal process, with

which can be seen to be strictly positive. That is, incregsin renewals occuring after a successful transmission or isca
(and so burst sizedlways increases throughput. In the limit, The attempt probability can then be directly related to the
s | %'—T—' as ! 1 . Observe that the idle time 802.11 MAC parametei@Wmin , CWmax , €t For simplicity,
and collision time terms (which remain of nite duration)ear we will hereafter assume that the attempt probability desig
washed out in the denominator and so the ef ciency of thHearameter ; can be freely selected. However, this is not a
network is maximised subject to the xed per packet overheddndamental requirement of our analysis and can be readily
embodied by ;=T. In effect, this says that any point strictly inrelaxed provided any constraints imposed encontinue to
the interior of the simplets: ,, % 1g is achievable Yield a log-convex rate region; in particular, Theorem 4obel

by an appropriate choice ®;s. This high ef ciency comes carries over in the obvious way. As an example of admissible
at the price of unbounded delays and so is not of practic@nstraints on;, consider an 802.11 WLAN where we select
interest. Instead, to maintain bounded delay it is necggsar CWmin = CWnax = CW, whereCW is an appropriate
constrain the burst size and we M{ denote the maximum

; [P s 1Conservation of packets then means that the mean throughost

burst size admissible at station equal the mean arrival rate. Observe also that, by Loynesrdhe [16], for

suf ciently large buffering we have the intuitive properthat a station will

E. Finite-load be unsaturgted_whenever the mean packet inter-arrivaliirgeeater than the
mean service time.

It is useful to distinguish between the attempt probability 2This is because solutigns to (4) are a superset of solutittetoptimiza-
i and the attempt probability design parameter ; is the tion problemmin .y yoc oy XiNi. From the proofs of Theorems 1 and
bability that statiori id ki t - . 4 (see later) this optimisation can be transformed into aeoproblem such
probabiiity that sta '9” .Cons! €rs making a transmission Myt g the constraints are satis ed with equality at théirapl solution(s), if
a slot, but a transmission will not actually take place usleshe problem is feasible.



constant.g.32. Then ; is constrained to take the single valuen the WLAN. Making a change of variables
2=(CW 1) and the attempt probability; can take valuesto y; = log(xj) and ; = log(N;), we have
in [0;2=(CW  1)] as the offered load on stations is varied. X
By Theorem 1 in Section IV, the corresponding WLAN rate log(si)=yi+ i log a+ exp( j + )
region is log-convex. Indeed, we can constrairio take any J2N
nite set of values €.g.corresponding t&CW taking powers X X Li .

. ; .o . . exp Vi +log —:
of 2) since the resulting rate region is the intersectionhef t K2 AN Al K (2A T
log-convex rate regions corresponding to each of the idd&ii  \yith yi 2Y :=(1 ;logxj)], j 2 Ej := (0;log(N;)].

constraints on; and is therefore log-convex. Note that the right-hand-side is a concave functior(\af )
- ) since the logarithm of a sum of exponentials is a convex func-
G. Additional notation tion [2] . Then the de nition of a concave function impliesath
We represent the connectivity between WLANSs via graph Y Y
G with verticesV and edge&. Each vertex iV corresponds G= (iy; )2R Y] Ej:
to a WLAN and an edge exists between WLANs that can 2N 12N
. . . X
communicate. Vertices are labelled by the radio channel.use i yi+ i log a+ exp( j + ;)
We will assume that each vertex uses a channel with a i 2N
unique label, but this is just a notational assumption aresdo X X X L,
not require that the physical channels are all different (in + exp yj  *log T
practice physical channels would be reused to exploit apati k22 AN iAI=k 12A

iIs a convex set. Therefor&; = \ oy G is also a convex
set. The log rate-region is then the image @funder the
(linear) projection map that tak€sy; ) to . Thus, the log
rate-region is convex. [ ]

multiplexing). LetN;(c) = N (c)nfig be the set of neighbours
of stationi in the WLAN on channet. Let P denote the set
of network ows with P = jPj being the number of ows.
Associated with each owp is a source station and routép)
(assumed loop-free) consisting of stationi.(pairs (i; c), We also have the following corollary that will prove useful

i 2 N (c) traversed by the ow. This route includes onlylater. LetRYp) denote the set of achievable throughput vectors
stations that make transmissions for the ow, and so exalud®(XN) =[s1 ::: sp]" as the vectox ranges oveX \f x :

the destination station. Lé?;(c) = fp2 P : (i;c) 2 r(p)g =1 (1+ Xi) pgand the vectoN ranges oveM .

denote the set of ows relayed by statiorin the WLAN on Corollary 1: The constrained WLAN rate regioR%(p) is
channek andP(c) = [ ian () Pi(c) denote the set of all ows |og-convex for anyp 1.

relayed by the WLAN on channel Proof: We require p 1 for R? to be non-

IV. LOG-CONVEXITY OF 802.11MESH RATE REGION empty. Now using the same transf rrpation as in the
proof of Theorem 1, the constraint that;_; (1 + X;)
A. 802.11 WLANS p translates to restricting attention to the following set

We begin by extending the 802.11 WLAN log-convexity v v
analysis in [15] to include TXOP packet bursting, and then = (;y; )2 R" Y Ej:
use this to establish log-convexity of the mesh network rate j2N j2N

region. We present a new method of proof that makes use of log(1+exp(y;))  log(p)
theory of posynomials and geometric programming [2], [3]. . !

De nition 1: WLAN Rate RegionThe rate region of a which is a convex set as a consequencdogfl + exp( ))
WLAN is the set R of achievable throughput vectorspeing a convex function. The log rate-region is th@n C°

S(x;N) = [s1 i 4]", with i'th element given by (1), as which is convex, thus establishing the corollary. [ ]
the vectorx ranges oveX = [0;x3] i [0;x,] and the .
vectorN ranges oveM = [1:N1] = [LNy]. We note that the proof above can be readily extended to

show that other constraints on (or x) and N vectors also
yield a convex set under our chosen transformati@ince
the station transmission time (3) is simply a rescaling &f th
station throughput expression (1) we also have the follgwin

De nition 2: Log-convexity A setC 2 R" is convex if for
anys!;s? 2 C and0 1, there exists as 2 C such
thats = s1+(1 )s?. A setC is log-convex if the set
logC := flogs:s 2 Cgis convex.

. . result.
Theorem 1:The WLAN rate-regiorR is log-convex.
Proof: The throughput of station is given by Corollary 2: The sets of feasible transmission times corre-
Nix; L sponding to rate regior® andR° are log-convex.
TX T

X Y P
X =at NjXj + 1+x) 1 Xj 3For example, consider g constraint of the form,y x? 1. Since the
where j2N j2N j2N left-hand-side becomdeg i2N I:exp(Zyi) 0, log-convexity continues
X X X Y to hold. Similarly, the copstraint ;,y 2 1 can be transformed to

=at Njx;j + Xj 7 xiforaliand ;,y # 1with x replacing ;—'— in all

j2N k=2 AN ;jAj=kj2A the throughput formulae. Since the rst set of constrairds be transformed

and N = f1,2;:;;ng denotes the set of stationsto ;+ ;- 1 foralli, log-convexity continues to hold.

Xj



B. 802.11 mesh networks fairness in the class of 802.11 mesh networks considered.

A mesh network carries ows which traverse the componefecall the de nition of max-min fairmness:
WLANS. Since the throughput of unsaturated stations equals2€ Nition 3: Max-min fairness[22] A vector of ratesx 2
their offered load (see Assumption 3 and related discussiBri® 1S max-min fair if and only if for everyy 2 R (G) if
regarding buffering requirements), the network rate negidi > Xi (for some componeni), theny; < x; for somej
is obtained by the appropriate intersection of the indiaiduSUch thatj <xi.
WLAN rate regions. LeR (G) denote the network rate region
i.e. the set of feasible ow throughputs. ThéR(G) is given A. Assumptions

by all vectorsS = [s;:::sp] 2 R} such that the following  Before proceeding we make the following assumptions. We

hold will relax all of these assumptions later, but they are usefu
X i i i for gaining initial insight into the nature of the max-minirfa
sp) - (;)'(\(tl)(C) I:rl((;) 812N (cic2V: (5) thro%ghpugt aIIocationQ.]
p2P i (c) Assumption 4: PHY rateAll stations in the WLAN on

It now follows immediately from the log-convexity of thechannelc use the same PHY rate for transmissions.
component WLAN rate regions that the mesh network ratefollows from Assumption 2 that stations use the same frame

region is log-convexi.e. we have the following theorem.  sizei.e. Li(c) = L(c).
Theorem 2:The mesh network rate-regioR (G) is log- Assumption 5: Maximum burst-siz& station can transmit
convex. a maximum of one frame per ow at each successful trans-

Proof: We will once again use the property that convexission. It follows thatNi(c) ~ Ni(c) = jPi(c)j, where

ity is preserved when taking intersections. Thus, it sucdPi(c)j is the number of ows carried by stationin WLAN

to outline the key steps of the proof. Consider station C, and we have an additional constraint for each ow, namely

on channelc. Let P; be the set of ows relayed by this S(P)  X{g =g for ows p2 P; carried by statiori

station. Using the transformation from the proof of The- Note that the additional constraint introduced here careonc
orem 1 we need to satisfy the ow-balance constraint &gain be transformed to a log-convex constraint and thezefo
every stationi.e. for all i 2 N (c), ¢ 2 V we require Theorem 2 still holds and the network rate-region is stig-lo
X convex.
log exp(s(p)) Assumption 6: Attempt probabilityAll stations in the
P2P ; (c) WLAN on channelc use the same attempt probability design
parameter/(c) = (c)=(1 (c).
Recall that 2 [0;1) is the transmission attempt probability

X
yi(©+ i(c) log a(c)+ exp( j(c) + y;j ()

j 2N . .
%O e e when a station is saturated (always has a packet to send), but
+ X exp X yi(9 +log Li the actual attempt probability will be lower when a statien i
k2 AN (Al=k i2A T(c) unsaturated. Note that(c) need not be the same for every

wheres(p) = log(s(p)), which is again a convex constraint WLAN, but stations within a WLAN are assumed to use the
Such constraints have to be satis ed for all the mesh poingame value of attempt parameter.

and hence we get log-convexity for the entire rate-regian. The channebidle probabilityPiqe (c) in the WLAN on
channelcis 1= ",y (¢ (1 + Xk(C))

Assumption 7: Idle probability =, (c)(l + Xk (€))

p(c).

These log-convexity results allow us to immediately applyhjs assumption involves no loss of generality as by seigcti
utility fair methods based on convex optimisation to thg(c) suf ciently large we can always ensure that the constraint
analysis and design of fair throughput allocations for 8@2. js inactive. Nevertheless, including this assumptionvesiais
mesh networks. Speci cally, any optimisation of the form o also consider smaller values pfc) as we will see later.

mng(s) st s2R(G):hi(s) 0i=1;:m ;B)(yC)Cori)llary 1, the rate region is log-convex for any value of

C. Discussion

can be converted into an optimisation
B. Water- lling & Bottleneck links

Assumptions 4-7 do not change the log-convexity of the
wheres = [log si i logsa]™, U(z) = U(exp(z)) (so, in network rate region and so we immediately have that a

particular,0(s) = U(s)) and i(z) = h(exp(z)). Provided unigue max-min rate allocation exists. The network rateime_g
O() and thef; () are convex functions, the optimisation isalso has the free disposal property [22] (same as coordinate

a convex problem to which standard tools can be applied. convexity) since each co-ordinate of the throu.ghput veistor
lower bounded by 0 and any non-zero feasible vector can

always be decreased — by scaling the attempt rate vector
— while staying within the rate region. By [22, Theorem 3]

In the rest of the paper we focus on max-min fairness, atite max-min solution can therefore be found by water- lling
in particular on lightweight methods for achieving max-min Recall the water- lling algorithm in [22]:

maxU(s) s.t.s2 logR(G);Ai(s) 0;i=1;:;m
S

V. MAX-MIN THROUGHPUT FAIRNESS



1: LetP°=P,R°=R(G),n=0 and burst sizes within each WLAN. This makes use of the
2: do characterisation of the max-min fair allocation in terms of
3: Findmax T" s.t. S, = T" 8p2P", S2R" water lling and bottlenecks.

4 R"™ =fS2R":S, T"8p2P"g Recall that we say that a ow isaturatedif it has a packet

5 P"1 = fp2P":8S2R"1; S, >T"g available to send at every transmission attempt by theostati
6:n=n+1 and is otherwiseinsaturated

7: until P" = Theorem 4:Under Assumptions 1-7, the max-min fair

whereP is the set of network owsR (G) denotes the network throughput allocation within each WLAN possesses the fol-
rate regioni(e. the set of feasible ow throughputs$, denotes 0wing properties: _ _
the vector of ow throughputs an®, is the throughput of 1) The attempt rate design parameyéc)  x(c) in each

ow p (elementp of vectorS). On termination of this water- WLAN where x(c) is the attempt rate that maximises

ling algorithm, the remaining point inR" is the max-min the throughput of saturated ows.

fair allocation of ow throughputs. 2) Flows bottlenecked at the WLAN send one frame at
Step 3 is the key step in the algorithm. It nds the maximum every successful transmission made by the station. When

throughputT" that the ows in setP™ may collectively use y(c) = x(c), all bottlenecked ows are saturated. When

while remaining within the network rate region. The ows y(c) > x(c) they are unsaturated.

whose throughput cannot be increased ab®Veare then  3) Non-bottlenecked ows are always unsaturated.

removed from seP", and step 3 repeated. We can express Proof: See Appendix A. [

step 3 more explicitly in our wireless mesh network contexta The importance of Theorem 4 is that it goes a long way to
telling us how we might realise a max-min fair allocation in

max " (6)  wireless mesh networks. Speci cally, consider a mesh ngtwo
sts(p)=T" 8p2P" (7) Where each WLAN is con gured as follows:
X (€) L(c) 1) Stations in a WLAN all use the same attempt rate
P Yo7 BP2P: ko 2r(p) (®) parametery(c) (ehg.in 802.11I terginology, all stati;)ns
X N (6)x« () L (c) in a WLAN use the same value @Wpin = CWpay ).

s(p) = TX(© T0© 8k2N(g;c2V (9) 2) Stations use per ow queueing and at each transmission
pikic)2r (p) opportunity send one frame of data from each non-empty
X(9 08c2V (10) queue.

(1+ x¢(c)) p(c)8c2V 11 3) Parameter(c) is selected to maximise the throughput
k2N (c) of saturated ows in WLANC.

Constraints (8)-(11) ensure that the vector of ow rates li

W'tl?m tr|1|e netv;/r(])rk ratg rteglon..t i h that th . per ow queueing discipline trivially ensures thgfc) = x(c)
eve;)truZII Orvgfnoveerg f?glri SS éa{g Ibzrcaall?snesi?scthroﬁ h eutc::";r:ioésaturated ows will transmit a packet at every transmissio
y gnp pportunity). By Theorem 4 we then have an equivalence be-

. n . .
b8e |_ncreased a_li O\I?é h‘ﬁwhten a ovtvt|)5 :emoved dtge Constl’r]"’“.mtween bottlenecked ows and saturated ows. This equivaken
(8) is necessarily tight.g. it cannot be loosened by any ¢ OICqs of fundamental importance. Speci cally, suppose eacw o

S\f/X Wh||(tahretspect|n.g tglett?ther Ifocl;sttrtﬁl'mflzl{_%\sloge WLﬁ‘S‘N uses ideal congestion control i.e. adjusts the ow rate suea
= say that owp IS botllenecke IS - FOMMaY.  {hat the ow is saturated at one or more WLANSs without

.";t‘ bt?]ttlteneckfor t(')W ! tls_tal;NLA(;\I (wnhthow ! traversmg incurring queue over ow losses. Then congestion contrdl wi
If) that is operating at its boundary with ow POSSESSING & nsure that every ow is bottlenecked and so, without furthe
the largest rate amongst all other ows traversing the IVeLkort by Theorem 4 the network throughput allocation will
WLAN. Our interest in bottlenecks stems from the following " " e . " Thot is we have the following important

property, which follows immediately from these observasip corollary of Theorem 4

Theorem 3:A throughput allocation is max-min fair if and Corollary 3: Suppose each ow uses ideal congestion con-

only if every ow has a bottleneck. trol and each WLAN in a mesh network is con gured as stated

Observe also that all of the ows bottlgnecked at th? SaM%ove. Then the resulting ow throughput allocation is max-
WLAN c have the same throughput (owing to constraint (7) in throughput fair

and this is strictly greater than the throughput of the otherof course, in practice we must work with real rather

ﬁWS lecr;] trav?]rse fthls WL'SIN hblg[ ﬁre EOt b()”ttll(eneckebqhan ideal congestion control. Nevertheless, under daitab
there. We have therefore established that the well-knovn eontinuity conditions, we can expect that any congestian co

tleneck property of max-min throughput allocations in “"retrol algorithm that approximates ideal behaviour suf dign

networks also carries over to 802.11 mesh networks. closely will, by Corollary 3, yield a throughput allocation
) that is close to max-min fair and this is indeed con rmed
C. Main result in simulations, see Section VII.

Surprisingly, despite the complex nature of the mesh net-The network con guration in Corollary 3 also requires that
work rate region (where ow rates are strongly coupled ateaattempt probability parametgic) is selected to maximise the
WLAN), we can obtain an almost complete characterisatidhroughput of saturated ows in a WLAN. This is consid-
of the max-min fair allocation of station attempt probahk ered in detail in the next section. However, we note brie y

®r'he network then satis es Assumptions 4-7. Observe that the



region boundary for different values pfc). For a suf ciently
small value ofp(c) it is the constraint (12) that determines
the boundary of the rate region, see curve marRedn the

gure.

To determine the turning point ofEX (c), and so the
unconstrained rate region boundary (marked by the dashed
line in Figure 2), differentiating=X (c) with respect to

yields
L N P TR O
X Xz L Ni Nio Ni

, . , . . , i2N (c) i2N () j2N (o) i2N (c)

Fig. 2. lllustrating unconstrained rate region and ratdoregvith Pjge ) ] o

constraint. and setting this derivative equal to zero we have that the
corresponding to the turning point solves

. . . _ X Y . Y :
here that the reason for introducing Assumption 7 is that ¥ 1+ _y.)+ 1 a= 1+ Y
by appropriately selecting(c) then it turns out thaty(c) iy (¢ N 2N (©) Ni i2N (c) N

can be found in a completely decentralised manmnet Ko Substituti theref h that the turni i
message-passing or packet-snif ng) using an approacHhasimi ubstituting, we therefore have that the trning poire.(

to the idle-sense strategy for maximising WLAN throughptptoundary of the rate-region) satis es
studied in [7]. Assumption 7 could alternatively be replhce X;
by another constraint that simpli es selection y(ft) so long

as we retain log-convexity of the rate region. For example,
as noted earlier we could simply impose the constraint thBfis can be rewritten as

y(c) = y for an appropriate xed valug, in which case no X L+l aPy, =1
adaptation is required (this corresponds to trivially stiey ! idle

Y
' Trx (1+x)+1 a:' (1+x;)
i2N (c) ' j2N (c) i2N (c)

CWhin = CWpax = CW whereCW is some xed value), 2N (©) o _
although this appealing simplicity comes at the cost of \WherePiye = 5y (1 ;). Note that this is a generaliza-
reduction in network capacity. tion of the result from [19], [21] to the scenario with diféart

slot lengths ite., a < 1) and TXOP.
Using the Arithmetic Mean-Geometric Mean inequality, we
have

VI. M AXIMISING THROUGHPUT

A. Rate region boundary Y v
We begin by studying the boundary of the rate region of n(c) n(g ( )
WLAN c. For this we will take a vectoy(c), normalised such i2N () 1+X 2N (¢) 1+Xi
that . vyi(c)=1, and set;(c) = y i(c)=N;(c), 0. The X ,
vectorlof station throughputs is then= X2 L  gince ier 1 4 ! 1 X
ghp = XOTO o & 1+x) nO. 1+ X
, X(c), L(c) and T(c) are all scalars it can be seen that i2N (c) ' i2N (c)

varying adjusts the position of the throughput vector on th/g
ray in directiony(c) passing through the origin. To determinea
the rate region boundary we need to nd the values aind
N;(c) that solve the optimisation

fterg some algebra, it follows that selectipfc)  1=(1 +

2a) ensures that constraint (12) is guaranteed to become
tight either tﬁafgre or at the turning point ofX (c). Note
thatl + a 2a 1 whena 1 and this bound om(c)
is tight (with equality along the ray1, wherel denotes the

;Ln?()é) X (0) all 1's vector, asn ! 1 ). This is illustrated by the middle
st 0: 0 Ni(c) jP i(9)j; i 2N (¢ curve ma_trked% in Figure 2, which touches t_he un_constrained
% vi(9) rate region along the 45 degree ray. With this choice of
1+ =)  po) (12) p(c) constraint (12) is active at the solution to the above
i2N (c) Ni (©) optimisation and so it is this constraint that determines th

maximum value of , and thereby the maximum throughput

Since the obijective is strictly increasing i (c) (as already of saturated ows

noted) and constraint (12) becomes looserN\gsincreases,

at the maximumN;(c) will lie on the constrain§P;(c)j. It ) o

can be veried by inspection of the second derivative thd}- Decentralised optimisation

X (€)= is a strictly convex function of and so has a unique Recall that our task is to select attempt rate parameter
turning point. To nd the value of that maximises the abovey(c) to maximise H1e_throughput of saturated ows. Selecting
optimization problem, we observe that this will be deteretin p = 1=(1 + a 2a) so as to maximise the constrained
either by constraint (12) becoming active or by the turningte region, it follows from the discussion in the preceding
point of =X (c), whichever occurs rst. This is illustrated in section that the throughput of saturated ows is maximised
Figure 2 — the dashed line marks the unconstrained raterregihen Pige (C) = 1 =p(c). That is, we need to seleg{c) such

(i.e. without constraint (12)) and the solid curves mark the rathat Pige () = 1 =p(c). This can be achieved in an entirely



1.005 : : : : In the simulations all ows are long-lived TCP traf c and so

W are bidirectional i(e. consisting of TCP data and TCP ACK
/ packets). Following [13], TCP ACKs are prioritised so that
S LemmmmTTTTTTTTIITTT their loss rate is negligible (link asymmetry leading to exc
e ] sive loss of TCP ACKs is well known to induce unfairness due
§ ooesr ! 1 to disruption of ACK clocking and repeated TCP timeouts).
o098t } The TCP ACK transmit time (including MAC ACKetc) is
50.975, T ] lumped in with the TCP DATA transmit time to obtain the
F -7 —— Piye=1+a-50rt(22)=0.8686 Ts value for throughput formula (1). See [12] for a more
0.97 K4 N . . . . . -
: - = = Pige™0° detailed discussion of the accuracy of this approximatoon,
osesr 1 (== Pe=0925 | we note here the good agreement in Figure 4(b) between the
09— 0 5 2 25 theory values derived using this assumption and the siimulat
#stations measured throughputs.

The stations in each WLAN measure the idle probability
Pige using their carrier-sense functionality.§.see [17]) and
run a local AIMD algorithm to adjust theil€ Wi, to satisfy
the constraintPigie I=p=1+ a 2a, see Algorithm
decentralised manner since (i) the idle probabHigy. (c) can 1 for details. Due to the use of the AIMD algorithm the
be directly observed by all stations in a WLAN (via carrierstation CWn, 's vary over time in a sawtooth pattern and
sense, see for example [17]) and (i) algorithms such as AlM#P not settle on a constant value, see Figure 5(a). Moreover,
can be used to ensure stations converge to using the s&W¥min is restricted to take integer values thereby introducing
parametery/(c), see for example [7]. further granularity. By adjusting the AIMD parameter the
amplitude of theCWp,j, sawtooth can be changed. Decreasing

reduces the size of theW,,, uctuations, but this comes
at the cost of slower convergence to steady-state operation

Y .“e.g.see [23] for a detailed analysis of AIMD dynamics. We
the cost of a reduction in throughput at WLANTO see this q05e = 0:25 as a compromise between fast convergence

note that when only a single station is active in @ WLAN g reasonably small uctuations i6Wmin . Due to these
and so no collisions are possible, then we ought to selgtiyiementation issues, as can be seen from Figure 5(b),
the atte_m|_ot probability equal tq 1€. y(c) 'l ) inorder {he WLANs do not operate exactly on tHege = 1=p
to maximise the throughput, in which case any value of,hstraint as assumed in the calculation of the theoretical

1=p(c) greater than zero must reduce throughput below iffo,ghput values shown in Figure 4(b). Nevertheless, as ca
maximum value. Nevertheless, the throughput 10ss is g8pergye seen from Figure 3 the throughput ef ciency is relatively

small. For example, Figure 3 illustrates the throughput 0bs jgensitive taP e uctuations around the optimum value and
selectln.gp(c) to ensure operation on Mg () = 1=p(0)  this is re ected in the good agreement between the theory and
constraint. The gure plots tBe_ratm of the t.hroughput WheQimuIation throughputs in Figure 4(b) .

Pige () =1=p(c) =1+ a  2ato the maximum possible  qher simulation parameters used are detailed in Table |.
throughput when there is nBige constraint. It can be seengiq,re 4(h) compares the theoretical max-min fair throughp
that the throughput efciency is remarkably high, with & 5cation with the measured simulation throughputs. it ca
throughput reduction of less than 0.5% (compared 10 e seen that they agree remarkably well. We can investigate
maximum possible throughput) even when only a single statig,q gtrycture of the throughput allocation in the simulasiin

is active. Th_|s is similar to the qbservauon made in [7]. Ifqre detail. By inspection of the topology in Figure 4(a) we
return for this small cost we gain the advantage of a fully, et that the max-min fair throughput allocation has ows
decentralised implementation with no message-passing. T3 pottlenecked at the left-hand WLAN, ows 4-7 at the

nal choice of whether the additional network capacity to b?lght-hand WLAN and ow 8 at the centre WLAN. Figure
gaineq by message-passing warrants the additional co'rt}pleé plots the ow throughputs in each WLAN, from which it
lies with the network designer. can be seen that ows 0-3 are indeed the maximal throughput
ows in the left-hand WLAN and similarly for ows 4-7 and
VII. SIMULATION RESULTS ow 8 in the right-hand and centre WLANSs respectively. By
We illustrate the foregoing analysis vias2 packet-level inspection of the station queue occupancies (not plottee) he
simulations. We begin by considering a mesh network with tlvge can also con rm that ows 0-3 are saturated in the left-
topology shown in Figure 4(a). Mesh points (MP) are markdthnd WLAN, and similarly for ows 4-7 and ow 8 at their
by circles and other stations by triangles. Each WLAN operespective bottlenecks, in accordance with Theorem 4.
ates on an orthogonal channel and MP0O, MP1 are equippedrigure 7 shows simulation results for a second topology.
with two radios to allow relaying of traf c between WLANs. An additional WLAN has been added containing station 8
Flows 0-2 travel one hop to MPO, ow 3 travels two hops t@and MPO now carries two ows, namely ow 3 and ow 8.
MP3, ows 4-7 travel one hop to MP1, ow 7 travels two Flow 8 is bottlenecked at the link between MPO and MP3
hops to MP3. Flow 8 travels one hop from station 8 to MP2vhile ow 3 is not, and simulations con rm that ow 8 is

Fig. 3. Cost of operating oRjge =1+ a P 2a constraint vs number of
stations in WLAN.a = 1 =100, each station carries a single saturated ow.

C. Degree of sub-optimality
Using any non-zero value df=p(c) necessarily comes at
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Fig. 4. Example 1. The measured simulation throughputs arepared ‘ ‘ ‘ ‘ ‘
against the theoretical max-min fair throughput valueshim lower plot. The 0-750 20 40 60 30 100
lower valued lines are the throughputs for ows 0-7, while thpper valued Time(s)
lines are for ow 8. The measurement points plotted are ayesaover 50s
time windows. The theory values for the bottlenecks are IR9®ibps and (b) Pidie

1.8479Mbps respectively (indicated by the dashed red amesalso marked ) o )

on y-axis by circles). It can be seen that the simulation amlare in good Fig- 5. CWmin and WLAN Pige time histories for the source station of
agreement with theory. ow 0 in the topology of Figure 4(a). These are represenéaidf the time
histories for other stations and illustrate the AIMD adjostt of CW nin .

- - - . The dashed line in the lower plot indicates the idBgje constraint value.
Algorithm 1 AIMD algorithm used at each station to adjust

its CWmin value.

1: for Every T secondslo

2. Check the measured idle probabil®ye 2 ‘ ‘ =
3 if Pige > 1=p then WLAN
4 CWhin CWnin + /8\1.5*
5. else g WLAN 1 WLAN 2
6: CWhin CWhin (1 ) g_ 1
7. end if <
8: end for 5
£ 05
saturated at MP3 while ow 3 is not as Theorem 4 suggests.

Also note that in this modi ed topology the one-hop ow 8 ® Flow0.3  Flow4.7  Flow37.8

is allocated a S“ghtly hlg.h.er thr.OUthUt than in Fig 4 ba.mu Fig. 6. Histogram of ow throughputs in each WLAN in topolodsigure
there are now fewer collisions in the centre channel which ig) wLAN 1 refers to the left-hand WLAN, WLAN 2 to the righand
the bottleneck for this ow — MP0O and MP1 are transmittingVLAN and WLAN 3 to the centre WLAN in Figure 4(a).

data packets and MP3 transmitting TCP ACK packets, while

in Fig 4 we additionally have traf c between station 8 and

MP2 in this channel. Once again, observe that the simulation PHY rate (Mbps) 11
measurements agree extremely well with the theoretical max NIC Buffer (Packets) | 50
min throughput allocation. Packet Length (Bytes 1?100
0.25
VIII. T IME-BASED MAX-MIN FAIRNESS T(s) 1
1=p 0.8412

We can readily extend the foregoing analysis to encompass TABLE |
weighted max-min fairness.e. rather than max-min fairness SIMULATION PARAMETERS
of the ow throughputss(p), p 2 P we require max-min
fairness of the weighted ow throughpusgp)=w(p), p 2 P
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the expressions used in the proof) to obtain
Theorem 5:Under Assumptions 1-3,5-7, the max-min fair

time allocation within each WLAN possesses the following
A properties:
f A 1) The attempt rate design parameyéc) x(c) in each
\ é WLAN where x(c) is the attempt rate that maximises
the throughput of saturated ows.
5 M 2) Flows bottlenecked at the WLAN send one frame at

every successful transmission made by the station. When
y(c) = x(c), all bottlenecked ows are saturated. When
y(c) > x(c) they are unsaturated.

3) Non-bottlenecked ows are always unsaturated.

It can be seen that the properties of the max-min time
allocation aradenticalto those of the max-min fair throughput
allocation with a single PHY rate and so the same network
con guration (together with ideal congestion control) che
used to realise the max-min time allocatioe.

(a) Topology

=
o

Throughput(Mbps)
-

05 1) Stations in a WLAN all use the same attempt rate
parametery(c).
2) Stations use per ow queueing and at each transmission
% 100 260_ 300 400 500 opportunity send one frame from the head of each non-
Time(s) empty queue (recall by Assumption 2 that all frames are
(b) Throughput Allocation of equal duration, regardless of the PHY rate used).

Fig. 7. Example 2. As before, the measured simulation tHyputs and 3) Parametey(c) is selected to maximise the thrOUghpUt

theoretical max-min fair throughput values (indicated laglied red lines and of saturated ows in WLANCc.
also marked on y-axis by circles) are compared in the lowet. pl

A. Simulation results

for speci ed weightsw(p) > 0. This is of particular interest We revisit the previous simulation example in Figure 4, but
when we relax Assumption 4 that stations within a WLANOw extend consideration to a multi-rate situation whens @
use the same PHY rate. When ows can use different PH¥ the left-hand WLAN uses a PHY rate of 5.5 Mbps while all
rates, max-min throughput fairness leads to ows with a lowther ows in the mesh network use a PHY rate of 11 Mbps.
PHY rate grabbing bandwidth from higher PHY rate owsfFigure 8 compares simulation measurements with theotetica
potentially leading to a large reduction in network cagacitvz_zllues for a max-min fair time allocgtion. It can be seen f_rom
Time-based fairness is therefore typically of greaterrege Figure 8(a) that ow 0 (the ow with lower PHY rate) is
than throughput fairness in multi-rate networksg. see [7], now allocated a lower throughput than the other ows in the
[26], [8] and references therein. L&(p) denote the PHY left-hand WLAN. This ensures that all ows in the left-hand
rate used by owp, which for simplicity we assume is the WLAN are allocated the same air-time for transmitting their
same at every hop along the ow routép). The airtime used payloads, see Figure 8(b). Observe that the ows in the fight
by ow p is then given byt(p) = s(p)=R(p) and so time- hand WLAN achieve slightly higher throughput and air-time
based fairness corresponds to weighted max-min fairness vihan those in the the left-hand WLAN due to the difference

weightsw(p) = R(p). in frame overheads at different PHY rates.
Since the airtime is just a rescaling of the throughput it
follows that the feasible set of times is log-convex and @uaei IX. ASSUMPTIONS

max-min time allocation exists. Retaining Assumptions 5-7

. . In this section we review the assumptions used in our
(for the moment), step 3 of the water- lling algorithm beces

analysis, and in particular try to identify those assumpio
max T" that can be readily relaxed and those that cannot. Assumptio
T 1 (non-collision losses negligible) can be removed, but see

s _ n n
stt(p)=T 8p2P the detailed discussion below. Assumption 2 (homogeneous

t(p) xk(c); 8p2P; (kic) 2 r(p) frame transmission duration) can be readily relaxed to the
X X(9) requirement that stations have the sameanframe duration.

t(p) = Nk (c)xk (€)) 8k2N (c); c2V Removing this assumption altogether should be possible but
pi(kic)2r (p) X () requires modifying the denominator (2) of the throughput
x(©) O Y 1+ xc(9) p(o): 8c2V forn_n_JIa to take account of the fa_ct that the d_urati_on of a

K2N (C) collision now depends on the speci ¢ set of stations invdive

An identical argument to that used in the proof of Theoremif a collision and so on the attempt rates Assumption 3
can be applied (sincke(c)=T(c) is just a constant scaling in (throughput model) is the fundamental assumption usediin ou
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A. Relaxing Assumption 1: non-collision losses negligible

In this section we consider in more detail what is involved
in relaxing Assumption 1. The main non-collision sources of
loss are channel noise losses, packet discards after top man
retries and queue over ow losses. We begin by noting that
excessive channel noise losses can be avoided by appeopriat
) choice of modulation/coding rate, discard losses by usenof a
S~cow 0 appropriate retry limit (the standard value of 11 retrieguiees
‘ ‘ ‘ : a combined channel-noise/collision loss rate exceedirtg 65
0 500 1000 1500 2000 for the discard probability to exceed 1%) and queue over ow

Time(s) losses by provisioning links with suf cient buffering. This,

(a) Throughput Allocation Assumption 1 can often be satis ed by appropriate network
design. When such losses cannot be neglected, more effort is
required. Assume use of a block ACK so that TXOP burst
transmissions do not terminate early on detecting a caedupt
packet (as they would with per packet ACKing). This ensures
that the duration of TXOP burst transmissions is independen
of the speci c packet loss pattern experienced by each burst
the analysis could be extended to include such dependence,
but at the cost of a considerable increase in complexity.
TXOP transmissions may consist of multiple blocks destined
to different receivers which undergo losses dependent en th
receiver. Under such a model we can use the formulation from
[25]. Let s(p) now denote the goodput of ow, i.e, the rate
received correctly at the destination. L&t, s(p) denote the
Fig. 8. Multi-rate variant of Example 1. Flow 0 uses PHY rat&s&Mbps, rate at which station has to send packets from ow in

other ows a rate of 11Mpbs. Plots compare simulation meas@nts and order to ensures oodput is received at the destination
theoretical values (indicated by dashed red lines and akdked on y-axis (p) 9 P

by circles) of a max-min fair time allocation. The measuratyeints plotted &fter undergoin_g Iqsses at inte_rmediate hOpS_ along thee rout
are averages over 50s time windows. r(p) to the destination. The scaling terii, 1 is equal tol

if and only if there are no losses along the route from station
to the destination of owp. Log-convexity of the goodput rate

. . . . : . resgion still holds and in equations (8) and (9) we now need
analysis. This assumption might be weakened in varlous,wag | h A o obtai ised water- lli
but is not straightforward to remove. As discussed in Sacti 0 replaces(p) wi ip S(P) 10 obtain a revised water- liing

VIII, it is trivial to remove Assumption 4 (homogeneous PHYalgorlthm that includes the effect of noise losses.

rates) and so accommodate multi-rate operation and time—TO maintain equal throughput for ows boitienecked af the

ﬁ( e WLAN the station attempt rateg have to be adjusted
a

Throughput(Mbps)

Usage Time Ratio

0 500 1000 1500 2000
Time(s)

(b) Time Allocation

based fairness. Assumptions 5 and 6 can be removed, pave )

similarly to Assumption 1 this is at the cost of a consideeab; N9 mtq account the termip . WhenAyp |s-n0t the same
increase in the practical dif culty of realising a max-miaiff or all stations then with per ow burst con;tralnts thosetlen
allocation. See the following sections for a detailed désoon, _necked ows with smaIIer_ values okip will be unsaturated
but we note here that perhaps the most notable casualty"x?' we will lose the_ equwalen(_:e b_etvveen bottlenecked_and
relaxing these assumptions is that we lose the equivaler§ urated OWS. We lllustrate this with an e>_<z_;\mple. Conside
between bottlenecked ows and saturated ows. This meaﬁ € network n Figure 9 where the capacities and the loss
that standard ow congestion control algorithms (which Worrates on the _Ilnks are cho;en such th.at-all of the ows are
by developing a queue backlog) can no longer be relied upERttleneckefd in WLAN A With the restr|_ct|on th_at_ every ow
to guarantee ows are bottlenecked. As already comment gs @ maximum burst-size df(Assumption 5), it is easy to

upon already, Assumption 7 can be replaced by a variety c thi:{ S ttt_he maxt-mlr: fg'r_l_i(_)lu.t'%n 0\{\{ Zﬂ'f ?Otilfﬁg;ed n
alternative constraints provided we retain log-convesityhe clique ttlﬁ IS unsa urade .t AIS IS tegp'be N fact ol € h
network rate region. ows get the same goodput. As noted above, fortunately suc

dif culties can be avoided by the simple expedient of setert

Lastly, we note that while we have assumed that statiogsydulation/PHY rate and retry limit such that losses can be
have suf cient arriving traf ¢ to be able to make full use Ofneglected.

the max-min fair throughput allocation, our analysis asri

over essentially unchanged to situations where the rate of ] ] ) .
traf ¢ arrivals at stations is itself constrained. The uppeund B- Relaxing Assumption 5: per ow burst-size constraint

on throughput created by the nite traf c load introduces an We now consider in more detail removing Assumption 5.
additional convex constraint, and this constraint becothes This removes constraint (8) from the water- lling algonith
bottleneck when it is less than the max-min fair allocation iand the relaxed optimisation in the proof of Theorem 4
the absence of the nite-load constraint. becomes
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implementation complexity. It therefore seems useful taire
Assumption 5 in most practical settings.

C. Relaxing Assumption 6: homogeneous station attempt rate
parameters

Removing Assumption 6 removes constraint (18) from the
relaxed optimisation in the proof of Theorem 4. For stations
carrying bottlenecked ows this change has little effectl a
such stations must still use the same attempteate contrast,
for stations which carry no bottlenecked ows the attempéra
design parameter can now be selected equadgtdn which
Fig. 9. Example network with losses to illustrate nature aixamin fair  case some of the non-bottlenecked ows will be saturated.

solution. That is, once again we lose the equivalence between bottle-
necked and saturated ows. In summary, relaxing Assumption
6 offers few, if any, bene ts while increasing the complgxit
x(c) L(c) of achieving max-min fairness.
X %N N g mm
sit: x(€)  nkxk(c) 8k 2 Ve(c) X. THE HIDDEN TERMINAL ISSUE
s(9) Ni(©xk(c) B (\P k(9ix() L(0) o Perhaps the most signi cant omission from our analysis is
428 (o) X () T( hidden terminals. The basic dif culty here is that we cuthgn
Hae)= k lack simple, accurate, generally applicable throughputle
1 Nk(c) Nk 8Kk when hidden terminals are present, and so we lack the basic
xk$c) y(c) 8k tool needed for any max-min fairness analysis. The modgllin
(1+ xk(e)) p(e); x(c) 0, x O dif culty arises from the fact that hidden terminals canrsta
k2N (c transmitting even when a transmission by another statien ha

)

where n is the burst size used by bottlenecked ows afjready been in progress for some time. The class of slotted-
station k (which must be the same for all bottleneckegme models pioneered by Bianchi for 802.11 is therefore no
ows carried by stationk since these ows have the samegnger valid, since these require all transmissions to pocu
throughput(nexx =X (c)) (L=T)). Using similar arguments asyg||-de ned MAC slot boundaries, and indeed this suggests
those in the proof of Theorem 4, the rst three constraini§at a fundamental change in modelling paradigm is required
will be tight at the optimum. That is, the burst sing will The development of throughput models in the presence of
be such thalNy = N (i.e. the maximum admissible value)pigden terminals continues to be the subject of an active
and the station attempt rate is correspondingly adjusted (iearch effort, and so in this paper we consider it prudent
maintainx = neXx. In general, the burst size and attempt g |eave consideration of utility fairness with hidden térais
rate xx will therefore now be different for every stationtg fyture work.
carrying bottlenecked ows (depending on both the number |t js perhaps also worth noting here that the prevalence of
of bottlenecked ows carried by a station and the loadeyere hidden terminals in real network deployments ptissen
imposed by non-bottlenecked ows). The WLAN attempt ratgemains unclear. While it is relatively easy to construdidein
parametery(c) ~maxx x=nk. Due to the maximisation over terminal con gurations in the lab that exhibit gross unfess,
k needed here, we may hawxg < y(c) for some stations jt may well be that such con gurations are uncommon in prac-
carrying bottlenecked owsd.e. there can exist bottleneckedjcg) deployments. For example, recent measurement studie
ows which are unsaturated for all admissible values Orfeport that severe hidden terminal effects typically affay
y(c) and we lose the equivalence between bottlenecked agb|atively small subset of stations in the WLAN deploynsent
saturated ows. Moreover, it seems clear that stations W@onsiderede.g.see [4], [20]. In mesh network deployments
generally need to communicate in order to agree the valj&yqgitionally seems likely that network designers willopr
of x and enforce constraint = nixx (equality of bottleneck sctively seek to avoid (or at least minimise) creating hidde
ow throughputs). In particular, the selection ®fis no longer terminals thereby further reducing their impact. In aduitto
amenable to the decentralisétye optimisation approach gppropriate placement of mesh points, hidden terminalbean
used previously. avoided/mitigated by judicious radio channel assignmewt a

In summary, relaxing the per ow burst-size Assumption power control é.g.see [14] and references therein). Looking
leads to a signi cant increase in the complexity of achigvinto the future, the latter solutions are facilitated by thentt in
max-min fairness and, in particular, to a requirement farext generation networks towards multi-radio architezsiand
message passing. On the positive side, the bene t of redaxithe use of the 5GHz band for mesh backhaul (with its greater
this assumption is that the network capacity may be incteagaumber of orthogonal channels compared to the 2.4GHz band).
since stations with small numbers of ows could use a larger Setting the hidden terminal issue to one side for the moment
TXOP burst size. However, this increase in capacity is yikekherefore, we stress that the class of mesh networks coaside
to be quite small and seems more than offset by the increasdare is a substantial step beyond Aloha, previously the stat
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the art in wireless utility-fair analysis. In contrast toohla, this us to consider the following relaxed optimisation problem,

class is indeed suf ciently powerful and general to encoagpa x(c) L(c)
at least some real 802.11 mesh network implementations. As xk“jg}(k X (0 T(© (13)
support for this we comment that we have already imple~g.;. x(6)  xk(c) 8k 2 Ng () (14)

mented one of the max-min fair approaches derived here in

¢ L(c

an experimental 802.11 testbed using standard hardware and s(d) ))((k((c)) %SQ 2fp2PnB(0):(kic) 2 r(p)g (15)

we will report our experimental measurements in due course. X Nk (9xk(6) B (O \P «(9jx(0) L(C)

S X9 ©

XI. CONCLUSIONS AN

In this paper we characterise, for the rst-time, max-min . . (16)
fair rate allocations for a large class of 802.11 mesh neksor 1 Nk(0) jP «(c)j8 k2N (c) 17)
To our knowledge, this is also the rst work to extend max-  xx(c) y(c) 8k 2N () (18)
min fair mesh network analysis beyond Aloha networks. The L+ xc(©) p(©); x(c) 0. x 0 (19)

class of 802.11 mesh networks considered is large enough oy (g
to cover realistic network architectures and, by explgitihe It can be veri ed that this relaxed optimisation can be trans
features of the 802.11e/n MAC (in particular TXOP packdermed into a convex problem with a unique solufion
bursting), we are able to use this characterisation to kstab Consider the following  constraints on  station
a simple class of network con gurations for achieving max 2 Ng(c) carrying at least one bottlenecked ow,
min throughput fairness. We demonstrate the ef cacy of this
approach using detailed packet-level simulations andbsia
that the approach can be readily extended to encompass time- s(q)

x(9)  xk(0) (20)
Xk () L(c)

8g2fpzZB(c):(k;c)2r(pg (21)

based fairness in multi-rate 802.11 mesh networks. X(©T(9
x(© y© _ (22)
The last constraint is satis ed provideg(c) x(c) — we
ACKNOWLEDGEMENTS return to the choice of(c) shortly. It can be veri ed ¢.g.by

The authors would like to thank colleague Ken Duffy for hisnspecting derivatives with respect #g(c)) that xx(c) and
numerous insightful comments and helpful discussiongingla xy(c)=X(c) are strictly increasing iy (c), while 1=X(c)
to this paper. The authors would also like to acknowledge tie strictly decreasing inxx(c). Hence, if inequalities (20)
anonymous reviewers whose comments considerably improwad (21) are both loose then decreasigc) decreases

the paper. the RHS while improving the cost function and making
the other inequalities looser, which leads to a contraalicti

APPENDIX A Hence we have equality in either/both (20) and (21) (for

APPENDIX— PROOF OFTHEOREM 4 at least oneq). Recalling that for non-bottlenecked ows

x(c) L(c) xk(e) L(c) i
We proceed by analysing the optimisation (6)-(11) at st 9 < % (c) T(c) X (c) T(o) 't can be seen that constraint

3 of the water- lling algorithm. Letc denote a WLAN which (20) will always bec‘_’me. tight before _constraint (21). Hence
becomes a bottleneck at iterationof the algorithm. When we _must haV(_e equality in (20). That is(c) = x(c) for all
considering bottlenecked ows at WLAN we can ignore the stations carrying a bottlerjecked ow and for any bottlereztk
constraints at other WLANs since these constraints must 5 the burst-size used is exactly one frame per successful

either loose (or else that WLAN would be the ow bottleneckfr"’“ﬁ's'ﬁn'SSt;On by the station. Fofr Inon-bott_leqeckgd ﬁws the
or equivalent to the constraints at WLAM(in the case of a AVerage burst size per successiul transmission by therstatl

ow having multiple bottlenecks). Flows which are not bot.Must be strictly less than one frame, which implies thateéhes

tlenecked at WLANc must be bottlenecked at other WLANs OV_\I’_S are unsaturated. iork 2 N h . b

and the constraints at these WLANSs determine the throughplut urr:(mg now to stat|oln 20 B(C)It at carne;; n% 022

of these ows. LetB(c) denote the set of ows bottlenecked! €"eCKe ows, cpnstramt ( ) no longer applies .Ut (22)

at WLAN ¢ andNg(c) = fj 2 N (c) : B(c)\P : (c) 6 :g and (21) are still in force. Since all ows on the station are,
= : i :

denote the set of stations carrying one or more bottlenecl%ﬁassumpt'on' non-bottlenecked they have throughputigtri

x(c) L(c) . . .
ows. For bottlenecked ows we have that s thanx(c) T()" Hence, if we have equality in (21) for
x(c) L
s(p)=s(@=T"= —=

one or more ows, therxy(c) < x(c). But from (22) and
- X(9T(9)

8p;q2 B(c) the discussion in the foregoing paragrapft) x(c) and
so xk(c) < x(c)  y(c). Sincexk(c) < y(c) the station is

for somex(c) Xi(€) 8i 2 Ng(c). This bottleneck ow unsaturated and therefore also every ow is unsaturated. If
throughput is strictly greater than the throughputs of nomve have inequality in (21) for all ows then the average ow
bottlenecked ows traversing the WLAN. By Assumptiongurst size must be strictly less than one frame per sucdessfu
2-5 all ows q satisfy s(q) ’;&‘8% Let us relax, for transmission by the station which implies that, once again,
the moment, equality in (4) and replace it by the RHS uppevery ow is unsaturated.
bounding the LHS. By Assumption 6 all stations use the same, _ _ _

- . Change variables tlog x , log N¢ andlog x. X is a posynomial and so
attempt prObal?'“ty design Pe}ramewc) and Xk(c). Y(©)  when expressed in terms of these transformed varidbteX is the log sum
for every stationk. Combining these observations, leadsf exponentials and convex.
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To gain insight into the burst sizdy(c), we need to con- [17] D. Malone, P. Clifford, D. J. Leith, “MAC layer channeluglity

sider constraint (16). Sindﬁk(c)xk (C):X (C) is increasing in measurement in 802.11l[EEE Communications Letterd1(2), pp. 143—
} . ; o . 145, 2007.
N (c) and1=X(c) is decreasing, using a similar contradictio 8] D. Malone, K. Duffy, and D. Leith, “Modeling the 802.11 i®

argument as previously we must have equality in (16) for all tributed Coordination Function in Nonsaturated Hetereges Condi-
stations. tions,” IEEE/ACM Trans. Networkingl5(1), pp. 159-172, 2007.
. [19] J. Massey and P. Mathys, “The collision channel withéesdback,”

Consider now the value of(c). It can be seen that(c) IEEE Trans, Inform. Theon@1(2), pp. 192—204, 1985.
is invariant iny(c) x(c). Hence anyy(c) X(C) is an [20] D. Niculescu, “Interference map for 802.11 networkBfbc. 7th ACM
admissible solution and yields the same allocation,g§ and __SIGCOMM conference on Internet measuremed07 _

. . L . HZl] K. A. Post, “Convexity of the Nonachievable Rate Regifor the
Ni's. Since we have equa“ty in (16)7 these solutions to the collision channel without feedback/EEE Trans. Inform. Theory31(2),
relaxed optimisation are also feasible for the true/umesla  pp. 205-206, 1985.
constraints. Observe, however, that Wl}{é[]) > X(C) no ow [22] B. Radunovic, J.-Y. Le Boudec, “A unied framework forar-min and
. . - min-max fairness with applicationslEEE/ACM Trans. Networkingl5(5),
is saturated (for stations2 N g(c), Xk (c) = x(c) <y (c) and pp. 1073-1083, 2007.
so the stations are unsaturated and thus every ow must 8 R. N. Shorten, D. J. Leith and F. Wirth, “Products of rand matrices

unsaturated, for statioks2 N B(C) we already have that every and the internet: Asymptotic resultdEEE/ACM Trans on Networking
14(6), pp. 616-629, 2006.

ow is unsaturated). Wheg(c) = x(c) we have that all bottle- 54 v, 'A. siris, G. Stamatakis, *Optimal CWmin Selectionr fachieving
necked ows are saturated and all non-bottlenecked ows are Proportional Faimess in Multi-Rate 802.11e WLAN®Foc. WinTECH
unsaturated (for stations2 N g(c), xx(c) = x(c) = y(c) and __ 2006.

h . ( . d BI( ) bk(l) k(()i y( ) d [r%S V. G. Subramanian, K. R. Duffy and D. J. Leith, “Existenand
so the station Is saturated plus O_tt e_nec e OWS_ Send ON&niqueness of fair rate allocations in lossy wireless netey IEEE
packet at every successful transmission by a station and saransactions on Wireless CommunicatipB§7), pp. 3401-3406, 2009.
are also saturated since a ow cannot know in advance whi@§l G: Tan. J. Guttag, “Time-based fairness improves patémce in mult-

.. il b ful. f I stati al rate WLANSs,” Proc. USENIX Annual Technical Conferen@904.
transmissions wi € successiul, Tor all stations we yea[27] X. Wang, K. Kar, “Distributed Algorithms for Max-Min Fa Rate
have that non-bottlenecked ows are unsaturated). Observealiocation in ALOHA Networks,” Proc. Allerton Conferenge2004.
also that while we have some freedom in the choicg(aj,
since the max-min fair allocation for the original problesm i
unigue the values of thgy's and Ny's (which are invariant

iny(c) x(c)) are unique.
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