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DISCLAIMER AND OTHER INFORMATION

These are meant to be a rough set of notes and so could have some informal language.
They give a quick reference to the background and material for the course but are not meant
to be comprehensive. We will provide proofs for certain results but for most details we will
refer the reader to the appropriate book or article.

Notation: N = {1,2,...} is the set of natural numbers, Z = {...,—1,0,1,...} the set of
whole numbers, R = (—o00, 00) is the real line, Z, = {0} UN is the set of non-negative whole
numbers, and R, = [0,00) is the set of non-negative real numbers. Things of importance
will be marked with % with increasing number corresponding to increasing importance.

Sources: Further discussion and details can be found in the following books:

e D. Williams, “Probability with martingales,” Cambridge Mathematical Textbooks,
Cambridge University Press, Cambridge, 1991.

e J. R. Norris, “Markov chains,” Cambridge Series in Statistical and Probabilistic
Mathematics, 2, Cambridge University Press, Cambridge, 2006.

e P. Brémaud, “Markov chains: Gibbs fields, Monte Carlo simulation, and queues,”
Texts in Applied Mathematics, 31, Springer-Verlag, New York, 1999.

e S. N. Ethier and T. G. Kurtz, “Markov processes: Characterization and conver-
gence,” Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986.

e P. Billingsley, “Probability and measure,” Third edition, Wiley Series in Probability
and Mathematical Statistics, A Wiley-Interscience Publication, John Wiley & Sons,
Inc., New York, 1995.

e O. Kallenberg, “Foundations of modern probability,” Second edition, Probability and
its Applications (New York), Springer-Verlag, New York, 2002.

1. PROBABILITY FUNDAMENTALS

Modern probability as set up by Kolmogorov is based on measure theory. Without go-
ing into details of measure theory, our objective is to collect together certain facts and to
elucidate certain key principles and the intuition.

1.1. o-algebra and probability measures. We let the sample-space be () with the sample

point being w € 2. The allowed events are given by a collection of subsets F of €2; if F is a
1
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o-algebra , then (£2, F) is deemed a measurable space. Of course, this begs the question of
what a o-algebra is?
We start by describing an algebra of sets. A collection of subsets F of  is called an
algebra if the following hold:
(1) Qe F;
(2) If F € F, then FC € F where F€ := Q\ F = {w € Q: w ¢ F} is the complement
of F' (in Q); and
(3) If F,G € F, then FUG € F. Inductively, this generalizes to closure (in terms of set
containment) over finite unions.

Examples:

(1) F ={0,Q}, F = 22 (the power set of ©, i.e., the set of all subsets of ).
(2) © = [0, 1] and F = {All finite unions of sets of the form [a, b], [a, b), (b, a], (a, b) where
a,be[0,1]}.
A collection of subsets F of €2 is called a o-algebra if the following hold:

(1) F is an algebra of sets.
(2) F is closed under countable unions, i.e., if {F;}ien is a countable collection of sets

from F, then U;enF; € F.
Examples:

(1) F ={0,Q}, F = 22 (the power set of Q, i.e., the set of all subsets of Q).

(2) (x*x) Q=R and F the Borel o-algebra (smallest o-algebra containing all the open
and closed sets of R). We will discuss this in more detail soon.

(3) (x) Q=R and F := {F C Q: either F or F° is countabe}.

For a collection of sets F (not necessarily an algebra), o(F) denotes the smallest o-algebra
that contains F. If F = {open subsets of R}, then o(F) is the Borel o-algebra of R, denoted
by B(R). Let (€, F1) and (€29, F2) be two measurable spaces. For a given function f : Qy —
Qy where f71(B) := {w € Q; : f(w) € B} € F; for all B € Fy, ie., the inverse images,
we can now define o(f) which is the smallest o-algebra that contains all the inverse images;
note that o(f) = o({f~(B) : B € F,}).

Cartesian products: Let X and Y be two sets, then the Cartesian product is defined as
X xY :={(z,y) : v € X,y € Y}. Similarly we define [[_, X; = {(z1,....,2,) : 2; €
X;Vi=1,...,n} and [[;cy Xi = {(21,22,...) : 2; € X; Vi € N}. Eg. {0,1}2, {0, 1}, N2,
NN, R? R3, RN and R®+. Having defined Cartesian products we define a product o-algebra
using projections. Given a Cartesian product [[,. €2 where {F;}icn is the accompanying
collection of g-algebra , we denote the product o-algebra [[..y Fi. The projection map 7;
in coordinate j € N is a function mapping [], % to €; which takes point (wy,ws,...)
to w;. Then the product o-algebra is given by o(my, m2,...). Using this it is easy to see
that [],.y Fi is also o({][[;ey Bi : Bi € Fi Vi € N}). One can show that B(R") = B(R)".
However, B(RY) # B(R)"; since we deal with the product o-algebra , we will always be using
the latter.

m-systems: A set S C 29 is called a 7-system if it is closed under finite intersections. Eg.
(%) TI(R) := {(—o00, 2] : * € R}. An important fact is that o(II(R)) = B(R).

Probability measure: Given a measurable space (€2, F), a non-negative set function
P: F +— [0,1] is called a probability measure if

(1) (Normalized) If P(Q2) = 1 and P(0) = 0; and
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(2) (Countably additive) If {F}};en is a countable and disjoint (F; N F; = 0 Vi # j € N)
collection of sets from F, then

P(UcnF) = 3 P(F).

We then call (2, F,P) a probability space.
Examples:
(1) @ ={0,1}, F =22 = {0,{0},{1},{0,1}}. Given p € [0,1] we can define P by the
following values {0,1 — p, p, 1} assigned to each element of F.
(2) Q =R, F = B(R). Given p € R and 02 > 0 we define the probability of set B € F
by

%0 1 oo
IP’(B):/ lB(m)W6_<202) dx

where we have

0 otherwise

1 fzeB
1B($)={

Note that for B = [a,b] (a < b € R), i.e., an interval we get

P([a, ) /b L
7 a V2mo?
This is a Gaussian probability distribution - A(u, 02).

(3) @ =10,1] and F = B([0,1]) (defined in the same manner as B(R)). For B € F we
set P(B) to be the Lebesgue measure of B. For an interval [a,b] with 0 < a <b <1,
we get P([a, b]) = b — a, i.e., the uniform probability distribution.

(% % %) Fact: If S C 2% is a m-system that generates F, i.e., 0(S) = F, and we have two
probability measures P; and Py such that P;(A) = Py(A) for all A € S, then P; and P, agree
on F. In other words, defining a probability measure on a 7-system uniquely defines it over
the o-algebra generated by the 7-system.

(xxx) Q =R, F = B(R). Let S = II(R), then defining P on elements of II(R) uniquely
specifies it for B(R)! Note that each element of II(R) is given as (—oo, 2] for some x € R so
we only need to know the following as a function of z,

P((—o0,z]) =: F(z) (Cumulative distribution function)

1.2. Random variables. Let (€2, F) be a measurable space; usually left abstract for con-
venience and richness . A random variable is a function X : Q — R such that X is
(Borel) measurable, i.e., X7'(B) € F for all B € B(R). In general, let (Q,F;) and
(Q9, F3) be two measurable spaces, then X : Q; +— 5 is a random variable if it is F;/F
measurable, i.e., if X~1(B) € F for all B € F,. If P is a probability measure on (2, F), then
given a random variable X we can define an induced probability measure Px by assigning
values based on the inverse map, i.e., Px(B) = P(X'(B)) for all B € B(R).

Examples: We will assume Q2 = [0,1], F = B([0,1]), P is Lebesgue measure on |0, 1]
(same as uniform distribution denoted by Leb([0, 1])). We will generate random variables by
showing the mapping for each w € €.

We will provide a rich enough example for all our purposes later on.
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(1) Given w, expand it in binary form as O.wjws..., then X(w) = w; is a random
variable with respect to (€, F) or ({0,1},2{%}). What is the induced measure?
Px(X =0)=Px(X =1)=1/2.

(2) Given w, expand it in decimal form as 0.wjws ..., then X(w) = w; is a random
variable with respect to (€2, F) or ({0,1,...,9},2{0L9) What is the induced prob-
ability measure? Px(X =0) =Px(X =1)=--- =Px(X =9) = 1/10.

(3) Define X (w) = —log(w). Here we can take the measurable space to be (R;, B(R,)).
What is the induced probability measure? Verify that this yields that exponential
distribution.

The probability space above, i.e., ([0, 1], B([0, 1]), Leb([0, 1])), is rich enough to be the canon-
ical space that we will work with in most of this class. Thus, for convenience it’d be fine to
imagine this space when we take an abstract (€, F,P) to construct our random variables.
o-algebra revisited - Earlier we defined o(f) for a special class of functions. Note that the
f there was a measurable function. Thus, we actually defined o(X) for a random variable
X. Thus, 0(X) = oc({w € Q: X(w) € B} : B € B(R)}). This can be easily generalized
to a sequence of random variables {X;};cz (where Z is at most a countable set) as follows
o({Xitiez) =0({w € Q: X;(w) € B} : i € Z,B € B(R)}). A similar generalization holds
if the random variables take values in another measurable space or different measurable
spaces for each random variable. Way to view or understand: For w € Q, {X;(w) }iez is the
observed sequence, then o({X;};cz) consists of all events/sets F' € F which one can use the
said sequence to decide with certainty if w € F' or not.
Examples:

(1) © = {0,1}? and F = 2% Three random variables: X being the first bit and Y
being the last bit and Z = X @ Y (convince yourself that these are random vari-
ables). What are 0(X), o(Y) and 0(Z)? X~ 1({0}) = {(0,1),(0,0)} and X ' ({1}) =
{(1,0),(1,1)}. Therefore, o(X) = {0,{(0,1),(0,0)},{(1,0), (1,1)}, 2} which is strictly
smaller than F. Work out the other examples on your own.

(2) Q@ =10,1] and F = B([0, 1]). Three random variables given by

[0 ifwelo,05)
Z(w) = {1 if w e [0.5,1]

It is easy to see that o(Z) = {0,[0,0.5),[0.5,1],[0,1]}. What about o(X) and o(Y")?

(x * %) Independence - Let X and Y be two random variables. When are they indepen-
dent? We will present the most general definition and later on show how it corresponds to
what is usually presented.

Definition 1. A set of o-algebra {G;}ien (sub o-algebra of F) are said to be independent if
whenever G; € G; (i € N) and for every distinct iy, ...,i, (n € N), then

n

P(N_,Gy)) = [ [ P(G:)

i=1
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A sequence of random variables {X;}ien are said to be independent if {o(X;)}ien is inde-
pendent. A sequence of events {F,}nen are said to be independent if the indicator func-
tions (bounded random variables) {1, }nen are independent. Note that o(F,) = o(1g,) =

{0, F,, F¢,Q}.

1.3. Expectation. Let X be a random variable and Px the induced probability measure.
Then the expectation of X, E[X], is the integral of X with respect to Px (if it exists), i.e.,

E[X] = / " pdPy ()

[e.9]

If Y = f(X) for some Borel function f, then the expectation of Y (if it exists) is given by

BY| = [ /)P

Examples:

(1) Let Px be a discrete probability measure, i.e., Px = ), pid,, for some (at most)
countable {z;} C R with ). p; = 1, where ¢, is the Dirac measure at z, i.e., for
every B € B(R) we have

0 otherwise

5;;;(3):{1 ifxeB

Then E[Y] = > ,.ypif(z;) if either all terms are non-negative or if the series is
absolutely summable.

(2) Let Px have a density (with respect to Lebesgue measure), i.e., there exists p, a
non-negative, Borel measurable and integrable function such that

Py(B) = / " L(e)px (2)d,

o0

then E[Y] = [7_ f(z)px(z)dx if the integral exists.

We also define independence via expectation. A sequence of random variables {X;}ien is
said to be independent if and only if for every distinct i1, ..., 7, (n € N) and every collection
of bounded measurable functions {f;, }x=1... (each f; begin o(X;, )-measurable) we have

k=1 k=1
Contrast this with the previous definition. This product decomposition also holds for every
integrable function in the case of independence.
Items for review: We will assume knowledge of these from now onwards.

e Mean, variance, covariance and relationship between these.

e Definition of moments, moment generating function, probability generating function.

e Cauchy-Bunyakovsky-Schwarz inequality, Jensen’s inequality.

e Markov inequality, Chebyshev inequality, Chernoff bound.

e Fubini’s theorem and Tonelli’s theorem on exchange order of integration for multiple
integrals.

Details of the above to be added to notes at a later date.
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1.4. Modes of convergence. We assume that we have a sequence of random variables
{X;}ien and we will investigate means by which the sequence converges to another random
variable X. Lots of questions arise though. Since a random variable is a function, are we
talking about convergence for every w € Q¢ Since we also have a probability P on (Q, F),
can we somehow use it to determine convergence? What about some convergence in terms of
the induced probability measures, i.e., {Px, }ien and Px? What about convergence in terms
of means (if they exist)? What about other moments? There is a notion of convergence
attached to each of these questions. The relationship between these will be explored in the
exercises. For use later on we define for a sequence {x, },en C R, the following two quantities
limsup x,, := inf,, sup,,~,, , and liminfz,, := sup,,inf,>,, z,. Both of these always exist
and if they are equal, then lim,,_,o z, exists.

Sure convergence - Here one insists that lim, ., X, (w) = X(w) for all w € Q. This is
generally very strong a notion. Take our usual probability space (2, F,P). It is easy to see
that one can change the value of each X,, at a countable number of w to get Xn such that
sure convergence does not hold another. However, X,, and Xn are much the same: same
means and other moments (if they exist, and even existence or not has same answer), same
induced probability measure, and P(|X,, — X,| < €) = 0 for all ¢ > 0. Note that we modified
the random variables on a set of probability 0 (with respect to IP). This idea leads to next
notion of convergence.

(x % %) Almost sure/almost everywhere convergence (a.s./a.e.) - Here one includes
P in the definition to say that convergence occurs if

P{w e Q: lim X,(w) =X(w)}) =1
n—o0
This is denoted by either of the following
lim X, = X a.s. OR lim X,, =

n—oo n—o0

This notion of convergence extends to a general metric space but requires that X,, and X
come from the same space and take values in the same space. Question:Since lim,, o, X, =
X a.s., does it hold that lim, ., E[X,] = E[X]| (when the expectations exist)? In other
words, can we interchange the order of integration and limits? In general, NO!! On our
usual probability space define the following sequence

4n’w if we [0, 5]
Xn(w) = ¢ 4n* (2 —w) ifwe |5, 1]
0 if we (+,0]

Note that lim,, o, X,, = 0 a.s. but for all n we have E[X,| = 1 # 0! However, there are
conditions under which we can interchange limits and expectation. These are the outcome
of the following results (Proofs can be found in standard textbooks):

(1) (Monotone convergence theorem): Let X,, > 0 a.s. and X, T X (increase), then
E[X,] 1 E[X] < co.

(2) (Fatou’s lemmas): Let X,, > 0 a.s., then we have (a) (Commonly used) E[lim inf X,,] <
liminf E[X,]; and (b) if, in addition, X, < Y for all n with E[Y] < oo, the
E[lim sup X,,] > lim sup E[X,,].

(3) (Bounded convergence theorem): If |X,| < K a.s. for all n, then lim, ., E[X,] =
E[X] < K.
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(4) (Dominated convergence theorem): If | X,| <Y a.s. for all n with E[Y] < oo, then
lim,, o E[X,] = E[X] < E[Y].

(5) (Scheffe’s Lemma): If { X, }nen and X integrable (finite expectations), then lim,, o E[| X, —

X|] =0 if and only if (iff.) lim, . E[X,] = E[X] or lim, .. E[|X,.|| = E[|X]].

(x * %) Convergence in probability - This holds if for all € > 0, we have P(|X,, — X| >
€) = 0. This denoted by lim,,_,,, X, = X p OR lim,,_,, X, £ X. This notion of convergence
extends to a general metric space but requires that X,, and X come from the same space
and take values in the same space. Again, one cannot interchange limits and expectation.
Here the above conditions for (a.s) convergence apply.

(x x x) Convergence in distribution - lim,_,., X, < xif lim,, o F,.(z) = F(x) at all
points of continuity of F', where F}, is the cdf of X, and F' the cdf of F'. Why the restriction
on points of continuity of F'? Let X,, be uniform in [0, %], then lim,,_,. X, 2 0. Note that
lim, 00 Fr(z) =1 = F(x) if x > 0 and lim,, o F,(z) = 0 = F(x) if x < 0, but F,,(0) = 0 for
n while F'(0) = 1. The same definition carries through to vector valued random variables.
However, for random processes we need to consider what is known as weak convergence.
Note that we only need X, and X to take values on the same space but they could be
coming from different probability spaces. Once again, one cannot interchange limits and
expectation. However, the interchange can be safely used for bounded continuous functions.

(% x %) Skorokhod representation theorem - In great generality (depending only on prop-

erties of the probability measure of X)), if lim, ., X, < x , then one can find a common
probability space and random variables {f(n}neN and X with same induced probability mea-
sures (only marginals and not joint distributions) as {X,, }nen and X, respectively, such that
lim,, oo Xn X,

(% % x) Convergence in mean - This holds if lim, . E[|X,, — X|] = 0.

(x x x) Convergence in mean square (m.s.) - This holds if lim,, ., E[|X,, — X|?] = 0.

(x x x) Borel-Cantelli Lemmas - The first lemma is the following,.

Lemma 1. Let {F}, }nen be a sequence of events (from F) such that ), . P(F,) < oo, then
P(limsup F,,) = 0, where limsup F,, := Ny, Ups, F, dee., {w 1w € F, for infinitely many n}.

In words, we say that limsup F,, is all the w that are in F,, infinitely often (i.0.). We
also define liminf F,, = Uy, Ny>m Fr, iee., the {w : w € F, for all large n} for the w that are
eventually in F},. Do Fatou’s lemmas say something here?

The second lemma is the following.

Lemma 2. If {F, },en be a sequence of independent events, then >
that P(limsup F,,) = 1.

Items to review -

nen P(Fn) = oo implies

e Read up proofs of both Borel-Cantelli Lemmas; also note the Kolmogorov 0 — 1 law.
e Review Strong Law and Weak Law of Large Numbers.

e Review Central Limit Theorem - deviations from mean.

e Review Cramér’s Theorem - large deviations from mean.

(xx%) Random process/Stochastic process - Given a fully ordered index set Z (usually
N, Z, Z,, R, R, ) and a (measurable) state space (E, ), a stochastic process is function
X : Z xQ +— FE such that for each i € Z we have X(i,-) : Q — F is an E-valued
random variable.

Examples:
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(1) {X;}ien with each X; being an ([0, 1], B([0,1])) random variable, say uniformly dis-
tributed. In addition, one can insist that the random variables be independent.

(2) (Poisson process) {/N;}icr, where we have for all t € Ry that N, € N is a random
variable that has the Poisson distribution (with parameter ¢). Note that a Poisson
process has independent increments with jumps of height 1.

(3) (Brownian motion/Weiner process) {W,},cr, where we have for all ¢t € R, that
W; € N is a random variable that has the Gaussian distribution (with mean 0 and
variance t). A Weiner process also has independent increments and has continuous
sample paths.

1.5. Conditional expectation. (x* %) Let X be an integrable random variable and G a
sub o-algebra of F, i.e., G C F and also a g-algebra . Then the conditional expectation of
X with respect to G is a G-measurable integrable random variable E[X|G] such that

E[X1¢] = E[E[X|G]1lg] VG € G

If X is any other random variable with these properties, then X = E[X|G] a.s.; hence, called
a version of the conditional expectation. In the above definition, it suffices to satisfy the
equations for a w-system that contains ) and generates G. Given two random variables X
and Y, we have E[X|Y] := E[X|o(Y)]. Eg. the regular expectation E[X] is conditional
expectation with respect to the simplest o-algebra {(), Q}.

Property 1: (Tower property) If H is a sub o-algebra of G, then E[E[X|G]|H] = E[X|H].
Property 2: If Y is a G-measurable and bounded random variable, then E[ XY |G] = YE[X|G].
Also, if X,Y > 0 and max(E[X],E[Y],E[XY]) < oo with Y being G-measurable, then
E[XY|G] = YE[X|G].

Property 3. (Independence) If H is independent of o(X,G), then E[X|o(G,H)] = E[X]|G].
From this one can show the following useful facts: E[X|H] = E[X] and E[E[X|G]] = E[X].

(%) Filtrations - A collection {F; };e7 of sub o-algebra of F with a fully ordered index set
T is called a filtration if for all ¢, j € Z with i < j, we have F; C F,. Define F, = 0(Ujez).
Eg. Let {X,}icz be a stochastic process, then F; = o(X : k < i) is a filtration; it is called
the natural filtration of {X;}iez. If Z is R or R, we may demand other properties for the
filtration but this too advanced for this course.

(x % x) Adapted process - A stochastic process {X;}iez is said to be adapted to a filtration
{Fi:}ier if for all i € Z, X; is F;-measurable. Eg. {X,};c7 is always adapted to its natural
filtration.

(% % *) Stopping time - A function T': Q +— Z is a stopping time if we have either of the
following two equivalent definitions hold,

(1) The event {T" < i} is F; measurable for i € ZU oo, i.e, {w: T(w) < i} € Fj;

(2) The event {T' =i} = {w: T'(w) =n} € F; for all i € ZU {o0}.
Intuition: Let {X;};en be a stochastic process and {F;};en be its natural filtration, then
{T =n} = f.(Xy,...,X,) for some Borel measurable f,, i.e., one can decide based only on
{X1,...,X,} and no future is needed.
Example: Let {F;}icz, be a filtration and {X,}icz, an adapted stochastic process, then
T =inf{n > 0: X, € B} (for some B € F), i.e., the time {X;};cz, first enters B (Hitting
time), is a stopping time. By convention we have inf()) = oo so T" = oo holds only if
{X, }nez, never enters B. It is easy to see that {T" < n} = Up<p< {X,, € B} € F, for all
n € Z,. In contrast, the random variable L = sup{n < 100 : X,, € B} (with sup(@)) = 0 by



STOCHASTIC MODELS FOR WEB 2.0 9

convention for this case ). In general, L is not a stopping time. We will see many examples
of stopping times in this course.

2If 7 were Z, then we will take sup()) = —oo.
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1.6. Exercises. These are exercises for Section 1 with the highlighted ones being for extra-
credit. The introductory text gives the context of the question.

(1) Algebra - Show that § € F, and if Fy, ..., F, € F, then U7 F, € F and N, F, € F.
Hint: Use DeMorgan’s laws.

(2) Algebra - If {F;};en is a countable collection of sets from F, does it hold that
UienF; € F? Hint: work with the following - © = N and F = {F C Q:
either F or F© is finite}. First verify that said F is indeed an algebra and then
test the hypothesis. Addendum: For a o-algebra show that N;enF; € F also holds.

(3) o-algebra - Prove that example (x) is a o-algebra . Compare it to 2%.

(4) m-systems - Prove that {[[,.yB; : B; € F; Vi € N} is a m-system; note that this
generates [ [,y Fi- Prove that o(II(R)) = B(R).

(5) m-systems - For a given function f : ; + Qy where f~1(B) := {w € O : f(w) €
B} € F, for all B € F,, show that {f1(B): B € F,} is a m-system.

(6) Random variables - Prove that X (w) = —log(w) is a random variable and prove that
one gets the exponential distribution. Prove that X (w) = cos(w) is a random variable
and derive the distribution. Hint: use a m-system or continuity of the functions.

(7) o-algebra revisited - Work out the examples not covered in class. Hint: in some cases
you could a 7m-system or continuity.

(8) o-algebra revisited - Let X and Y be two random variables. Prove that Y is o(X)
measurable if and only if Y = f(X) for some Borel measurable function f. [Extra

credit|

(9) Independence - Let us use our canonical probability space. For w € [0, 1] we expand
in binary form as 0.wjwsy.... Let X;(w) = w;. Show the independence of X; and
Xj. Show the independence of {X;}ien. What is the distribution of each random
variable?

(10) Independence - For the same example, we now make the following definitions

X1 (w) = 0.wywswewio - - -
Xo(w) = 0.wowswe
X3(w) = 0.wyws

X4(w) = 0.wy

where we have used a bijection mapping from N? to N. Show that X; is a random
variable for all i € N. Argue that {X;};cn is independent and identically distributed
(i.7.d.) with the uniform distribution on [0, 1]. Use this to generate an R-valued i.i.d.
sequence of any given distribution F. Hint: Since F' : R — [0,1] (with additional
properties), invert it and use it to define the required random variables. Note that
this uses the simplest version of the Skorokhod representation. [Extra credit|

(11) Conwvergence - Show that lim sup X,,, liminf X,, are measurable functions (first show
for sup and inf of random variables and then use m-systems), convince yourself that
sums and difference of measurable functions are measurable, and finally show that
the set where lim,,_,,, X, exists is measurable. This shows that we can assign a
probability in the definition of a.s. convergence without any worry.



(12)

(13)

(14)

(15)

(16)
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Convergence - In example from class where lim,, .. X,, = X but E[X,] does not
converge to E[X], show that the dominated convergence theorem does not apply:
plot Y (w) = sup,, X,,(w) (is it a random variable?) and show that E[Y] = occ.
Convergence - Show the following: a.s. = p = d and convergence in mean square
= convergence in mean = p; this is short-hand for one type of convergence implying
the other, naturally, assuming that all are from the same probability space. For the
moment-based convergence results use Jensen’s inequality, Markov inequality and
Chebyshev inequality. For parts of this, it the next exercise may also be used.
Convergence - If lim,,_,.c X, £ X and Y nen P(| X5 — X| > €) < oo for all € > 0, then
lim,, 00 X,, 2 X. Hint: Use the first Borel-Cantelli Lemma. Show how this implies
that if limy, oo X, = X , then every subsequence { X, } has a subsequence such that
{Xu,,, } that converges a.s.. [Extra credit]

Convergence - Let lim, o X, = X with | X,| <Y a.s. with Y integrable, then show
that lim, . E[X,,] = E[X] and lim,,_,~ E[|.X,, — X|] = 0. Hint: use the result above.
Conditional expectation - If X, Y have a joint density fxy(z,y) and X is integrable,
define the conditional density fxy(z|y) as

fxv(zy) .
L, VT lf > 0
Ixy(zly) = { fr () fr(y)

0 otherwise

Define g(y) := [ g 2fxy(x|y)dz. Show that g(Y) is a version of the conditional
expectation E[X|Y]. Hint: use Fubini’s theorem. What is the equivalent expression
in the discrete case?” Note that this shows how the definition in class includes previous
cases.

Conditional expectation - Prove follow-up statements of Property 3.

Conditional expectation - State and prove convergence theorems for conditional ex-
pectation. State and prove a conditional form of Jensen’s theorem. [Extra credit]
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2. MARTINGALES

Sources: The sources for this chapter are

e D. Williams, “Probability with martingales,” Cambridge Mathematical Textbooks,
Cambridge University Press, Cambridge, 1991.

e R. Durrett, “Probability: Theory and examples,” Second edition. Duxbury Press,
Belmont, CA, 1996.

Stopping times - Before discussing martingales, we will point out a few more properties of
stopping times. Let {F;}icz . be the filtration of interest, then these are:
(1) Any n € Z, is a stopping time;
(2) If S and T are two stopping times (on the same filtration), then so are T'V S :=
max(S,T), T'AS :=min(S,T) and S+ T}
(3) If {T;};en are a sequence of stopping times (with respect to the same filtration), then
sup,,en I, and inf, ey 7T), also stopping times.

2.1. Martingale. Let {F;};cz, be a filtration and {X,},cz, arandom process taking values
in R. Define Fo := 0(Ujez, Fi).

Definition 2. Relative to ({Fi}icz,,P), an adapted process {X;}icz, that is integrable, i.e.,
E[|X,|] < oo for alln € Z., is called

(1) a martingale if B[ X, |F,_1] = Xn_1 a.s. for alln € N;

(2) a submartingale if E[X,|F,-1] > X,—1 a.s. for alln € N;

(3) a supermartingale if B[ X, |F,_1] < X,_1 a.s. for alln € N;

The above can be written as E[X,, — X,,_1|F,_1] % 0, so that in an average sense a
submartingale increases, a martingale stays constant and a supermartingale decreases.
Examples:

(1) Let {X;}ien be an independent and mean 0 sequence. Then the process {S;}icz,
with S =0 and S,, = Z?:l X, for n € N is a martingale with respect to the natural
filtration of { X, }ien, i.e., Fo = {0, Q} and F,, = (X1, Xo, ..., X,,) for n € N. Clearly,
{Si}icz, is adapted and integrable and by the inherent independence, we get

E[Snlfnfl] = Snfl + E[Xn|fnfl] = Snfl + E[Xn] = Snfl

where each equality is to be interpreted in an a.s. sense. Thus, we get a martingale.
Note that {S;}icz, is also a martingale with respect to its natural filtration; note
here that o(S1,Ss,...,5,) = 0(X1, Xo, ..., X,,) (why?). If the means are all positive,
then we get a submartingale, whereas we get a supermartingale if the means are all
negative.

(2) Let {X,}ien be an independent, non-negative and mean 1 sequence. Then the process
{Si}tiez, with Sp =1 and S, = [[;_, X; for n € N is a martingale with respect to
the natural filtration of {X;};en. Again, adaptedness and integrability follow easily,
and from the inherent independence we get

E[Sn‘f.n—l} = E[Sn—anLFn—l] = Sn—lE[Xn|fn—1] = Sn—l

Note that we used the property that S, _; is non-negative and JF,,_;-measurable along
with independence of o(X,,) and F,,—; and E[X,] = 1. Therefore, we again get a
martingale. If the means are all greater than 1, then we get a submartingale, whereas
we get a supermartingale if the means are all less than 1. Here too we could restrict
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attention to the natural filtration of {S;}icz, , but we may not have o(S1,Ss, ..., 5,)
being equal to o(X1, Xo, ..., X,) (why?).

(3) Let Y be an integrable random variable. Given a filtration {F;};cz, define the
following random process X; = E[Y|F;] for all i € Z,; clearly {X;};ez, is adapted
and integrable. By the Tower property of conditional expectation we get

E[Xn|fn—1] = E[E[Y|‘Fn]|fn—l] = E[Y|~Fn—1] = X,1

Again we have a martingale.

(4) If {X;}icz, is a submartingale, then {Y;},cz, with ¥; = —X; is a supermartingale,
and vice-versa. Thus, if {X;}iez . is a martingale, then it is both a submartingale
and a supermartingale.

Note that the Tower property yields the following relationship when m < n:
E[X,| Fin] = EIE[X, | Foca]| Fon) 2 E[X 1| F] 200 Z X,

so the relationship expressed by martingale definitions holds over multiple steps too. We also
get E[X,] % E[X,,]; this is usually used with m = 0. Since X, is measurable with respect
to every JF;, we can consider Y; = X; — X and see that it satisfies the equivalent martingale
definition of X, which means that we can usually assume that our martingale starts at 0.

Let us look at the above processes in a different manner. Imagine we play a game at
every time n € N with our net income per unit stake at time n being X,, — X,,_;. Then
the martingale represents a fair game (on average we gain as much as we lose) where a
submartingale is favourable to us and a supermartingale is unfavourable to us; note that all
casinos operate like a supermartingale! Now imagine staking more than a unit amount, i.e.,
at time n € N the stake is C),; we allow the stake to be negative as well. Note that C,, can
only be F,_j-measurable as our stake cannot take into account anything that happens at
time n. Such a sequence of random variables {C), },en with C), being F,,_;-measurable is said
to be previsible. Now our net winnings at timen € Nis given by ¥, = > " | Ci(X; — X;_1) =:
(C e X),; note that Y,, = Y,,_; = C,,(X,, — X,,_1). By definition set Y5 = 0. This is called the
martingale transform of X by C and is a discrete-integral. Note that Y, is JF,,-measurable.
This yields the following result.

Lemma 3. Let {F,}necz, be a filtration, {X,}nez, a random process that is adapted to the
filtration, and {Cp}nen be bounded and previsible. Define Yo = 0 and Y,, = (C e X),, for
n € N. If {X,}nez, is a martingale, then {Y, }nez, is also a martingale. In addition, if
{Cr}nen is non-negative, then {X,}nez, being a submartingale (supermartingale) implies
the same for {Y,}nez, -

Proof. We know that Y,,—Y,,_1 = C,(X,,—X,,_1). Now by property of conditional expectation
and previsibility and boundedness of C, we have
E[Y, =Y, 1| Fua] = E[Cu(Xy — Xo1)|Fra] = CLE[(Xn — X1) | Fod]
Now both results are immediate. 0
We will apply this result to prove one part of Doob’s optional sampling theorem. Let T

be a stopping time with respect to {F,}nez, . Set Cl' =175, ie., bet 1 until T and then
stop. We have the following result from Lemma 3.

Theorem 1. [Doob’s optional sampling Theorem A] If { X, }nez, is martingale (supermartin-
gale) with respect to filtration {F,}nez, , then the stopped process X* = { Xz, : n € Z4}
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is also a martingale (supermartingale) with respect to the same filtration. This then implies
the following:

E[X1nn] < E[Xo] Vn € Z, if X is a supermartingale; and
E[X71an] = E[Xo] Vn € Zy if X is a martingale

Proof. Note that CT € {0,1} so it is bounded and non-negative. The process {CT },cn is
previsible; we have {CT = 0} = {T < n—1} € F,_; for all n € N, since T is a stopping
time. The result then follows from Lemma 3. U

Note that this doesn’t say anything about E[X7] and relating it to E[Xy]. We have a
cautionary example here. Let {X;};cn be i.i.d. random variables that assume values {—1,1}
with equal probability. Let {S,}ncz, be the sequence of partial sums, i.e., Sy = 0 and
Sp = > o X; when n € N. Then {S,},ez, is a martingale with respect to the natural
filtration of {X;};en where we set Fy = {0, Q}. Define T := inf{n € Z, : S, = 1}, i.e., the
hitting time of state 1. It can be shown that P(7" < co) = 1 while E[T] = oo; we will revisit
this when we discuss Markov chains. Now, even though E[Srx,] = E[So] = 0 for all n € N,
we have E[Sp] = 1 # 0 = E[Sp]. Thus, without any additional conditions we cannot say
when E[S7] = E[Sy] when {S;};cz, is a martingale and T" a stopping time (both with the
same filtration). Some sufficient conditions that allow us to make such a claim are in the
following result.

Theorem 2. [Doob’s optional sampling Theorem B] Given a filtration {F;}icz, and a stop-
ping time T, we have the following results:

(1) Let {Xi}icz, be a supermartingale. Then Xy is integrable and E[Xr] < E[X,] under

each of the following conditions:

(a) T is bounded (for some N € N, T'(w) < NVw);

(b) X is bounded (for some K € R, |X,(w)| < K Vn,w), and T is a.s. finite
P(T < 0) =1); and

(c) E[T] < oo, and, for some K € Ry, {X;}icz, has bounded increments, i.e.,
| X, (w) = X1 (w)| < K Vw&n € N.

(2) Let {X;}icz, be a martingale. If either of (a), (b) or (c) above hold, then E[Xr] =
E[XO];

(3) Let {X;}icz, be a martingale with bounded increments (| X, (w)—X,-1(w)| < K; Vw,n €
N). Let {Cp}nen be a previsible process bounded by Ky and let E[T] < oo. Then
E[(C e X)r] = E[(C ® X)o] = 0; and

(4) Let {X;}icz, be anon-negative, supermartingale and let T' be a.s. finite, then E[X7] <
E[Xo].

Proof. We will prove each statement in order. Let us start with (1). We have Xrn, being
integrable by Theorem 1 with E[X7,, — Xo] < 0. With assumption (i), take n = N and
the result follows. For assumption (i), note that T being a.s. finite implies that lim,, .., T A
n =T. Thus, lim, o X7r, = X7 with X7, being bounded. Therefore, by the bounded
convergence theorem we have lim,,_,o E[X7n,] = E[X7] < E[X(]. With assumption (iii) note
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the following

TAn
Xrpn — Xo =Y _(Xi — Xio)
i=1
TAn
= | X7pn — Xol <D 1X; = Xiy| < K(T'An) < KT
i=1
Since T is integrable and since lim,, oo (X7rn — Xo) = X7 — X0 (a.s.), by the dominated
convergence theorem we have lim,, ., E[ X7, = E[X 7] < E[Xj].
The result for (2) follows by applying (1) to X and to —X; since both are martingales,
they are also supermartingales.
From Lemma 3 we already know that Y = (C' e X) is such that {Y}, },ez, and {Yran}nez,
are martingales and Y,, — Y,,_; = C,(X,, — X,,_1), so we have

|Yn - Yn—1| S |Cn||Xn - Xn—1| S KlKQ

Thus, the result (3) follows by applying (2)(iii).

For the last result, we already know that lim,_,oc X7an = X7 (a.5.), Xran > 0 (as { X }icz,
is non-negative), and E[X7,] < E[X]. Now we can apply Fatou’s lemma to show the
following

E[XT] = ]E[hm inf XT/\n] S lim infE[XT/\n] S ]E[Xo]

Theorems 1 and 2 are important results that are frequently applied.

2.2. Doob’s Forward Convergence Theorem. Here we will state and prove a conver-
gence theorem for martingales. This will be an extremely useful result that we will apply
many times over.

Doob’s Upcrossing Lemma - Let us pick two numbers a,b € R with a < b. Let {F;}icz, be
a filtration and {X;},cz, an adapted process. Define a previsible process {C;}icn as follows:

Ol — 1X0<a

Cn = 1ic, =131 x,<vy + Liow =0y 1 x1<ap 10> 2
Again we set Y = (C' e X). For N € N define Uyla, b](w) to be number of upcrossings of
la,b] made by {X,,(w)}nez,, which is the k € Z; such that we can find 0 < 51 < t; < 55 <
ty < -+ < s <t < N with X, (w) < a and X, (w) > b. What does a sample-path of YV’
look like? Need to add Figure 11.1 from D. Williams’ book here. For a € R define ay =a V0

and a_ = (—a) V0 = —(a A 0); these are positive and the negative parts of a. From the
figure it is easy to see the following inequality (Prove this)

Yy(w) = (b — a)Un[a, b)(w) — (Xn(w) —a)-
We now have the lemma.

Lemma 4. [Doob’s Upcrossing Lemma] Let {X;}icp be a super martingale, then for all
N € Z, we have

(b — a)E[Un[a,b]] < E[(Xy —a)-]
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Proof. By construction C is previsible, bounded and non-negative, so by Lemma 3 {Y;};cz,
is a supermartingale and E[Yy] < E[Yy] = 0. Now the result follows by using the pictorial
inequality above. 0

From this we have an important corollary.

Corollary 1. Let {X;}icz, be a super martingale with sup,, E[|X,|] < co. For a,b € R with
a < b, define Uy[a,b] = limy 1 Uyla,b] (sequence on right is non-decreasing). Then we have

(b= a)E[Uscla, b]] < |a] + sup E[| Xy[] < oo,

which then implies that P(Ux[a,b] < o0) =1, i.e., Ux[a,b] is a.s. finite.
Proof. By Lemma 4 we have

(b= a)E[Uyla, b]] < E[(Xy —a)-] < |a| + E[|Xx] < |a| + sup E[|X,[] < 00

Now we let N — oo and use the monotone convergence theorem to assert the convergence
of the expectations, i.e., limy_,o E[Un][a, b]] = E[Uy|a, b]]. The result. then follows. O

Alternate statement of Doob’s Upcrossing Lemma - Sometimes the Upcrossing Lemma is
also stated as follows.

Lemma 5. [Doob’s Upcrossing Lemma] If {X;}iez, is a submartingale, then
(b — a)E[Uy[a,0]] < E[(Xy — a)+] = E[(Xo — a)4]

Proof. Let Y,, = a+ (X,, —a); for all n € Z,, then {Y,,},cz, is a submartingale 3. Note that
this upcrosses [a, b] the same number of times as {X,}nez,, so we have (b — a)Uyla,b] <
(C'eY')y (for the same previsible process {C,, }n € N as in proof of Lemma 4). Let D,, = 1-C,
foralln € N. Now Y, — Yy = (CeY)y + (D oY)y and by Lemma 3 we also have
E[(DeY)n]| <E[(DeY)o] =0sothat E[(CeY)y] < E[Yy — Yy] which yields the result. [

We are now ready to state and prove an important convergence theorem.

Theorem 3. Let {X;}iez, be a super martingale with sup, E[|X,|] < oo, then Xo =
lim,, .o X, a.s. exists and is finite.

Proof. For all w define X (w) = limsup X,,(w) (X« is Foo-measurable). Note that X,
as defined takes values in [—00, 00| and the result that we’d like to prove is that X, =
lim,,_. X,, a.s.
Since we allow convergence in [—o0, 0], the only way there is no convergence (for an w)
is if liminf X, (w) < limsup X, (w). So we have
A= {w: {X,(w)}nez, doesn’t converge to a limit in [—o0, co]}
= {w: liminf X, (w) < limsup X,,(w)}
= Unbea<h {w : liminf X, (w) < a < b < limsup X, (w)}

-~

::Aa,b

where Q is the set of rational numbers (which is countable).

3This is a homework problem.
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Since the sequence is in the vicinity of lim inf X, (w) and limsup X,,(w) (as close as neces-
sary) infinitely often, we have

Aop CHw : Uxla, bl(w) = oo},

but Corollary 1 shows that P({w : Uxla,b](w) = co}) = 0. Therefore, using the countable
decomposition we get

P(A) < Z P(Aqp) = 0.
a,beQ:a<bd
Therefore, X, = lim,_, X, exists a.s. in [—00, 00].
Now use Fatou’s Lemma to yield

E[|Xo|] = E[liminf | X,,|] < liminf E[|X,|] < supE[|X,|] < oo,

which then implies that P(X,, < oc0) = 1. O

Here is Corollary of this result that reveals its generality.

Corollary 2. The following hold:

(1) If {Xi}icz, is a submartingale/martingale with sup, E[|X,|] < oo, the result holds;

(2) If {Xi}icz, is submartingale/supermartingale/martingale that is a.s. is bounded (by
K), then the result holds; and

(3) If {Xi}iez, is a non-negative supermartingale, then the result holds.

Proof. For (1) we prove the result by using —X. In (2) note that boundedness implies
sup,, E[|X,|] < K < oo. Finally, for (3) we have E[|X,,|]] = E[X,] < E[X(] for all n € Z, by
non-negativity and the supermartingale property, and then sup,, E[|X,,|] < E[Xo] < co. O

As with earlier examples, we should keep in mind that E[X,,] may not converge to E[X].
An alternate statement of the martingale convergence theorem (Theorem 3) is the following.

Theorem 4. If {X,} ez, is a submartingale with supE[(X,,)1] < oo, then {X, }nez, con-
verges to a limit X a.s. with E[|X]|] < oco.

The proof is the same as Theorem 3 except for the last part where one has to use Fatou’s
lemma twice. One also has to use the fact that E[(X,)_] = E[(X,)+] — E[X,] < E[(X,)+] —
E[Xo] where the last inequality follows by the submartingale property.

2.3. Azuma-Hoeffding Inequality. Here we will prove the Azuma-Hoeffding inequality
while mentioning some uses of it. The proof will be based on Doob’s submartingale inequality
that we’ll introduce first. For a random variable X and a set F' € F, we define E[X; F] :=
E[X 1] (if the expectation exists).

Theorem 5. [Doob’s Submartingale Inequality] Let {X;},cz, be a non-negative submartin-
gale (with respect to some filtration {F;}icz, ). Then, for ¢ > 0, we have

c]P( sup Xj > c) <E {Xn;{ sup X > CH <E[X,], VneZ,

0<k<n 0<k<n
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Proof. Fix an n € Z, and let F' = {supy<;<, Xx > c}. Then F' is a disjoint union (F' =
Uo<k<n ;) of the following
Fo={Xo > ¢}
Fi = (Mo<i<k—1{Xi <c}) N{Xx >¢}, 1<k<nwithneN
It is easy to see that each Fj, € F, and X, > c on Fj. Therefore,
E[Z,; Fy] > E[Zy; Fy] > cP(Fy),

where we used the submartingale property in the first inequality and non-negativity in the
second. Summing over k =0,1,...,n yields,

E[Z,: F] > cB(F),
and since E[Z,,; F| < E[Z,], the result follows. O
The main application of this result follows from the next Lemma.

Lemma 6. Let {X;}icz, be a martingale (with respect to some filtration {F;}icz, ) and let
c:R— R be a convex function with E[|c(X,)|] < oo for alln € Z,, then {c(Xi)}icz, is a
submartingale.

Proof. Apply the conditional form of Jensen’s inequality. O
We can now state and prove the Azuma-Hoeffding inequality.

Theorem 6. [Azuma-Hoeffding Inequality] Let {X;}icz, be a martingale null at 0 (with
respect to some filtration {F;}icz, ) such that for some sequence {c, nen of positive constants,
we have

|Xn - Xn—1| S Cn, Vn € N7
then, for x > 0,

P ( sup Xy > x) < exp <—lf—2>
0<k<n 2> 1 G
P(|X,| > x) <2exp (_137_2)
23 G
Before proving this theorem we prove a simple lemma.
Lemma 7. Let X be a random variable with a < X < b, then for any 6 € R,
6?(b — a)?
8

Proof. First note that log E[e?*] = sE[X] + log E[e’ X ~EXD] 50 it suffices to show that with
E[X]=0and a < X <b (where a <0 and b > 0), we have

0%(b — a)?
8

is a convex function, by definition we have

log E[e"*] < OE[X] +

log E[e?¥] <

Since e?*

691<x_a b b_xeﬁa
~“b—a b—a

Vo € [a,b]
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Now taking expectations and using E[X] = 0, we get
b a
E eHx < e@a . 696
= b—a b—a
Now f(0) = log (bieea — Leeb) is a convex function of § € R (see non-negativity of second

—a b—a
derivative below). Note that f(0) = 0. We get the following

df —ab(e? — %)
o) =
d9< ) befa — qedb
d2_f( ) B _aeeb be@a
do? — befa — qeft pefa — qebh

d? a
Note that Z—Z(O) = 0 and —=(0) = p(1 — p)(b — a)* where p = % € [0,1]. Thus,

(b—a)®

do?
d2 2 2 2
d_QJ;(@) < %. It then follows using Taylor’s theorem that f(6) < =% which using the
monotonicity of exp(-) gives our result. O

We should note that in the intermediate step we are bounding the moment generating
function of X by a random variable that only takes values a and b but has the same expec-
tation. We will revisit this in the exercises.

Now we prove the Azuma-Hoeffding inequality.

Proof of Theorem 6. Since €% is a convex function of z for all § € R, using Lemma 6 we get
that {e?%i},cy is a submartingale; note that it is also non-negative. By the monotonicity of
exp(-) we also know the following for 6§ € Ry,

IF’( sup X > x) =P ( sup e/Xk > eeg”)
0<k<n 0<k<n
Now by Doob’s Submartingale inequality (Theorem 5), we get that
P ( sup X > x) < e_ng[eQX"] Vo € Ry

0<k<n

Consider {€?*"};cy, we have by the null 0 and bounded increments property that

Xn = Z:l;X,L — Xifl, and

X <D IXi = X[ <) e<oo VneEN,
i=1 i=1
which also implies that e’*» € [exp (=0 > ¢;),exp (0>, ¢;)] for all n € N. Now using
adaptedness, boundedness and Lemma 7, we get
E[eexn:l — E [ee(Xn_anl“!‘anl)}

=E [e(’X"*E [eG(X"_X"*1)|]'—n_1H

022

n 626%
<E [eeX”‘le2] = e 2 R[]

2 2
4 ?:1 ‘n
<e
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Thus, we have

02 Zn: c,%
IP’(Sup Xk2x>§e_9xe 5

0<k<n

Since the right side holds for all # € R, , minimizing over # yields our result; by elemen-

tary calculus, the minimizer is 6* = ﬁ Since {X,, > x} C {supgcj<, Xp > z}, the
second result also follows; the factor 2 comes from the same bound on —X,, (which is also a
martingale). O

Sometimes we may need to use an extension of Theorem 6, which we present without
proof.

Theorem 7. [Bernstein’s inequality for martingales] Let {X;}icz, be a martingale null at 0
(with respect to some filtration {F;}icz, ) such that for some K > 0, we have

|1 X, — X, 1| <K, VneN,
Denote the sum of conditional variances by
¥2 =Y E[(Xi — Xio1)*| Fici]
i=1
Then for all constants t,s > 0, we have

t2
Pl sup Xp>tand¥?* <s| <exp|—-———
(nggn * " > B p< 2(3"‘[(’5/3))
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2.4. Exercises. Please show all your work.

(1) Stopping times: Prove the three properties listed about stopping times.

(2) Martingales: Suppose {X,, }nez, is a martingale with respect to filtration {F, }nez,
show that {X, }necz, is also a martingale with respect to its natural filtration. Hint:
Use the definition of conditional expectation and the Tower property.

(3) Martingales and Jensen: Prove the following: If { X, },.cz. is a submartingale and ¢(-)
an increasing convex function with E[|¢(X,,)|] < oo for all n € N, then {¢(X,) }nen
is a submartingale. Hint: Use the conditional form of Jensen’s inequality. Use this
result to prove these two results. First, if {X,,},ez, is a submartingale, then so is
{(Xy, — a)4 }nez, for any a € R. Second, if {X,,},ez, is a supermartingale, then so
is {X,, A a} for any a € R. Generalize this to show the following: if {X,,},cz, and
{Ya}nez, are submartingales (on the same filtration), then so is {X, VY, }nez, . (Last
part is Extra credit.)

(4) Martingales: Let { X, }nen be an independent sequence with E[X,,] = 0 and var(X,,) =
o2 for all n € N; define S, = > | X,,,, 2 = > _ 02 (with Sy = so = 0). Then
{S2 — s2},ez, is a martingale.

(5) Martingales and stopping times: Let S and T' be stopping times with S < T'. Define
the process {1(s,r)(n) }nen by

Lsry(n,w) = {1 if S(w) <n <T(w)

0 otherwise

Prove that {1(s7)(n) }nen is previsible, and deduce that if { X, }nez, is a supermartin-
gale, then E[Xrp,| < E[Xgn,] for all n € Z,. (Assume a common filtration.)

(6) Martingales and the switching principle: Suppose { X, }nez, and {X2} ez, be two
supermartingales (on the same filtration), and N is a stopping time (with same
filtration) such that X}, > X%. Then show the following

Yo = Xolivony + Xoliveny 1€ Zy
Zy = Xplnsny + X2l Neny N E Zy

are supermartingales.
(7) Martingale convergence: Consider the following process: Xy = 0, when X;_; = 0, let

1
1
2k )

0 w.p. 1—%

Xp=4¢-1 w.p.

and when X;_; # 0, let X} = kX}_; with probability % and 0 otherwise. Show that

lim, e Xn = 0. Now use the second Borel-Cantelli lemma to show that {Xn}nez,
cannot converge to 0 in the a.s. sense. Simulate this process.

(8) Martingale convergence: Give an example of a martingale {.S,, }nez, withlim, . S, w
—o00. Hint: Let S, = X7 + -+ + X, for independent but not identically distributed
{ X, }nen with E[X,] = 0 for all n € N. Simulate your example. [Extra credit]

(9) Martingale convergence: Let {X,}nez, and {Y,}necz, be positive integrable and
adapted to filtration {F, },ecz,. Suppose

E[X, 1) F] < (1+Y,)X,
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(11)

(12)

(13)

(14)

VIJAY G. SUBRAMANIAN

with ZnEZ+ Y, < 00 a.s.. Prove that {X,,},cz, converges a.s. to a finite limit. Hint:
Find a closely related supermartingale and use the convergence theorem.

Optional sampling: A monkey breaks into an office and takes a liking to the computer
and keyboard on the desk. It starts typing capital letters {A, B,...,Z} picking
them at random. How long will it take on the average for the monkey to type
TATTATTAT (consecutive sequence)? Hint: Just before each time n € N, a new
gambler arrives and bets $1 that the n'” letter will be T'. In case this doesn’t happen
(a loss), the gambler leaves. If, instead, the event happens (a win), the gambler
receives 26 times what the bet was, i.e., $26; all of the winnings are then bet on the
event that the (n+1)" letter will be A. Again, if it is a loss, then the gambler leaves
(empty-handed), but if it is a win, the gambler gets $262 all of which is then bet on
the event that the (n + 2)% letter will be T. This procedure repeats through the
TATTATTAT sequence. Let T be the first time by which the monkey has produced
the consecutive sequence TATTATTAT. Show that 7 is a stopping time that is
a.s. finite. Then using Doob’s optional sampling theorem show why E[T] = 26° +
269 +26° +26. What is the answer if the monkey had to produce ABRACADABRA
instead? [Extra credit]

Submartingale inequality: Prove Kolmogorov’s inequality, i.e., let {X,},en be an
independent sequence with E[X,] = 0 and E[X?] = 02 < co and let S, =Y. | X,
with Sy = 0. Show that

P ( Sup Sl > ) < Yar(5n)

0<m<n ZE2

Hint: Note that {S,}nez, is a martingale, so define an appropriate submartingale
using Jensen’s inequality and apply Doob’s inequality.

Submartingale inequality: Let { X, }nez, be a martingale with Xy = 0 and E[X?] < oo
for all n € Z,. Show that

E[X?]
Pl sup X,,>z2) < —=or B
(Ogmlgn o ) - E[X%] + :L‘2

Hint: Use the fact that {(X,, + ¢)*}nez, is a submartingale and optimize over c.
Ezxample from class: Let {X;};en be i.4.d. random variables that assume values
{—1,1} with equal probability. Let {S,},cz, be the sequence of partial sums, i.e.,
So=0and S, =) ", X; when n € N. Then {5, },cz, is a martingale with respect
to the natural filtration of {X;};eny where we set Fy = {0, Q}. Define T := inf{n €
Z, : S, = 1}, i.e., the hitting time of state 1. For # € R, E[e?X] = cosh(#) so
that E[e?%/ cosh(f)] = 1 for all n € N. Using this show that M? = (cosh(#)) "en
forms a martingale. Now consider # > 0, use the optional sampling theorem and
the bounded convergence theorem to show that E[M{] = 1 = E[(cosh(d))Te?].
Now argue using either the monotone convergence theorem or bounded convergence
theorem that P(T" < oo) = 1. Using the quantities derived previously find out the
probability generating function of T'. Using the probability generating function prove
that E[T] = +oo. [Extra credit] We will revisit the same problem when studying
Markov chains.

Hoeffding bound versus large deviations bound: Let {X;}ien be independent such that
| Xi| < aand E[X;] =0 for all i € N. Let {S, }nez, be the partial sums process which
is a martingale. Thus, we can get a bound for P(S,, > x) using the Azuma-Hoeffding
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inequality *. Note that as a part of the proof we showed that E[e?*] < cosh(f) which
is the moment generating function of a random variable Y that assumes values —a
and a with equal probability. Use this idea and Cramer’s Theorem/Chernoff bound
to find an alternate bound for P(S,, > z). Compare the two bounds: is one better
than the other, and if so, prove it.

4This is called the Hoeffding bound.
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3. DISCRETE-TIME MARKOV CHAINS

Sources: The sources for this chapter are

e J. R. Norris, “Markov chains,” Cambridge Series in Statistical and Probabilistic
Mathematics, 2, Cambridge University Press, Cambridge, 2006.

e P. Brémaud, “Markov chains: Gibbs fields, Monte Carlo simulation, and queues,”
Texts in Applied Mathematics, 31, Springer-Verlag, New York, 1999.

e R. Durrett, “Probability: Theory and examples,” Second edition. Duxbury Press,
Belmont, CA, 1996.

3.1. Markov chains. Let (2, F,P) be the underlying probability space ® and assume that
(I,7) is a measurable space where [ is a finite or countable set and Z = 2/; often I = N/Z, /7Z
(or subset) but we can have multi-dimensional and symbolic values as well. An element i € [
is called a state and [ is called the state-space. A matrix/operator P = (p;; : i,j € I) is
called stochastic if P;; > 0 and Zjd Pj=1forallie [, ie, (P;:jel)is adistribution
on I. One can also represent P by a figure. For the most part we will only discuss time-
invariant Markov chains (i.e., with P not a function of time), and only note that many of
the definitions (not all though) can also be carried over to the time-varying case.

A random process {X; }iez, taking values in [ is a discrete-time Markov chain with initial
distribution p and transition matrix P, (i, P) Markov, if

(1) Xy has distribution u; and
2) For n > 0, conditional on X,, =14, X, has distribution (P;; : j € I).
+ j

Equivalently, {X;}z, is a Markov chain with initial distribution p and transition matrix P
if for all {ig,41,...,in} (N € Z;) we have

P(Xo =i, X1 = i1,..., Xn =in) = XijPigiy Piyiy - - - P,

071 IN-1IN

Define AP and P" by matrix mulitplcation . Denote by Pi(f) =P(X, = j|Xo = i); sometimes
we will also use P;(X,, = j) to denote the same 7. The Markov property also yield the follow
(semi-group) property that is sometimes called the Chapman-Kolmogorov equation,

P =Y RURT =Y PR vnome L,
kel kel

We now state a few properties:

(1) Conditional on X,, = ¢ (for some m € Z.) we have that {X,,1n}nez, is (6;, P)
Markov and is independent of the random variables (Xg, X, ..., X,,). Note that by
the conditioning X,, is a constant, and hence, independent of everything.

(2) We have P(X,, = j) = (uP"); and Pi(X,, = j) = P(Xpir = j| X = J) = (P")y; =
Pi(j”); the latter is the n-step transition matrix.

(3) Let {X;}icz, be a (u, P) Markov chain and let f : I + I’ be a measurable map,
then {f(X;)}iez, need not be a Markov chain. As a consequence, if we lump states

together and relabel, then we need not produce a Markov chain.

°Tn the homework, we will show how it is sufficient for our purposes to consider our typical example.
SHomework will be to show that these exist even in the countable case.
"Note that this is same as assuming that the initial distribution u equals ¢;, the Dirac measure at 1.
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We say that state i leads to state j (denoted by i — j) if P;(X,, = j for some j) > 0. We
say that state i communicates with state j (denoted by i <> j) if i — j and j — i. The
following properties hold:

(1) For distinct states ¢ and j, either of these statements are equivalent: i — j; pr
0 for some n > 0; and P, ;, P, -+ FPi,_,:, > 0 for some finite sequence of states

(10,71, .-, 1n) With ig = ¢ and i,, = j.
The property of communication (<») is an equivalence relationship that partitions I into
communicating classes where states communicate with each other. Such a class C' is said to
be closed if for all : € C', if « — 5 for some 5 € I, then 5 € C| i.e., loosely put there is no way
to escape C. A state i is said to be absorbing if {i} is a closed class. A transition matrix P
is said to be irreducible if I is the only communicating class, i.e., for all ¢, j € I there exists

an n > 0 such that Pi(f) > 0.

3.2. Hitting times. Given A C I we define H* = inf{n € Z, : X,, € A} (with the value
being +o0o if X,, ¢ A for all n € Z.) to be the time that the Markov chain {X,, },ecz, hits
the set A; note that this is a stopping time (what is the filtration?). The probability that
starting in state ¢ and hitting A in finite time is defined to be

hit = P(H* < +00)
We denote the mean amount of time to hit set A when starting from i to be k! = E[H];

note that k7! is infinite if A < 1 and can be infinite even if h* = 1. The main task we will
consider now is to derive recursive relationships for A and k.

Theorem 8. The sequence of hitting probabilities {h'}ic; is the minimal non-negative so-
lution to the following system of linear equations

A {1 ifie A

(2 .
> jer Bij hit otherwise

Proof. If Xy =i € A, then H* = 0 and the first part of the result follows. If X, =i &€ A,
then it follows that H4 > 1 so that we can consider reaching some state at time 1 and then
repeat the assessment. By the Markov property we get

Pi(H* < ool Xy = j) = P;(H* < 00) = b,
and therefore we get

IP’i(HA < 00) = Z]P’i(HA < 00, X1 =7)

JEI
=Y Pi(H* < 00| X; = j)Pi(Xy = j) = Y _ Pyht
j€el jeI
For minimality, see the book by Norris. U

Theorem 9. The sequence of mean hitting times {k* }ic; is the minimal non-negative solu-
tion to the following system of linear equations

' 1+ 04 Pykst  otherwise
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Proof. The proof proceeds just the same as for Theorem 8. If X, =i € A, then H* = 0 and
kA =0. If Xg =i ¢ A, then H* > 1 and by the Markov property we now have

EJHY X1 =j] =1+ Ej[HY =1+ k]
when the state at time 1 is 7, and so we get

K= D E(HA Xy = B(Xs =) = 14+ Y Pk

Jel JEA
For minimality, see the book by Norris. 0

This argument can be extended to the probability generating function, and hence the
distribution as well; we will have to condition on the event { H4 < +oc}.

Let us apply this to the Optional Sampling problem: {X;}ien is i.i.d. taking values
{—1,+1} with equal probability and {S;}cz, is the partial sums process which we analyzed
using martingale theory; in fact, the partial sums process is also a Markov chain with g = dq
and for i € Z, P,;41 = Pi;—1 = 1/2. Let A be {1}; note that the skip-free nature of the
process allows us to take A = {i > 1} as well, and we will do so. Let us find hj and kg'.
The equations are:

1 12>1 0 1>1
hA 41 . kA .
== =0, k'={1+5 i=0
hA  +hA . EA kA .
i thi o 1+ 171; 1)

It is easy to argue that h =1 as one can reach A from any state i < 0 in finite time by a
sequence of +1s; note that this is also the solution given by the equations. Similarly, we can
iterate and find that k%, = (1 +i)(k' — i) for all i < 0, and since k%, > ko > 1, it follows
that the only non-negative solution is k! = +o0o for i < 0. Note that we have established
our required result in a much simpler manner.

3.2.1. Strong Markov property. By discussion earlier, we know that conditioning on X,,, =i
we have {X,, 4y }nez, being a (J;, P) Markov chain along with independence with respect to
the past. What happens when we condition on X7 = ¢ where T" a random time? Do we still
get a (0;, P) Markov chain? Obviously it doesn’t hold for an arbitrary random time: let us
say that the property hold for 7', then it cannot hold for 7"— 1 as we will be jumping to i at
T irrespective of P. We have the following theorem.

Theorem 10. Let { X, }nez, be a (i, P) Markov chain and let T be a stopping time associated
with { Xy }nez, , i-e., T is stopping time with respect to the natural filtration of {X,}nez, -
Then, conditioned on T < oo and Xt = i, {Xrin}tnez, s a (6;, P) Markov chain that is
independent of (Xo, X1,...,Xr).

Proof. 1If B € 0(Xy, X1,...,X7), then BN{T =m} € 0(Xo, X1,...,Xpn) for m € Z,. Now
by the Markov property we get
P{ X7 = jo, X1 = J1,- -, Xrn = Ju} N BOAT = m} N{ Xy = i})
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Now summing over m € Z, and dividing by P(T" < oo, X7 = i) (to get the conditional
probability), we get
]P)({XT = j0>XT+1 = jla s 7XT+n = ]n} N B’{T < OO7XT = Z})
= IP)Z({XO = j(),Xl = jl, c. 7Xn = jn})]P)(BHT < OO,XT = Z})

3.3. Recurrence and Transience. State ¢ is said to be recurrent if
P;(X,, = ¢ for infinitely many n) = 1.
State ¢ is said to be transient if
P;(X,, = ¢ for infinitely many n) = 0.

The Kolmogorov 0-1 law ensures that there is no other possibility.
For a fixed state ¢ let define a sequence of stopping times {sz} jez, as follows:

Ti(w) = 0 if j =0
0 linf{n > T¢_y(w) : X,, =i} otherwise

Using these we can define the sequence of excursion times {sz }ien by
Si(w) = (T)(w) = T}, (w)) Lz w)<oc)
Using the Strong Markov property it can be argued that conditional on Tj_l < 00, S; has

the same distribution as le , the first passage time to j which we also denote as Tj.

Let 1¢x,—;; be the random variable that is 1 if X,, = j and 0 otherwise. Then the total
number of visits to i is given by V; = >~ 1(x,—i}. Note that E;[V;] =" P;(X, =1) =
> Pi(l-n). Let f; := Py(T; < o0), then P;(V; > r) = fI'. This then implies the following
result that we present without proof.

Theorem 11. One of the following two statements occurs:
(1) if P,(T; < 00) = 1, then state i is recurrent and E;[V;] = > "7 P-Z-n) = 00;

1

(2) if Py(T; < 00) < 1, then state i is transient and E;[V;] =™ Pl(ln) < 00
In other words, a state is either recurrent or transient.

We then have an important property: transience or recurrence is a property of a commu-
nicating class, i.e., either all states are recurrent or they are transient. Additionally, we have
the following: every recurrent class is closed and every finite closed class is recurrent. The
proofs use Theorem 11. Finally, if P is irreducible and recurrent, then P(7; < oo) = 1 for
all 2 € I.

3.4. Invariant distributions, Positive recurrence and Ergodic theorem. A measure ®

7 is said to be invariant if 7P = w. If 7 is the invariant distribution, i.e., invariant and prob-
ability distribution, of a Markov chain with transition matrix P, then given that {X;},cz, is
(7, P) Markov, then so is { X }icz, for every m € Z,, i.e., starting a Markov chain with
the invariant distribution yields a stationary random process. Often, the invariant distribu-
tion will also be deemed the equilibrium distribution. It is easy to see that for [ finite, if
lim,, 00 Pi(j") = 7;, then 7 is an invariant distribution.

8In this case a sequence of non-negative numbers, the sum of which can be finite or infinite.
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We will now find an invariant measure for an irreducible and recurrent transition matrix
P. Fix a state k and for every state i € I define /¥ to be the expected time spent in state i
between visits to state k, i.e.,

v =Ex

Tp—1

2 1{Xn=i}]
n=0

We have the following result.

Theorem 12. Let P be irreducible and recurrent, then

(1) v =1;

2) vF = (¥ i € I) satisfies v* = ~*P; and
(2) " = (v 7=

(3) 0<~F <oo foralliel.

Proof. The first part is obvious. For the second part we first use the fact that T}, is a stopping
time, and so the event {7} > n} is contained in o(Xy, Xi,..., X,,—1). This and the Markov
property then imply that

Pk<Xn_1 = Z,Xn :j and Tk Z n) = Pk(Xn—l = Z,Tk 2 TL)PZJ

Since P is recurrent, under P, we have T}, < oo and Xy = X7, = k a.s. so that

Ty 00
n=1

n=1
= Pu(X,=i,Ti >n)
n=1

v =B = K

=3 Pu(Xu1 =4, X =i, T > 1)
n=1 jeI

— ZZPk(Xn,l =4, X, =1,Ti > n)
jel n=1

= Zzpk(anl =7,Tx > n)Pj;
je€I n=1

=Y P Pu(X,=jTi—1>n)
jel n=0

T —1

=Y PiBe | Y L=y | = D P

JeI n=0 jel

Since P is irreducible, there is an n,m > 0 such that P{” > 0 and PU™ for every i € I.

Using the recurrence above, we have 7% > yl,jPézn) > 0 and nyi(k”) < 4% < 1 which proves
our claim. U

In fact, one can prove a stronger statement that every invariant measure will be a multiple
of ~*.

State 7 is said to be positive recurrent if m; = E;[T;] < oo; this obviously subsumes
recurrence. If m; = +o0, then state 7 is said to be null recurrent. One can then show that
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for an irreducible P, positive recurrence holds for every state, P has an invariant distribution
7 such that m; = %, and these are equivalent statements. Note that »_ jer 7} = m; so that

m; being finite implies that +* is summable. If I is finite and P is irreducible, then we can
provide an easy proof for positive recurrence through analytical techniques. Considerable
effort goes into establishing transience, recurrence and positive recurrence of the states of a
given Markov chain when the state-space is not finite.

Thus, far we have established when there exists an invariant distribution. However, in

applications we’d also be interested in finding out when Pi(f)

said to be aperiodic if PZ(Z") > 0 for all sufficiently large n. For an irreducible P having one
state being aperiodic implies that all states are aperiodic as follows from the lemma below.

— mj as n — oo. A state ¢ is

Lemma 8. If P is irreducible with an aperiodic state i, then for all states j, k we have
P](,?) > 0 for sufficiently large n. As a consequence, all states are aperiodic.

Proof. Since P is irreducible, there exist r,s > 0 with P](ZT )~ 0 and PZ(,:) > 0. Since 17 is
aperiodic, for sufficiently large n we have P > 0. This then implies that P;,:JFMS) >

2

PIPIPY > 0. a

Ju T %
We now state and prove the main convergence theorem for Markov chains.

Theorem 13. Let P be irreducible and aperiodic with invariant distribution m. Let p be any
distribution and let {X;}icz, be a (u, P) Markov chain. Then

lim P(X,, =j)=m Vjel.
n—oo
In particular, this implies that lim,, Pi(f) =m; foralli,j € 1.

Proof. The proof is using a general technique known as coupling. Let {Y;};cz, be a (7, P)
Markov chain that is independent of {X;};cz,. Fix a state b and set

T=inf{neN: X, =Y, =0b}.

First we will prove that P(T" < co) = 1. Note that the process W,, = (X,,,Y,) is also a
Markov chain with transition matrix P k() = P Pw and initial distribution fig ) = pim.

By the aperiodicity of P, we have for all (i, k) and (j,1) that P((;,z)(m = Pi(;L)Plgf) > 0 for

n sufficiently large. Thus, P is irreducible. Also, P has an invariant distribution 7 that is
given by () = mm; so that P is positive recurrent. Now T is the first passage time to
(b, b), and hence, it follows that P(T" < co0) = 1.

Now we will define a new process Z,, as follows

X, ifn<T;

Vn € 7., set 7, =
e {Yn ifn>T.

Thus, Z, follows X,, until the time both X,, and Y,, hit k after which it follows Y,,. (Need
to add Figure on pg. 42 from J. Norris Book.) By the strong Markov property, we know

that {(X7in, Yrin) tnez, and {(Yr4n, X14n) fnez, are (dpp), P) Markov chains that are in-
dependent of the past up to 7. Then it follows that {(Z,, Z")}nez, is a (ji, P) Markov chain
where Z) = X, 17y + Yalnery. Thus, it also follows that {Z,},cz, is a (u, P) Markov

chain.
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By the definition of Z,, we know that
P(Z,=j)=PX,=jn<T)+PY,=j,n>T),
but since {Z,}nez, is (1, P) Markov, we also have P(Z, = j) = P(X,, = j). Therefore,
[P(Xn =) — 5] = [P(Zn = j) = P(Ys = j)
=|PX,=4n<T)—PY,=4n<T) <P(T>n)
Since P(T' < 00) = 1, the right goes to 0 as n — oo, which finishes the proof. O

Note that we got a strong result that also yields the rate of convergence. The last inequality
can be turned into a total variational metric inequality.
Without the aperiodic assumption we get the following results.

Theorem 14. Let P be irreducible. There is an integer d > 1 and a partition [ = I_Iz;éC’k
such that
(1) Piif))> 0 only ifi € Cp and j € C wod (r4n,a) for somer € {0,1,...,d—1};
nd . .o
(2) P, >0 for all sufficiently large n, for alli,j € C, and for all7 € {0,1,...,d—1}.
The integer d is called the period of the Markov chain/transition matrix.

Theorem 15. Let P be irreducible of period d where Cy,C4,...,Cy_1 is the partition of
the state-space as in Theorem 14. Let X be a distribution with ZiGCo A = 1. Suppose that
{Xo}tnez, s (N, P) Markov. Then forr =0,1,...,d—1 and j € C, we have

d
lim P(X,q4r = J) = —,

where m; is the expected return time to j (mean first passage time). In particular, fori € Cy
P(nd—H") _d

and j € C, we have lim,,_,o P = =
J
Note that this theorem covers both the positive recurrent and null recurrent case; for the
latter the limit is 0.
Reversibility: For some results it is useful to look at time in reverse. We will do so
for Markov chains that are in equilibrium (argue why this is necessary) by running them

backwards. We have a basic result.

Theorem 16. Let P be irreducible and have an tnvariant distribution . Suppose that
{Xn}o<n<n is (7, P) Markov and set Y,, = Xn—_n. Then {Y, }o<n<n is (w, P) Markov, where
P is given by

ijji = 7Ti]3'ij fOT' all Z,j el

The process {Y,,}o<n<n is called the time-reversal of {X,, }o<n<n. A stochastic/transition
matrix and a measure A\ are said to be in detailed balance if

NjPji = A\ Py for all 4,7 € 1.
It is easy to verify that A is invariant for P, i.e., A = AP. Let {X,, }o<n<n be (7, P) Markov
with P irreducible, then {X,,}o<n<n is called reversible if, for all N > 1, {Xn_,}o<n<n 18
also (m, P) Markov. An important result then says that {X,, }o<n<n is reversible if and only
if 7 (a distribution) and P are in detailed balance.

Ergodic theorem: Denote by V;(n) = Z;é 1{x,—i the numbers of visits to i before time
n. The result we seek is the following.
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Theorem 17. Let P be irreducible and p be any distribution. If {X;}icz, is (p, P) Markov,
then
Vi 1
lim ﬂ = —  a.s.

Moreover, if P is positive recurrent (with invariant distribution ), then for any bounded
function f: I — R, we have

lim ZZ Of(Xk = f( mez =E,| )]) a.s..

n—oo
el

Proof. 1If P is transient, then With probability 1, the total number V; of visits to state ¢ is
finite, so @ < V oo 0 = - . Thus, we now assume that P is recurrent and start by
fixing a reference state b. By the Strong Markov property, it is sufficient to have the initial
distribution be ¢;.

Consider the excursion times {S; };eny which are 4.i.d. finite random variables with [E; [SZ(T)] =
m;. By the definition note that

Vi(n)—1 Vi(n)
Z ka)gn—1<n§ Si(k).
k=1 k=1

Hence,
TGO g
Vitn) = Viln) = Vi(n)
We now get the first part of the result by the recurrence of P (as P(V;(n) —n00 00) = 1)

and the Strong Law of Large Numbers.
For the second part, assume (without loss of generality) that |f| < 1, then for any J C [

we have
n—1
1 - i(n)
LA f‘ > (A )
n =0 i€l n
Vi(n) Vi(n)
< Z o T + Z - T
icJ i€JC
Vi(n) Vi(n)
SZ - —7Ti+Z( " —|—7TZ~)
ieJ i€JC
Vi n) ZieJc Vl(n)
S Z n - 71—1 + n + Z 7-(_1
ieJ i€JC
Vi(n) Zie] Vi(n)
SZ - _Wi+1_T+Zﬂ-i
ieJ i€JC
Vi(n) Vi(n)
SZ n o +Z(m_ n )+22ﬂ-’
ieJ ieJ ieJC
- n :
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Given € > 0, choose J finite such that » . ,cm < €/4, and then N = N(w) so that, for
n > N(w) we have

icJ

Vi(n)

< €/4;

— T

note that J being finite ensures that N(w) is finite too. Now for n > N(w) we have

< €,

1 n—1 ~
- ];f(Xk) 7

which finishes the proof. O
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3.5. Exercises. Please show all your work.

(1)

(2)

(3)

For the countable case make precise the definitions of P"™ and AP where P is a
stochastic matrix and A is a distribution. Hint: You need to show that the associated
series are finite.

Let {X;}icz, be a (u, P) Markov chain. Prove that the following are Markov chains
and determine the parameters: (1) Y; = (X;, X;41) for ¢ € Z,; and (2) Y,, = Xj, for
some fixed £ > 0.

Let {Z;}ien be i.i.d. taking values in {0, 1} with probability (1 —p,p). Let {S;}icz,
be the partial sums process. Which of these is a DTMC: (a) X,, = Z,.41; (b) X,, = Sy;
(¢) Xy = So+S1+ -4 Sy and (d) X, = (Sn, S0+ S1+ ...+ S,). In all cases
find the state-space and the parameters. For the cases that are not a DTMC, show
explicitly.

Let T} be the first passage time to state i. Prove the following recursion using the
Markov property and definition of stopping times:

By(X, =) = D BT, =m)P "
m=1

For any state i € I, show the following 37" _ Pi(X,, = 1) > S0 Py(X,, = 4) for
any n,k € Zy. Hint: Use the following random time T;(k) = inf{n > k : X, = i}
and a version of the recursion above to prove the result - is this a stopping time?
The second part is Extra credit.

Let I be finite. Let P be irreducible. Then prove that P has an invariant distribution.
Use linear algebra (eigenvalues and eigenvectors) to prove the result. Note that similar
arguments can be made in the non-irreducible case. Let A be an I x I matrix of all
ones and 1 the row vector of all ones (with I columns). Then show that an invariant
distribution 7 for P satisfies 7(I — P + A) = 1 where I is the I x [ identity matrix.
Under the irreducibility assumption further show that I — P + A is invertible so that
one can solve for the invariant distribution quite easily using matrix inversion.
Markov chains and martingales: Let A, B C I with AN B ={). Let 74 = inf{n >0
X, € A} and similarly 75. Define the following function h(z) = P,(74 < 75) for all
x € I. Suppose P, (Taup < 00) > 0 (where T4p is defined in the same manner as 74
or 7p) for all z € AU B, then show the following recursion

h(z) = Znyh(y) Ve & AU B.

yel

Show that any function ¢(-) that satisfies the above recursion is such that {g(Xuar, 5)}
is a martingale.

Markov chains and martingales: Let A C I. Define function g(z) = E,[74]. Assume
that P, (74 < 00) > 0. Now show the following recursion:

g(x) =1+ Pugly) VogA

yel

Show that any function h(-) satisfying the recursion above is such that {h(X,a-,) +
n A Ta} is a martingale.

Convergence to equilibrium: Let I be finite and P be irreducible and aperiodic. Show
that there exists an 7 < 1 and C' < oo such that P(T" > n) < Cr™ where T is the
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coupling time used in the proof in class. Hint: First consider the case of F;; > 0 for
all 7, 7 and then consider the general case by taking a suitable power of P. Thus, we
get exponentially fast convergence. Extra credit

Construction of Markov chains: Assume we're given a stochastic matrix P and a
distribution p. Let ([0, 1], B([0, 1]), Leb(]0,1])) be the underlying probability space.
Using the exercise from Homework 1, we know that we can generate a countable
number of independent random variables with any desired distribution. Our random
variables will take values in (I,7). Let (Xo,Y;, : ¢ € I,n € N) be independent
with values in I. Let X, be distributed as per p and {Y;,}men be i.i.d. as per P,
(the distribution corresponding to row ¢ of the stochastic matrix P) for all i € I.
Construct sequence {X,, }nez, as follows starting from X;:

Xo(w) =Yx, j@nlw) VneN

Show that {X,}nez, is a (u, P) Markov chain. Note that we’re not being economical
with the random variables, so how can one modify the logic above so as to use as many
of the generated random variables as possible? Hint: Think how you would simulate
such a process. Along the same lines show that with a sequence of independent
random variables (Xo,Y; : i € N) with X, distributed as p and every Y; being
uniformly distributed in [0, 1], show that the following recursive construction yields
a Markov chain

X, = G(X,_1,Y,) VieN
where G(-,-) : I x [0,1] — I. What are the parameters? Extra credit
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4. CONTINUOUS-TIME MARKOV CHAINS

Sources: The sources for this chapter are

e J. R. Norris, “Markov chains,” Cambridge Series in Statistical and Probabilistic
Mathematics, 2, Cambridge University Press, Cambridge, 2006.

e P. Brémaud, “Markov chains: Gibbs fields, Monte Carlo simulation, and queues,”
Texts in Applied Mathematics, 31, Springer-Verlag, New York, 1999.

e R. Durrett, “Probability: Theory and examples,” Second edition. Duxbury Press,
Belmont, CA, 1996.

Let (2, F,P) be the underlying probability space. Our stochastic processes, say {X;}icr,
will take values in a countable space I. We will discuss notions of classes, irreducibility,
recurrence and convergence for continuous-time Markov chains. However, to avoid some
technical measure theoretic issues, we will take a few results as given. We will start this
part with the Poisson process. All processes that we will work with are assumed to be
right-continuous with left-hand limits (rcll or cadlag, in short), i.e., under the countable
state-space assumption we also have that for all w € Q and for all t > 0, we have an € > 0
such that X (w) = Xy(w) forall t < s <t+e.

One issue that we will have to deal with is explosive versus non-explosive processes. From
the above it is clear that our stochastic processes will stay in a state for non-zero amount
of time and can be represented as a jump process. This implies one of three possibilities:
only a finite number of jumps; an infinite number of jumps but only a finite number in each
interval of time; and an infinite number of jumps in a finite amount of time. The last case is
where a process is said to be explosive and one defines time ( to be the explosion time. For
our purpose we will assume that explosive processes reach a special (final/terminal) state
oo at the explosion time and remain there. We will find conditions to exclude explosive
processes; note that the first case is not of interest either. Similar to hitting times of states
of a DTMC, we now define jump times {J;};cz,, holding times {S;};cn and jump chain
{Yi}icz, as follows:

£i—0
viez, J={" ite=0;
inf{t > J;_1: Xy # X,_,} otherwise
VieN SZ = (Jz — Ji—l)l{Ji,1<oo}
VieZ, Y,=X,

At this point we don’t ascribe any other structure to our stochastic process. Note that S; > 0
for all 7 € N. If J,41 = oo for some n, then set X, = X, , and otherwise it is not defined.
The explosion time ¢ = sup,,cz, Jn = >~ Sn.
4.1. Poisson process. The first process that we will consider is one where {S;}ien is i.i.d.
exp(\) and X, =i for all ¢ € Z,. This is called a Poisson process of rate \; we will denote
a Poisson process by N. Note that the strong law of large numbers then implies that ( = oo
(a.s.) and the process is non-explosive; also since P(S; < oo) = 1 for all i € N, there have to
be an infinite number of jumps.

We have a bunch of properties for {/V; };er, with rate A\. The first is the Markov property.

Theorem 18. Let {N,}ier, be a Poisson process of rate A, then, for any s > 0, the process
{Niys = Ns}ier, is a Poisson process of rate A that is, in addition, independent of { Ny }cpo,s-
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Proof. We will prove the result by conditioning on Ny = for all ¢ € Z. Set Nt = Ny s— Ns.
Note that

{Ne=jt ={J; <s < T} ={J; < s} N {81 >s5—Jj}

Conditioned on this event, we have

J
X, =) 1s,< Vrelos,

n=1

and for the process N we can define the jump times {S;};cn as follows

gi:{5j+1—8+¢]j 1fz:1
Siti otherwise

By the memoryless property of the exponential distribution and the independence of {S; };en;,
conditioned on N, = i we get that {S;}sen is also an i.7.d. exp(\) sequence that is independent
of {Nr}re[o,s}- Hence, N is a Poisson process of rate A. Note that this holds for all « € Z,,
and so without the conditioning too. O

We will state without proof the Strong Markov property of a Poisson process. As before,
for a filtration {F;}icr, , a random time 7" is a stopping time if {T" < ¢} C F.

Theorem 19. Let { N, }ier, be a Poisson process of rate A and T' is a stopping time associated
with N, then conditioned on the event T < oo, we get that { Nyyr — NT}t€R+ is a Poisson
process of rate A that is independent of {Ny}ieor)-

Effectively we have shown that the process {N; — At}cr, is a martingale and the optional
sampling theorem applies. This is an important fact to remember.

For a process X, we say that it has stationary increments if the distribution of X, ,— X is
the same as that of X; for all ¢ > 0. Similarly we say that the increments are independent if
givenn € Nand 0 <t; <ty <--- <t, < oo, the random variables (X3, , Xy, — X4, ..., Xz, —

X;,_,) are independent. Then we have the following characterizations of a Poisson process
(without proof).

Theorem 20. Let {N,}ier, be a right-continuous and increasing process taking values in
Zy and starting from 0. Let 0 < A < co. Then the following three conditions are equivalent:
(1) (jump chain+holding time definition) the holding times {S;}ieny of N are i.i.d. exp(A)
and the jump chain is given by Y,, = n for all n;
(2) (infinitesimal definition) N has independent increments and, as s | 0, uniformly in
t

P(Nt+s — Nt = 0) =1- )\S + O(S), P(Nt+5 — Nt = 1) = )\3 + 0(3),
where o(s) stands for some function f(s) such that f(s)/s — 0 as s ] 0; and

(3) (transition probability description) N has stationary and independent increments,
and, for each t > 0, Ny has the Poisson distribution of parameter \t.

Any process N that satisfies any of these conditions is called a Poisson process (of rate \).
Another property of a Poisson process is the following: conditioned on N; = n, the location

of the n jumps in [0, ¢] has the same distribution as the ordered sample of size n of the uniform
distribution on [0, t].
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4.2. Continuous time Markov chains. The Poisson process is one example of a CTMC,
but as we will see later on, every other CTMC can be derived from a Poisson process.
However, first we start with the definition of a rate matrix (also a (-matrix or generator).
A matrix/operator @ is called a rate matrix if the following hold:

(1) 0 < gy < oo foralliel

(2) forallie I, q; >0forall j eI\ {i};

(3) 2 jer@ij =0 forallie [

Define ¢; = Zje]:j;éi gij, then ¢; = —¢;. We will now obtain a stochastic matrix II from @
which we will call the jump matrix as follows for all i, j € I,

H“:{qzj/qi if j #1i & g # 0;
Y 0 if j#£i&q0
o {0 if g 40,
1 otherwise
As for the Poisson process, we now have three equivalent characterization of a CTMC
{Xi}ier, . The first is via the jump chain and holding times. A stochastic process X is called
a (u, @) Markov chain (for some distribution p) if the jump chain {Y;};cz, is a (u, II) DTMC
and, for every n > 1, conditioned on (Yp,Y1,...,Y, 1), the holding times S;, Ss, ..., S, are
independent exponential random variables with parameters gy, qy;,- .., qy,_, respectively.
The second construction is as follows. Choose Xy = Y, with distribution px and also choose

an array (T :n > 1,i € I) of i.i.d. exp(1) random variables. Then, inductively for n € Z,
if Y,, = 7 we set

S =T /qy, forj#i

Sp+1 = inf SZ;-&-I
JF#i

v 4 if $7,1 = Spi1 < 00
”* i if Sy = oo.

The third characterization will be using Poisson processes. Here we start with the initial
state Xo = Y, chosen with distribution p and a family of independent Poisson processes

{(N)ier, :i,j € I,i # j} with Poisson process N having rate ¢;;. Then set J, = 0 and
define inductively for i € Z

Jpy1 = inf{t > J, : Nty”j #+ N}i’;j for some j # Y, }

. Yo Yo
o jif Sy < oo & Ny £ Ny
1 if Jn+1 = OQ.

We will use this characterization later on to prove some asymptotic results (Kurtz’s Theo-
rem). Note that we can use one Poisson process to generate the required family of Poisson
processes if v = sup;c; ¢; < 00; at the jumps of the Poisson process of rate v when state is
i, choose to stay in state ¢ with probability 1 — ¢; /7 or jump to state j # ¢ with probability
¢ij/7- This extremely useful procedure is called uniformization.

Explosion: We will now discuss when processes are explosive and when not. In general,
we say that a rate matrix @) is explosive if the associated Markov chain is such that P;(¢ <
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o0) > 0 for some i € I; otherwise we call it non-explosive. We start with some simple
conditions that are easy to check.

Theorem 21. Let {X;}ier, be a (1, Q) Markov chain. Then X does not explode if any one
of the following conditions holds:

(1) I is finite;

(2) sup;erqi < 00;

(3) Xo =1, and i is recurrent for the jump chain.

Proof. Define T,, = q(Y,,_1)Sy, then {T;}ien are i.i.d. exp(1l) and independent of the jump
chain Y. In the first two cases, we have v = sup,.; ¢; < oo and

n=1

with probability 1 (SLLN). In the third case, we know that Y visits ¢ infinitely often, at
(integral) times {M,};en (obtained similar to the passage times), then

¢ > ZTMn =00

with probability 1. ([l

Necessary and sufficient conditions for () to be explosive are now discussed as a conse-
quence of the following theorem.

Theorem 22. Let {X;}ier, be a Markov process with rate matriz QQ and let  be the explosion
time of X. Fiz a 6 > 0 and define z; = E;[exp(—0()]. Then z satisfies:

(1) fz| < 1;

(2) Qz=0z.

In addition, z is the maximal solution that satisfies both properties.

Proof. The first is obvious so we discuss the second part. Fix a state ¢ and condition on
Xo = i. Then consider the first jump, the time of it .J; which is exp(g;) and the next state j
with probability P;(X,;, = j) = II;; are independent. Additionally, by the Markov property
of the jump chain at time n = 1, conditional on X, = k, the process { X, 4+ her, is (6, Q)
Markov and independent of J;. Using these facts we get

Eile™|Xy, = k] = By [e e 0250 X, — k]

_ = —0t , _—q;t —o¢1 iRk
= e e tdt Eile = =
/0 E ¢l ] g +0

Now we have

z 12
ZPXJl_k [*(’CIXJl—k Z(h zkk: qzkk@
kel:k#i kelhei b kel b +
Recognizing that ¢; = —¢; and with some minor manipulations, we get
02 = Gz
kel

The maximality part can be found in J. Norris’ book. 0
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We then have a corollary that gives the necessary and sufficient conditions for non-
explosiveness.

Corollary 3. For each 8 > 0, the following are equivalent:

(1) @ is non-explosive;
(2) Qz =10z and |z]| < 1 for all i, imply that z = 0.

Proof. If the first condition holds, then P;(¢( = oo) = 1 so that E;[e=%] = 0. Using
Theorem 22 we see that any other solution of @z = 0z such that |z;| < 1 implies that
|z:] < Ei[e7%] = 0, proving the result in one direction. If the second condition holds, then
by Theorem 22 we know that the particular choice of E;[e=%] also has to be 0 for all i. This
then implies that P;({ = 00) = 1. O

Strong Markov property: We state without proof (to steer clear of measure-theoretic issues)
the Strong Markov property of CTMCs.

Theorem 23. Let {X;}ier, be a (i, Q) Markov chain and let T be a stopping time associated
with X. Then, conditioned on T < oo and Xp =i € I, the process { Xpiiher, is a (0;, Q)
Markov chain that is independent of {X;}eepo,m-

Forward and backward equations: Our description of CTMCs thus far is lacking in some
regards. Given X being a (u, Q) Markov chain, we still haven’t specified how to obtain
P(X; = j) or even P;(X; = j). We start with the finite state-space case where there is an
easy answer.

Theorem 24. Let {X;}ier, be a (1, Q) Markov chain with o finite state-space I. Then we
have following additional equivalent characterizations of the process:
(1) (infinitesmal definition) for all t,h > 0, conditional on X; =i, X;1p is independent
of {Xs}sepoy and, as h | 0, uniformly in t for all j
P(Xen = jlXe = 1) = dij + qish + o(h);
(2) Let P(t) = 9 (matriz exponential) with P(0) = I, then P(t) is the unique solution
to the forward equation
d

SR =P0Q. PO)=T,

the backward equation

L py = rr), PO)=1,

dt
and leads to the following characterization of the process X, for alln € Z, and all
times 0 <ty <ty <--- <t,1 and all states ig,i1,...,ine1 we have

]P)<th+1 = in+1|Xt0 = Z.Oa th = Z'h s 7Xt = ZTL) = Pinin+1 (tn-i-l - tn)‘

n

For the countable case we cannot use the matrix exponential characterization. Thus, we
have the following two results.

Theorem 25. Let () be a rate matriz. Then the backward equation

d
SP() = QPW), PO) =1

has a minimal non-negative solution {P(t)}er, , and this solution forms a matriz/operator
semi-group, i.e., P(s)P(t) = P(s+t) for all s,t > 0.
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Theorem 26. A process {X,;}ier, that is a (1, Q) Markov chain where {P(t)}ier, is the
non-negative minimal semigroup solution to the backward solution is also characterized by the
following, for alln € Z, and all times 0 <tqg <t; < --- <t,41 and all states ig, 1, ..., 41
we have

]P)<th+1 - iTL+1|Xt0 = iOa th = i17 L 7th = Zn) = Pinin+1 (tn-i-l - tn)

Theorems 25 and 26. We will only prove that the backward equation; for the rest of the
details please see book by J. Norris. Let P;;(t) = P;(X; = j). The semigroup property is
easy to argue following the logic of the Chapman-Kolmogorov equations. Conditioning on
Xo =14, we have J; ~ exp(g;) and X, (m : k € I). Then conditional on J; = s and X, =k
we have {Xiis}ier, being a (6, Q) Markov chain. Then we have the following

Pi(X; = j,t < J1) = e %'5;(j), and
¢
Pi(JI <t, XJ1 =k, X, = j) = / Qie_qisﬂ'ikpkj(t - S)d&
0
which then yields

Py(t) =Py(X, = jit <))+ > Pi(Jy <t, X, =k X, = j)
k#1

= e U5, (j —i—Z/ gie” " m P (t — s)ds
k#1

Setting u =t — s and rearranging we get

e?' Py —i—Z/ qie® ", Prj(u)du

k#i

We can interchange the summation and integral by monotone convergence (or Tonelli’s
theorem) to get

t
%' Py (t) = &(j) + / Z qie®" T Prj (u)du
0

We get a few results from this: (i) P;(¢) is continuous in ¢ for all ¢, j; and (ii) the integrand
is a uniformly converging sum of continuous functions so that P;;(t) is also differentiable.
Differentiating we get

eqit (%Pz ( ) PZ] ) Zqze Wzkpk]
k#i
which after rearranging yields

t) = qnP(t)

kel

We will now prove the forward equation. First we prove a simple time-reversal result
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Lemma 9. The following holds

qzn]P)(Jn <t< Jn+1|Yb = Z.())le =11, .. 7Yn = Zn)
= quP(Jn <t< JnJrlD/O = in7 cee 7Yn71 = ilv% = ZO)

Proof. Conditional on Yy = ig,...,Y, = i,, we know that holding times Si,...,S, 1 are
independent with Sy ~ exp(q;,_,). Using this we get the left side to be

/ G P <_Qin (t - S)) 1 gives o0 (= i, 1) dsi
Al k=1

i=1

where A(t) = {(s1,...,8n) 1 Yy si <tandsy,...,s, >0} Now we make the following
substitutions: u; =t — Z?:l s; and up = s,_pio for k= 2,...,n, and find that the above
expression can be rewritten as

/( : Qip €XP <—Qi0 (75 - Z Uz>) H ir 1 €XP(—Gi, o,y k) dui
Alt i=1

k=1
= QZO]P)(Jn S t < Jn+1|Yb = ina cee 7Yn—1 = Z.l,Yb = ZO)

We will now prove the forward equation.

Theorem 27. The minimal non-negative solution {P(t)}icr, of the backward equation is
also the minimal non-negative solution of the forward equation

d
—P(t) = PHQ,  P(0)=1.

Proof. Let {X;}ier, be a (i, Q) Markov chain. From the holding times and jump chain
characterization we get

Pi(t) = Pi(Xy = j)
=3 N Py <t < Jogr, Yoor = kY, =)
n=0 k#j

From Lemma 9 we get

Pi(Jy <t < Jyps|Voy =k, Yy = §) = LP(J, <t < Jua|Vi =k, Y, =)
J

_a [
45 Jo

t
= Qz/ e—qjs% i(Jn—l <t—s< Jn|Yn_1 = k)dS
0 qi

gie P (Jpo1 <t — 5 < Jy|Y1 =d)ds
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where we use the Markov property of the jump chain in the second equality and Lemma 9
once again in the third equality. Using this we get

Pi;(t)

e Uit ZZ/ (S <t—s<J, ‘Yn 1= k>Pz<Yn—1 =k, Y, :j)le_qjst

n=1 k#j

euzz/ o St s < TulYaos = R)mgare 9 ds

n= lk;éj

e %t ZZIP’ 1 <t—s5< Y1 = k)miqre 90ds
0 k:;é]n 1

)e %t ZPm s)qrje “%ds
O kj

where we have used monotone convergence theorem to exchange the integral and the sum-
mations. Now set u = ¢t — s and multiply on both sides by e%! to get the integral form of
the forward equation,

Pyj(t)e¥" = §,(j / ZPm w)qrie” " du
0

k#j

From the proof of the backward equation we know that

e?'Py(t) = /ZP"U )qiret™du
0

ki

so that e?'Py(t) is increasing in t for all ¢,k. Therefore, only one of the following two
statements is true,

Z P, (u)qy; converges uniformly for all u € [0, t]; or
k#j
ZP”“ u)qr; = oo for all u >t
k#j

From the forward equation and using the finiteness of P;(¢)e%" for all t € R, only the first
condition can hold. We also know from the backward equation that P,;(¢) is continuous for
all 7, 7. Thus, by uniform continuity, we can differentiate the forward equation to get

6qjt(‘1jp() Pm ) szk )qrje®’;

k#j

d
S bit) = > Pult)ars,

kel

which is the forward equation. For the minimality part we refer to the book by J. Norris. [
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4.3. Class structure, recurrence and transience. The jump chain and holding times
characterization of a CTMC allows us to fallback on definitions used for the jump DTMC.
Now we say that i leads to j, i.e., i — j if P;(X; = j for some ¢t > 0) > 0, and (communica-
tion) i <» j if ¢ — j and j — i. We have a theorem relating properties of the CTMC and
the jump DTMC.

Theorem 28. For distinct states @ and j the following are equivalent:

(1) i = j in the CTMC;

(2) i — j in the jump DTMC;

(3) QivisQivia -~ Giry_yin > 0 for some sequence of pairwise distinct states and n such that
o =1 and i, = j;

(4) Pi;(t) >0 for allt > 0; and

(5) Pi;(t) >0 for somet > 0.

We will not prove the result but just remark that this shows that the situation is simpler
for a CTMC as there is no periodicity issue. Also, communication classes, closed classes and
irreducibility follow exactly from the jump chain DTMC.

Let A C I. Then define the hitting time of A to be DA = inf{t > 0 : X; € A} with
the usual convention that inf() = co. By our construction using jump chains and holding
times it is easy to argue that {D? < oo} = {H? < oo} where H# is the hitting of set
A in the jump DTMC, and on this set we have D4 = Jya. From this it is clear that
P;(D* < 00) = P;(H* < 00) = h#:. Thus, using the result for DTMCs we have the following
result.

Theorem 29. The vector of hitting probabilities h** is the minimal non-negative solution to
the following system of linear equations

ht=1 foric A
> qihi =0 fori ¢ A.

jel

Let us define the expected hitting time to be k! = E;[D*]; note that this will be different
from E;[H4] for the jump DTMC as we need to account for the time spent in each state.
This yields the following result.

Theorem 30. Assume that q; > 0 for all i ¢ A. Then the vector of mean hitting times k*
1s the minimal non-negative solution to the following system of linear equations

k=0 foric A
—Zqijk‘lefori&A.

jeI

Proof. If Xg =i € A, then DA =0 and k* = 0. If Xy =i & A, then one has to wait till
the chain jumps from state i so that D4 > J;. Thus, by the Markov property of the jump
DTMC

E,[D* — J1|Y1 = j] = E,;[D*],
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which then leads to

k) =E[DY = Bl ] + ) EDA — LYy = 5]Pi(Ys = j)
J#
= ql_l + Z Wijkf
J#i
Rearranging we get the result. The proof of minimality can be found in the book of J.
Norris. U

We define a state ¢ to be recurrent if
P;({t > 0: X; =i} is unbounded) = 1,
and to be transient if
P;({t > 0: X; =i} is unbounded) = 0.

Note that if the the process explodes starting from i, then ¢ cannot be recurrent. We can
relate recurrence and transience of a state ¢ in the CTMC to the corresponding attribute of
the state in the jump DTMC.

Theorem 31. We have:

(1) if i is recurrent for the jump chain, then i is recurrent for the CTMC;
(2) if i is transient for the jump chain, then i is transient for the CTMC;
(3) every state is either recurrent or transient; and

(4) recurrence and transience are class properties.

Proof. (i) Assume that ¢ is recurrent for the jump DTMC, then we know that the CTMC is
non-explosive, J,, — oo and X =Y, =i infinitely often so that {t > 0 : X; = i} is
unbounded w.p. 1.

(ii) Assume that ¢ is transient for the jump DTMC. If X, = ¢, then N = sup{n > 0;Y,, =
i} < oo which then implies that {t > 0 : X; = i} is bounded by Jy4; which is finite (w.p.
1) because {Y, }n—01,.. » cannot include a state j with ¢; = 0 (i.e. an absorbing state).

The remaining properties now follow from results about DTMCs. OJ

As for DTMCs we now define the first passage time of { X, },cr, to state i as T; = inf{t >
Ji: Xy =i}, As was the case of DTMCs we have the following dichotomy.

Theorem 32. FExactly one of the two statements holds

(1) if ¢ =0 or Py(T; < 00) =1, then i is recurrent and [~ Py(t)dt = oo;
(2) if ¢ > 0 and P;(T; < 00) < 1, then i is transient and fooo Py(t)dt < oo;

Proof. If ¢; = 0, then starting in 4, the process X never leaves state i. Thus, ¢ is recurrent
and P;(t) = 1, which implies fooo P,;(t)dt = oo. Therefore, we assume that ¢; > 0. Let
N; denote the first passage time of the jump DTMC to state . Then it is clear that
Pi(N; < 00) = P;(T; < o0), so that ¢ is recurrent if and only if P;(7; < oco) = 1 (using
Theorem 31 and results about DTMCs).
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Let H,E?) be the (i, 7) entry of II". We have the following using Tonelli’s theorem.

0 0 0

Z Snt1 ]-Yni] = Z E;i[Sn+1ly, =]
n=0 n=0

= 1
=Y EilSun Ve = i|Pi(Y, = i) = — Y1
[Snal [Pi(Ye = 1) 5 2

= F;

n=0

Now the conclusions about [~ P;(t)dt follow from the DTMC results. O
We have the following result whose proof is left as exercise.

Theorem 33. Let s > 0 be given and set Z,, = X,s, then it follows that:

(1) if i is recurrent for X, then i is recurrent for {Zy}nez, ; and
(2) if i is transient for X, then i is transient for {Z,}nez., .

4.4. Invariant distribution, convergence and ergodic theorem. A non-negative vec-
tor A\ is deemed an invariant measure for rate matrix ) if A\ = 0. We have an important
result relating invariant measures of the CTMC and the jump DTMC.

Theorem 34. Given a rate matriz QQ with jump chain transition matriz 11 and a measure
A, then the following are equivalent:

(1) A is invariant with respect to Q; and
(2) p is invariant with respect to 11 where u; = Niq; for alli € 1.

The proof is straightforward, but the conclusions are quite profound. Using results about
DTMCs, we can then prove that the invariant measure for an irreducible and recurrent Q
matrix is unique up to scalar multiples, i.e., fixing a given state 7, there is only one invariant
measure with \; = 1.

Similar to the DTMC case, we say that a state ¢ is positive recurrent if either ¢; = 0 or the
expected return time m; = E;[T}] is finite. If state ¢ is recurrent but ¢; > 0 and E;[T;] = oo,
then we say that state ¢ is null recurrent. We have the following theorem.

Theorem 35. Let () be an irreducible rate matriz, then the following are equivalent:

(1) every state is positive recurrent;
(2) some state i is positive recurrent; and
(3) @ is non-explosive and has an invariant distribution 7.

Moreover, when (3) holds, then m; = ﬁqi for all i.

Proof. If I is not a singleton, then irreducibility forces ¢; > 0 for all 7. Obviously (1) implies
(2) so we will start with proving that (2) implies (3). Define the vector u' as follows

] TiNC
Wy = Ez/ Lx,=;ds,
0

which is the amount time spent in state j before the explosion or returning to state i. By
monotone convergence, we have » . b = Ey[T; A (].
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Denote by N; the first passage time of the jump DTMC to state . By Fubini’s theorem
we have

M; =E;

n=0

Z Sn+11{Yn:j;n<Ni}]
= ZEZ [Sn+11{Yn:j;n<Ni}]
n=0

- Z E; [SnH’Yn = j]Ei[l{Yn:j;mNi}]
n=0

1 oo

=— > Eilyy,=jimenyl
Qj n=0

== _Ez 1yn: == —]
4q; ; ] 4q;

where ’yji- is the expected (discrete) time steps in j between visits to ¢ for the jump DTMC.
Since (2) holds, i is recurrent and hence, X is non-explosive. We know that ! = 4 so that
p' is invariant for Q. Note, however, that ' has finite total mass as >, p% = Bi[T}] = m,

which yields an invariant distribution A by setting A\; = :;—J

Proving that (3) implies (1) is also straight forward. As @ is irreducible, so is II. Fix an

v € I with A\; > 0 and set v; = ’;? ZJ_'; then notice that v; = 1 and v is an invariant measure

for II. Using a result for DTMCs, we then have that v; > 7;. for all j € I. Thus,

PN
mi=> =
jeI jer 9
N q; i Aigi

jel
Therefore, 7 is positive recurrent, and hence recurrent. Since () is irreducible, () is recurrent
and so is II. Thus, v is the only invariant measure for II with v; = 1 and irreducibility of II

implies that v; > 0 for all j, which then means that \; > 0 for all j and the same argument
shows that every j is positive recurrent. U

Important: The non-explosiveness is critical. Consider the following CTMC on Z, with
¢; > 0 and we have

o ifi=0&j=1
Qij = § P4 ifi>0&j=1+1
(1-p)g ifi>0&j=i—1

where 0 < p < 1. For this chain an invariant measure is given by the following formula:
Vo = q% and v; = %(ﬁ)l. If ¢; is constant, then when p < 1/2 (i.e.,, p < 1 — p) suffices
to produce an invariant distribution for the chain; note that the chain is non-explosive. On

the other hand if ¢; = 2° and 1 < % < 2, then one can once again produce an invariant
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distribution. However, it is easy to show that X is transient. Therefore, X has to be
explosive. We will revisit this example in the exercises.
Now we set about showing that a measure A that solves A() = 0 is invariant.

Theorem 36. Let ) be irreducible and recurrent, and let X be a measure. Let s > 0 be
giwen. Then the following are equivalent:
(1) A\Q =0; and
(2) AP(s) = \.
Proof. The finite state case is straightforward using the backward equation as
d d
ZAP(s) = A\~ P(s) = N\OP
TAP(s) = A-P(s) = AQP(s),

so AQ = 0 implies that AP(s) = AP(0) = X for all s. Since P(s) is irreducible and recurrent,
any p that is invariant has to be a scalar multiple of A\. From the forward equation (or from
the fact that P(s) = e“*) we know that @ and P(s) commute, and therefore

d d

0= A= TAP(s) = AQP(s) = AP(s)Q = AQ.

For the countable state-space case, we have to argue differently. Since () is recurrent, it is
non-explosive and P(s) is also recurrent and irreducible. Therefore, any A satisfying (1) or
(2) is unique up to scalar multiples. From the proof of Theorem 35, fixing ¢ we know that if
we set

Wy = Ez/o Lx,=;dt,

then 1'Q = 0. We will now show that u'P(s) = u'. By the strong Markov property at T;
(which is a consequence of the strong Markov property of the jump DTMC), we get

s T;+s
0 T;

Therefore, using Fubini’s theorem,

) T;+s
,u; El |:/ 1Xt:jdt1
E, [ / 1{Xs+tj,t<Ti}dt}
0

:/JM&H;N<EW
0

:/)zﬁm&:ht<m&#wt
0

kel
T;
:Z&MEU1&m}
kel 0
= 1 Pii(s)
kel

Note that this finishes the proof. O
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We have an additional theorem whose proof is quite elementary.

Theorem 37. Let () be an irreducible non-explosive rate matriz with an invariant distribu-
tion X. If {Xiher, is (A, Q) Markov, then so is { X1 her, for any s € Ry,

Convergence to equilibrium: Since we have no periodicity, we expect a simpler result to

hold. First we prove a lemma about the uniform continuity of the transition probabilities
Pij(t).

Lemma 10. Let QQ be a rate matriz with semigroup P(t), then for all t,h € R, we have
Pylt+ 1) = Py(t)] < 1= e
Proof. Note that
|Pyj(t+h) — Py(t)] = | Y Pu(h) Pij(t) — Py (t)

kel

— Z Py(h)Pyj(t) — (1 — Py(h))Py; (%)
k#£i

k#i
<1—Py(h) <Pi(Jy <h)=1—e%"

The convergence theorem is as follows.

Theorem 38. Let ) be an irreducible non-explosive rate matriz with semigroup P(t) and
invariant distribution X, then for all states i,j we have limy_,o P;;(t) = A;.

Proof. Let {Xi}ier, be (6;,Q) Markov. Fix h > 0 and consider the h-skeleton DTMC
{Z.}nez, where Z, = X,;. From the characterization of the Markov process we have

P<Zn+l = in+1|Zg = io, Zl = 7:1, ce Zn = Zn) = -Pinin+1(h>7

so that Z is (6;, P(h)) Markov. Now irreducibility implies that P;;(h) > 0 for all 4, j, i.e.,
P(h) is aperiodic and A is also the invariant distribution of P(h). Thus, by the convergence
theorem for DTMCs we get that lim,,_, P;;(h) = A; for all 7, j.

Next we will use the uniform continuity from Lemma 10 to prove the general result. First,
we fix a state . Given € > 0 we can find an h such that

1— e 0h < g Vs €0, k],
then we can find an N such that
| Fij(nh) — Al <
For t > Nh we have nh <t < (n+ 1)h for some n > N and so
[Fij(t) = Al < |Py(8) — Pig(nh)| + [Py (nh) — A <e,

which proves our result. O
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Time reversal: We present results for this section without proof and gloss over some
technicalities so that the reversed process is still an rcll process.

Theorem 39. Let Q be an irreducible non-explosive rate matrix with invariant distribution
X. Given T € (0,00), let {X;}oci<r be (N, Q) Markov. Set X, = Xg_,. Then the process
{X’t}ogféT is ()\,Q) Markov, where Q is given by gji = /’\\—;qij. In addition, Q is irreducible
and non-explosive with invartant distribution .

The X process is called the time-reversal of X. A rate matrix () and a measure \ are said
to be in detailed balance if \;q;; = A;q;; for all 7, j; it then follows that A is invariant for Q).
Finally, we have the following result.

Theorem 40. Let Q be an irreducible non-explosive rate matrix with invariant distribution
A Let { X  }er, be (A, Q) Markov. Then the following are equivalent:

(1) X is reversible, i.e., for allT >0, X s also (A, Q) Markov,
(2) @Q and X\ are in detailed balance.

Ergodic theorem: We will now prove the final result that parallels the ergodic theorem for
DTMCs.

Theorem 41. Let Q be irreducible and let pn be any distribution. If {Xi}er, is (p, Q)
Markov, then
: ! 1
lim — lx,—ids =
t=oo b Jg m;q;

a.s.

where m; = E;[T}] is the expected return time to state i. Moreover, if Q) is positive recurrent,
then for any bounded function f : I — R we have

tligl@%/o F(X,)ds = f(:: ZAU@) a.s.

icl
where X is the unique invariant distribution.

Proof. As before if ) is transient, then the total time spent in state ¢ is finite, so
[ 1 [ 1
Doz [ o= L
t Jo t Jo m;q;

Henceforth, we will assume that @) is recurrent. Fix a state 7. Since the first passage
time to ¢ is finite a.s., the long-run proportion of time in state i is the same even if we
start accounting for it after the first time one reaches state ¢. Thus, by the strong Markov
property it is sufficient to consider p = ;.

Denote by M the length of the n'* visit to 4, by T{* the time of the n'* return to i and
by L? the length of the n** excursion to i. Thus, for n € Z, we have

MM =inf{t > T : X; #4} — T/
T =inf{t > T + M . X, =i}
Lt = ettt _n

7 (2 1
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By the strong Markov property (of the jump chain) at the stopping times 7" for n > 0, we
can deduce that {L!},en are i.i.d. with mean m;, and {M'},cn are i.i.d. exp(q;). Hence,
by the strong law of large numbers we have

Yot LT
lim &2=L2 —m, a.s
n—oo n
n
Mm™ 1
lim 2om=y M, = a.s
n—oo n q,L
and hence
n m
im i - a.s.
noo 3o L mug,

As a consequence, note that lim,, ., 77*/T;""' = 1 a.s. Now for T* <t < T;"*! we have
j‘vin Z:ln 1Mm 1 1 /t . d Tn+1 Zn+1 Mm
n+1 m — Xs=i S n n+1 m "’
DNV STy
so letting ¢ — oo (which makes n — co) we have,
1 /[t 1

lim — 1Xs:ids =

a.S.

In the positive recurrent case we can write

F [ e =350 (7 [ 1xmds )

el

where \; = #ql We then have the result using the same argument as in the DTMC case. [

Note once again that the null recurrence case is also covered, i.e., T; being finite a.s. but
m; = 0o so that = = 0 (by convention).
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4.5. Exercises. Please show all your work.

(1)

(2)
(3)

Forward-Backward equations: Solve the forward and backward equations for the Pois-
son process. Show that the solutions are the same and yield a semi-group.
Discrete-time sampling: Prove Theorem 33.

Positive and null recurrence of CTMC and jump DTMC: From Theorem 34 we know
that an invariant measure for a CTMC yields an invariant measure for the jump
DTMC and wice-versa. Show by example that we can have any of the four possibilities
in terms of the CTMC and DTMC being positive/null recurrent. Use birth-death
chains for the examples, i.e., CTMC on Z, with ¢; > 0 and where we have

Qo ifi=0&j=1
Qi = § DPiqi 1fZ>0&j:l+1
(1-p)g ifti>0&j=i—-1
where 0 < p; < 1 for all i € N.
FExplosiveness and stationary distributions: Consider example after Theorem 35. Ver-
ify irreducibility of Q). Prove that v is an invariant measure. When ¢; =constant and
p < 1/2, show that chain is non-explosive and v can be normalized to produce an

invariant distribution; what does Theorem 35 tell us now? Now consider case of
¢ =2"and 1 < ﬁ < 2. Prove that () is explosive and also transient.
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5. CRITERIA FOR POSITIVE RECURRENCE, TRANSIENCE AND KURTZ’S THEOREM

We will start with the Levy martingales associated with a DTMC, and also mention the
same for CTMC. Then we will present conditions for recurrence and transience using mar-
tingales, ending with the Foster-Lyapunov criterion. Finally, we will prove Kurtz’s theorem
that associates a differential equation with a class of CTMCs.

The sources for this chapter are:

e J. R. Norris, “Markov chains,” Cambridge Series in Statistical and Probabilistic
Mathematics, 2, Cambridge University Press, Cambridge, 2006.

e P. Brémaud, “Markov chains: Gibbs fields, Monte Carlo simulation, and queues,”
Texts in Applied Mathematics, 31, Springer-Verlag, New York, 1999.

e R. Durrett, “Probability: Theory and examples,” Second edition. Duxbury Press,
Belmont, CA, 1996.

e Lecture Notes on Stochastic Stability by Lyapunov Methods, S. Foss and T. Konstan-
topoulos, LMS/EPSRC Short Course Stability, Coupling Methods and Rare Events,
Heriot-Watt University, Edinburgh, 4-9 September 2006.
http://www2.math.uu.se/~takis/L/StabLDC0O6/notes/SS_LYAPUNOV.pdf

e Lecture Notes on Communication Networks Analysis, Chapter 2, B. Hajek, December
2006.
http://www.ifp.illinois.edu/~hajek/Papers/networkanalysisDec06.pdf

e S. P. Meyn and R. L. Tweedie, “Markov chains and stochastic stability,” Second
edition, Cambridge University Press, Cambridge, 2009.

e S. Asmussen, “Applied probability and queues,” Second edition, Applications of
Mathematics (New York), 51, Stochastic Modelling and Applied Probability, Springer-
Verlag, New York, 2003.

5.1. Martingales and Markov chains. All the proofs in this section will be for the
discrete-time case, mainly to steer clear of measure-theoretic issues.
Let {X,}nez, be a (u, P) DTMC. For a function f : I +— R we define the following

(P"1)(0) = Eilf(Xa)] =D Pf; Vielnz0

jer
Then we have the following important characterization of a DTMC.

Theorem 42. [Levy martingale] Let {X,}nez, be an I-valued random process and let P
be a stochastic matriz. Denote the natural filtration by {F, }nez, . Then the following are
equivalent:

(1) {Xn}nez, is a (n, P) DTMC;
(2) for all bounded functions f : I — R, the following process is a {F,}nez, martingale
that is null at 0:

MY = F(X) = F(X0) = S(PIX) = F(Xn) = F(Xa) = F(X0) = 3 (P = DF(X)

where I is the identity mapping.



STOCHASTIC MODELS FOR WEB 2.0 53
Proof. Assume that (1) holds. Since f is a bounded function, we have

Y Pif;

jel

((PF)(@)] =

<sup|fi| = [M{] < 2(n+ )sup|fi] < oc,
g J

proving the integrability requirement.
Let A, = {Xo =io,..., X, =in}; note that A € F,,, and in fact the collection of all such
sets is a m-system that generates F,. The Markov property of {X,, },ecz, now implies that

E[f(Xn1)[An] = B, [f(X1)] = (P)(in),
which then implies that
E[M[,, = M[|A,] = E[f (Xp1) = (PF)(X)|Au] = 0,

and since sets like A,, generate F,,, {M;},cz, is a martingale.
Now assume that (2) holds, i.e., for every bounded function f we have

E(M/,, — M!| Xy =ig,..., X, =in) = E[M],, — MI|A,] = 0.
and note that we get
P(Xn+1 = Z.TL+1|X0 - 7;07 cee 7XTL = ZTL) = ‘P”inin+17

which proves that {X, },ez, is Markov with transition matrix P. O

Take f to be 1

In+1

We now provide another set of martingales by dropping the boundedness requirement on
f as follows.

Theorem 43. Let { X, }nez, be a (1, P) DTMC. Suppose we have a function f : Zy <1 — R
that, for all n € Z,, satisfies both

E[f(n, X,)] < 0o and (Pf)(n+1,i) =Y Pyf(n+1,j) = f(n,i) Vn € Z &i € I,
jel
then {My}nez, such that M, = f(n,X,) is a martingale (with the natural filtration of
{Xn}n€Z+)'

The proof is the same as that of the first part of Theorem 42 so we skip it. Theorem 43
is a very useful result. Consider the case where {S,},cz, with Sy = 0 is the partial sums
process of { X, }nen an i.i.d. sequence taking values {—1, 1} with equal probability. We know
that {S, }nez, is a martingale. Consider two functions f(i) = ¢ and g(n,4) = i* — n. Since
|Sy,| < n (at best n +1s or —1s) for all n, we get max(E[|f(S,)|], E[|g(n, Sn)|] < co. It is
easy to verify that

(P@) = (@—1)/24+ @ +1)/2=1i= [f(i),
(Pg)(n+1.4) = (i = 1)*/2+ (i + 1)*/2 = (n +1) = * —n = g(n, i),

which then implies that both {f(S,)}nez, and {g(n, S,)}nez, are martingales. Consider the
stopping time 7' = inf{n > 0 : X,, = —a or X,, = b} for a,b € N. Now Doob’s optional
sampling theorem A says that

0 = E[X] = E[Xzn]

0 = E[Ys] = E[Yyn] = B[X2,,] — B[T A,
Therefore, setting p to be the probability of hitting —a before b, letting n — oo we get
E[T An] — E[T] (monotone convergence) and E[X7,,] — E[X7] and E[XZ,,] — E[X7]
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(bounded convergence); equivalently by Doob’s optional sampling theorem B (a.s. finiteness
of T is easy to show). Using this we get

0=E[Xr]=0b—p(a+b), and
E[T] = E[X%] = a*p + b*(1 — p) = ab

For a CTMC we get a similar result as Theorem 42 that we present without proof.

Theorem 44. Let {X;}icr, be a random process with values in I and let () be a rate matrix.
Then the following are equivalent

(1) {Xi}er, is (4, Q) Markov;
(2) for every bounded function f : I +— R the following random process {Mtf}t€R+ given
by

Mtf = f(Xy) — f(Xo) — / [Z ax.; <f(]) - f(X5)>] ds

¢
0 | jer
is a martingale (null at 0) with the natural filtration of { X, }ier, -

The operator A that takes bounded functions to bounded functions defined by

(AN =Y a5 (106) = £@) = Y (F0) — 1)) = (@N)
Jel J#
is called the generator of the CTMC X; a similar definition holds for DTMCs where we will
get P — 1, note that it has all the properties of a rate matrix.

5.1.1. Harmonic functions and martingales. Given a stochastic matrix P and a function
h : I — R, we call h harmonic if Ph = h, subharmonic if Ph > h and superharmonic if
Ph < h. Note that our previous results show that given {X,},ez, a (u, P) DTMC, if h(X,,)
is integrable for all n or if h is non-negative, then {h(X,)}nez, is either a martingale, a
submartingale or a supermartingale. Since finite state DTMCs with irreducible stochastic
matrices are necessarily positive recurrent, from now onwards we will assume that the state-
space is necessarily countably infinite.
We then have the following important result.

Theorem 45. An irreducible and recurrent stochastic matriz P has no non-negative super-
harmonic or bounded subharmonic functions besides the constant functions.

Proof. Let { X, }nez, bea (u, P) DTMC. If h is a non-negative superharmonic (resp., bounded
subharmonic) function, then {h(X,)},ez, is a non-negative supermartingale (resp., bounded
submartingale). Therefore, by the martingale convergence theorem, the process converges
to a finite limit, say Y. Since P is irreducible and recurrent, {X,, },ez, visits any state i € [
infinitely often, which then implies that Y = h(i) almost surely for all i € I. Thus, the only
way this holds is if A is a constant. O

5.2. Transience and recurrence conditions. We start with a theorem that provides
conditions for transience. It is a consequence of Theorem 45.
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Theorem 46. A necessary and sufficient condition for an irreducible stochastic matrix P to
be transient is the existence of some state (conventionally called 0) and of a bounded function
h: I — R, not identically null and satisfying

h(j) =" Pih(k) Vj#0.

k0

Proof. Let Tjy be the return time to 0, i.e., the first passage time to 0. Consider the function
h; = P;(T, = oo). This is a bounded function and it can be easily verified that it satisfies
the above recursion. If P is transient, then h; is non-trivial which proves the necessity of
the condition.

For the converse, assume that A is a not identically null and bounded function that satisfies
the above recursion. Define another function % as follows: h(0) = 0 and h(j) = h(j) for all
J#0. Leta=>,, Py;h(i). Without loss of generality (eg. by changing signs if necessary),
we can assume that o > 0. Then it is easy to see that h is a subharmonic function (bounded
by construction). Now, if P were to be recurrent, then by Theorem 45 we would need h
to be a constant, i.e., B(z) = 0 for all 7+ € I. However, this contradicts the non-triviality
assumption of h. O

Next we present a necessary and sufficient condition for recurrence.

Theorem 47. Let P be an irreducible stochastic matriz and suppose there exists a function
h: I~ R such that {i: h(i) < K} is finite for all finite K, and such that

> Pyh(k) < h(i) Vig F,

kel

for some finite subset F' C I. Then P is recurrent.

Proof. Since {i : h(i) < 0} is finite, inf A(7) > —oo and therefore, by adding a constant if
necessary, we can assume without loss of generality that h is non-negative. Let 77 be the
return time to F', i.e., first passage time to F, and define Y,, = h(Xn)l{MTF}. First note that
Linerpy = Linsicrpy 50 Yoy < A(Xni1)lnersy. Then noting that 74 is a stopping time and
the Markov property we get for ¢ € F

Ei[Yni1|Xo, ..., Xy < Ei[h(Xn+1)1{n<TF}‘X07 ooy X
= Lnarp) B X0n11)| Xo, - -+, Xo] = Tpnarpm) Ei[(Xg1) | X

= Lnarey D Pxorh(k) < Linerpyh(X,) = Yy,

kel

where all relationships hold a.s. (strictly speaking P;-a.s.). Therefore, {Y,,},ez, is a non-
negative supermartingale. By the martingale convergence theorem, lim,, .., Y,, = Y exists
a.s. and is finite.

Now assume that P is transient. Then any finite subset of I must be visited only a finite
number of times. Therefore, for any K, {n € Z, : h(X,,) < K} is finite. This then implies
that lim, . h(X,) = oo a.s. (strictly speaking P;-a.s. for any j € I). For this to be
compatible with Y being P;-a.s. finite for all i € F, we must have P;(7p < oco) = 1 for all
1 ¢ F. Since F is a finite set, some state in F’ must be recurrent, yielding a contradiction. [J

While we proved sufficiency of the condition, this is also necessary for recurrence. We
omit the proof by pointing the reader to Theorem 9.4.2 in Meyn and Tweedie book.
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We now present sufficient conditions for transience and for absence of positive recurrence.

Theorem 48. Let P be an irreducible stochastic matriz and let h : I — R be a function
such that

Ei[h(X1)] = (Ph)(i) =Y Pyh(k) < h(i) VigF,

for some set ' (not assumed to be finite). Moreover, suppose there exists i ¢ F' such that
h(i) < h(j) Vj€F.

Then: (i) if h is bounded, then P is transient; and (ii) if F is a finite set, h is bounded above
and

> Pulh(k) —h(j)| <A Vjel,

kel

for some A < 0o, then the chain cannot be positive recurrent (i.e., it is either null recurrent
or transient).

Proof. First we prove (i). Let 7 be the return/first passage time to F' and pick an i ¢ F
that satisfies h(i) < h(j) for all j € F. Setting Y,, = h(X,rr,) We have

Ei[Yn+1|XO7 s 7Xn] = Ei[l{n<TF}h(Xn+1)|X07 <o 7Xn] + El[l{nZTF}h(XTF)|XO7 s 7Xn]

The term inside the second (conditional) expectation is 1gn>1M(X7.) = 1psryYa; now
note that 1g,>.,3h(X;,) is 0(Xo, ..., X,) measurable. Therefore, we have

EZ‘[Yn+1|X0, [P ,Xn] - ]-{n<TF}Ei[h(Xn+l>|X07 e ,Xn] + 1{nZTF}h(XTF)
< Ynerpy M(Xn) + Linzrpy (X)) = M Xppry) = Yo

Thus, under P; we get that {Y,},cz, is a bounded supermartingale. By the martingale
convergence theorem, the limit Y of Y,, exists and is finite (P;-a.s.). Thereafter, an applica-
tion of the bounded convergence theorem then says that E;[Y] = lim, ., E;[Y,], and since
E;[Y,] < E;[Ys] = h(i) (by supermartingale property), we have E;[Y] < h(3).

Now, if 7% were P;-a.s. finite, then Y,, would eventually be stuck at h(j) for some j € F,
and therefore by the definition of i, we would have E;[Y] > h(i), which would contradict the
previous inequality. Therefore, P;(7p < 0o) < 1, which concludes the proof of (i).

For (ii), we chose j € F such that a := Pj(1; < 7p) > 0, where ¢ is the special state
identified earlier. Note that such a j has to exist by irreducibility of P and finiteness of F'.
Then we have E;[7;] > E;[7r] > o(E;[7;] + E;[7r]) > ofE;[7F] so that it suffices to show that
E;[mr] = oo. Slnce h is bounded above, we can assume without loss of generality that h <0
(by subtracting the upperbound, if necessary) so that the required integrability holds.

Assume that E;[7p] < oo. Then, it follows that P;(7p < co) = 1 and by condition on
weighted sum of differences of h, we get

TF
Z |Yn - Yn—1|
n=1

S AEZ[TF] < 00,

X07 s aXn—1:|

Z 1{Tp2n}]E'z |:|Yn - Yn—ll

n=1
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where Y,, = h(Xpnarp), as in the first part. Thus, by Fubini we can interchange summation
and expectation to get

TF 00
EilYr,] = EalYol + Ei | Yo = Yooa| = h(i) + D Eil(Yo — Vo) Loy
n=1 n=1

= h(i)+ Y E, [1{@”}1& [Yn Y| Xo, .. ,Xn_lﬂ < h(i),

n=1
using the property that (Ph)(k) < h(k) for all k ¢ F (since the first time hit F' is at time
7r). This contradicts Y;, > h(i). Hence, E;[7p] = occ. O

For many results to follow we will view a given chain only when it is in a given finite set
F. Let 7}’ be the time of the k™ return of the given DTMC { X, },ez, to F with 7 = 7{.
We define an associated process { X} }rez, by setting X} = X, r (where we also assume that
X{§ € F so that 7§" = 0). If the original chain is irreducible and recurrent, then {X{ }icz,
is a DTMC by the strong Markov property, with a somewhat complicated transition matrix.
Nevertheless, it is easy to reason that {X,,},cz, being irreducible and recurrent implies that
{X{ ez . is also irreducible and positive recurrent. This then yields a criterion for positive
recurrence of {X,, },ez, that is very useful.

Lemma 11. Let {X, }nez, be irreducible and F C I be finite. Then {X,}nez, is positive
recurrent if B;[Tp| < oo for alli € F.

Proof. For each i € F define N; = inf{k > 1: X}" =i}, i.e., the first passage time in the
restricted DTMC. Also set L, = 7f' — 7, for k € N. Then with m = max;cr E;[7r] < 00
we have for i € F' (by the strong Markov property) that

N; fe’e)
L ZL]
k=1 k=1

Eillk<nyE[Lk| Xo, ..., Xor ]]

k—1

Ei[n] = E; =E;

[
NE

Eod

=1

m > Eillyen,] = mEi[N;].
k=1

IA

Since F' is finite and {X{ }jez, irreducible, we have {X} };cz, being positive recurrent.
Thus, E;[N;] < oo, implying E;[7;] < oo and the positive recurrence of {X,, }nez, - O

We now present an important result that proves positive recurrence. This is the celebrated
Foster-Lyapunov criterion. In the sequel we will also present the most general statement of
this type.

Theorem 49. [Foster-Lyapunov] Let {X,}nez, be a DTMC with an irreducible transition
matriz P. If for some function V : I — R and some € > 0, we have inf,c; V(x) > —oo and
Y PyV(k)<oo VjeF
kel

YN PuV(k)<V(j)—e VigF

kel
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for a finite set F'. Then the chain is positive recurrent.

Note that V' being bounded below implies that without loss of generality we can assume
that V : I — R, , and we do so in the remainder. The last condition is also written in the
following more illuminating forms

(PV)() =V () = ((P=DV)(j) < —e+blr(j)
E[V(Xn-i-l) - V(Xn)|Xn = ]] < —€e+ blF(])
for some finite constant b. In other words, the one-step drift of the DTMC is such that
outside F, it is strictly decreasing; loosely put there is pull towards the finite set F'.

Proof. Let Xo =i ¢ F and define Y;, = V(X,,)1{r,>n}. Then it is easy to see that we have
on {rp >n}

Ei[Yn+1’X(], Ce ,Xn] S 1{7F>n}]Ei[V(Xn+1>’X07 Ce ,Xn] S 1{Tp>n}V(Xn> - 61{7—F>n} S Yn,

and on {7y < n} we have Y,, = Y,,;; = 0. Thus, {Y, },ez, is a non-negative supermartingale.
Therefore, iterating we get

0 < B[Yo] SE[Y,] — ePi(rp > n) < - <Ei[Yo] — €Y Pi(rp > k)
k=0

In other words,

n

Z]P)Z(TF > k) <

k=0

140

€

h

=

j . Now for j € F', we have

Letting n — oo, this then implies that E;[1p] <
1 :
Ejlrr] =1+ Z P;E;[tr] <1+ - Z P;;V (3)
g igF
which is again finite. The positive recurrence result now follows from Lemma 11. U

We have a simple corollary that is known as Pakes’ Lemma.

Corollary 4. [Pakes’ Lemma] Let {X,}nez, be an irreducible DTMC on I = N such that
foralln € Zy and alli € 1,
E[Xyi1|Xn =] < 00, and
limsup E[X,, 11 — X,| X, =1] <0.

i—0

Then { X, }nez, is positive recurrent.

Proof. Let the left side of the last inequality be —2¢ where € > 0. The last inequality also
says that for i sufficiently large, greater than some ig, E[X, 1 — X,|X,, = ] < —e. We can
now apply Theorem 49 with V(i) =i and F = {i : i <o} to prove the result. O

From drift conditions we can obtain bounds on performance. The simplest result here is
the following.
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Proposition 1. Suppose P is an irreducible and positive recurrent stochastic matriz with
stationary distribution 7, and let f, g and V' be non-negative functions on I such that

(PV)(i) < V(i) — f(i)+g(i) VieE.
IfE[9(X)] < 00 and E;[V(X)] < oo, then we also have E.[f(X)] < E,[g(X)] < oo, where

X is an I-valued random variable with distribution .
Proof. In vector form, the relationship above can be written as
f<V—-PV+g=Pf<PV—-PrYYvYL Py VEeZ,
Therefore, we also get
Y PSPV PV Y Pg<PV 4> Py
k=1 k=1 k=1
Multiplying by 7 on the left, we get

nE[f(X)] < B[V (X)] + nEx[g(X)]

Now dividing by n on both sides and letting n — oo, we get the result. Note that the basic
relationship already gave us the bound Er[f(X)] < E[V(X)] + Ex[g(X)]. The extra work
was to tighten this bound. 0

We will now generalize most of these results. First we present a useful lemma.

Lemma 12. Suppose P is a stochastic matriz, and V, f and g are non-negative functions
such that PV —V < —f + g. Then for any initial state iy and any stopping time T,

S () ng)]

k=0

where { Xy ez, s (6iy, P) Markov.

Proof. The relationship PV — V < —f + ¢ implies that
ElV(Xy1)[Xo, ., Xo] + f(Xi) < VI(Xk) + 9(Xi).

Let 7" = min(7, n,inf{k > 0 : V(X)) > n}) which is again a stopping time. Using the fact
that 1¢-nspy > 1irnspq1y and the fact that

Eio [V (X)L rnsirny] < Eg [V (Xpg1) Lnsry] = B [E[V (Xey1) | Xos - -, X Lgrnsiy]
we get
Eio [V (Xpg1) Lrnsis1y) + Ei[f (Xi) Lrnsiy] < Eio [V(Xk) Linsiy] + Eig [0(Xk) Lirnsiy]

The definition of 7" implies that all the terms in the relationship above are 0 for £ > n and
Ei, [V (Xi)1znsky] < n < oo for k < n. Thus, adding the above over all k we get

]E’i() S V(/LO) + ]Ei()

E;, ka(Xk) < V(io) + Ej, ng(Xk)]
=0 =0

Letting n — oo and appealing to the monotone convergence theorem yields the required
result. U

Using this we get a different version of the Foster-Lyapunov criterion.
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Theorem 50. [Alternate Foster-Lyapunov stability criterion] Suppose P is an irreducible
stochastic matriz, V : I — Ry and F is a finite subset of I. If there exist € > 0 and a
constant b (non-negative) such that PV —V < —e + blg, then P is positive recurrent.

Proof. Let f =€, g = blp and 7 = inf{t > 1: X(t) € F} (the first passage time to F).
Then Lemma 12 implies that €E;[7p] < V(i) + b for any ¢ € I, in particular for any i € F.
Now using Lemma 11 we get the desired result. ([l

This now yields the following generalization of Proposition 1 where we don’t assume that
E.[V(X)] < 0.

Proposition 2. [Moment Bound] Suppose P is an irreducible and positive recurrent sto-
chastic matrixz with stationary distribution w, and let f, g and V be non-negative functions
on I such that

(PV)(i) < V(i) — f(i) +g(i) VieE.
Then E.[f(X)] < E;[g(X)] where X is an [-valued random variable with distribution .

Proof. Fix a state i and let {Xj}rez, be (8;,, P) Markov. Let 770 be the time of the m'™
return to state ¢g, then we have

Eo | 3 £00)| = mBlr B [f(X)
B, | S g(X0)| = mBlrJEafg(X)

Lemma 12 applied with stopping time 720 yields mE[7r;,|E.[f(X)] < V (ig)+mE[7;, |E[g(X)].
Dividing by mFE|r;,] on both sides and letting m — oo yields the required result. 0

This and Theorem 49 then yield the following useful corollary.

Corollary 5. [Combined Foster-Lyapunov criterion with moment bound] Let P be an irre-
ducible stochastic matriz and suppose V', f and g are non-negative functions on I such that
PV —V < —f+g. Suppose, in addition, that for some € > 0 the set F' defined by F := {i €
I:f(i) < g(i) + €} is finite. Then X is positive recurrent and E.[f(X)] < E,[g(X)].

Proof. Let b = max;ec(g(i) + € — f(i)). Then V, F, b and € satisfy the hypotheses of
Theorem 49 so that P is positive recurrent. Now we can apply Proposition 2 to prove
Ex[f(X)] < Ex[g(X)]. O

We will now present and prove a significant generalization of the Foster-Lyapunov criterion
for positive recurrence. We start with a set of assumptions on functions (non-negative) V',
(non-negative) g and h:

(1) (LO) V is unbounded from above: sup,.; V(i) = oo.

(2) (L1) h is bounded from below: inf;c; h(i) > —o0.

(3) (L2) h is eventually positive: liminfy ;)0 h(7) > 0.

(4) (L3) g is locally bounded from above: G(N) = supy;. V(z)gN} g( ) < oo for all N > 0.
(5) (L4) g is eventually bounded by h: limsupy ;) g(i)/h(i) <

Then the theorem is as follows.
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Theorem 51. Suppose that the drift of V in g(i) steps satisfies
Ei[V(Xy0) — V(Xo)] < —h(i) Viel
where { X, }nez, is a (§;, P) DTMC and the functions V, g and h satisfy (L0)-(L4). Let
v =inf{n >1:V(X,) < N}
Then there exists Ny > 0 such that for all N > Ny and any i € I, we have

E;[tn] < o0 and sup E;[rn] < co.
V(@i)<N

The result proves that the set By = {i € I : V(i) < N} is positive recurrent. Thus, if
P is irreducible and By is a finite subset of I, then the chain is positive recurrent using
Lemma 11. That this is a generalization of other criteria can be seen as follows:

(1) (Pakes’ Lemma) - here I =N, V(i) =4, g(7) = 1 and h(i) = € — bl<nyy (7).

(2) (Foster-Lyapunov criterion) - here I is general, g(i) = 1 and k(i) = —e—blyy)<nyy(J)-

(3) (Dai’s criterion or Fluid limits criterion) - here I is general, g(i) = [V (i)]| (where
[t] =inf{n € Z : t < n}) and h(i) = €V (i) — C11gv)<cey (0)

(4) (Meyn-Tweedie criterion) - here h(i) = g(i) — Ci1{.v(j)<ca} (7).

(5) Such state-dependent drift conditions were first proposed by Fayolle, Malyshev and
Menshikov.

Proof of Theorem 51. From the drift condition, it is clear that V(i) — k(i) > 0 for all ¢ € 1.
We choose Ny such that infy(;)>n, ~(7) > 0. Then, for N > Ny, we set

d= sup g¢(i)/h(i), H=—infh(i), c= inf h(3).

Define an increasing sequence of stopping time {7}, },cz, recursively by
TO = O, Tn =1p 1+ g<XTn—1) Vn € N.

By the strong Markov property, the sequence {Y} },ez, given by Y, = Xy, forms a DTMC
(possibly time-inhomogeneous) with (can be proved via induction) E;[V (Y, 41)] < E;[V(Y,)]+
H, which then implies that E;[V(Y},)] < oo for all n € Z, and i € I. Define the stopping
time

y=inf{n >1:V(Y,) < N}

Note that 7v < T, a.s. and thus, proving that E;[T,] < oo will prove the required result.
Set &, to be the net accumulation of V' between 0 and v A n, i.e.,

YA

En=>) V(Yi) =Y V¥Vl

k=0 k=0
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Now we are in the traditional set-up and can determine the expected drift, i.e.,

Eil, — &) = Ei ZE (Vi) Lz Yo, - Vi

= E; Zl{-y>k}E (Yo Yo, ..., Yai]

<E Z Lz (V (Y1) = h(Yi1))

[n+1 n
SE D Loy Vo) | = Ei | D 1zrnh(Yea)
Lk=1 k=1
= Eil&a) — Ei | ) pzmyh(Yior)
k=1

where we used V(i) — h(i) > 0. From the above we get

< Ei[V(Yo)] = V(5)

Z Liyoryh(Yio1)
k=1

First we assume V(i) > N. Then it follows that V(Y;) > N for k < 7 by the definition of
7. Therefore, h(Yy) > ¢ > 0 for k < ~. Using this to obtain

D ek

k=0

<V(i)+c

where we added cE;[1{;~,3] < ¢ on both sides to get the bound. So by the monotone
convergence theorem we have

Emgﬂ%f<m

Using h(i) > dg(7), since V(i) > N, we also have

-1 v—1
WY:) > d>»_ g(Yi) = dT,
k=0 k=0

From the above we get T), < 0o a.s. and

Eih]ﬂ S]EAT%]S;——————— < Q.
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We now need to consider the case of V(i) < N. By conditioning on Y7, using the Markov
property of {Y,,},ez, and the calculations above, we have

Eiry] <E(T] <g(i)+ Y PLET)
JV(G)>N

2. F

3V (j )>N

i)+ 2P
jel
V(i)+ H+c N+H+c

< N _—
- <G(N)+ - < 00

where Pé = Pi(Xy4) = j) for all j € I, is the transition probability for the first transition
of the Markov chain {Y}, },ez, ; note that we used the drift inequality above as

=Y PV V@) —h(i) < V(i) + H

jeI

<g(i) +

O

The condition (L4) is not just a technical condition as the time horizon g(i) over which the
drift is computed shouldn’t be too large compared to the estimate h(7) for the size of the drift
itself. The following simple example demonstrates this. Let I = N and let the transition
probabilities be

Py=1, Popo1 =0k, Py =1—p, VE>2

where py, € (0,1) for all & > 2 and limy_, pr = 1; for concreteness we take p, = 1 — % for
k > 2. Thus, we have jumps either of size 1 or —(k — 1) till the first time state 1 is hit. Also
note that state 1 is absorbing while the rest are not, i.e., once the Markov chain hits this
state, it remains there, and so 1 can be the only recurrent state.

Let { X }rez, be (0k, P) Markov where k > 2. Using 1 —a < e™* for z € [0, 1] we get that

Py(Xyt1 =X, +1foraln>0)= Hpk < e XERT =
1=k

implying recurrence of the state 1. However, if we set 7 = inf{n : X,, = 1} to be the hitting
time of state 1, then we find that

Py ( )= % ifn=1;
kT =N) = b1 ]
k+n 1 H ( k+l> = Grn-Dktn-2) otherwise.

Now it is easy to see that E[7] = oo for all k& > 2; note that Py(7 > n) = kk1+ Therefore,
state 1 cannot be positive recurrent. Let us choose V (k) = log(1 V log(k)) and g(k) = k.

Then we have

B[V (Xo))] = Pir(r > g(k)V (k + k7) =

—1 1Vvl1 2
L og(1Vlog(k + k7))

h(k) where h(k) = ¢,V (k) — co where
(3) hold but L(4) fails.

Now it is easy to verify that E.[V (Xu) — V (k)]

< -
c1 and ¢y are positive constants. In this case L(0)-L(3
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5.3. Stability criteria for continuous time processes. We now present the equivalent
of the Foster-Lyapunov criterion for CTMCs. Now the drift is defined using the rate matrix
@ (remember equivalence of @) and P — I) as follows for X (t) =i

=> (V@ -V = D a(VQG) - V@)
jel JELj#i
The result we seek is the following.

Theorem 52. [Foster-Lyapunov criterion for CTMCs] Suppose V' : I — R, and F is a
finite subset of S. Let Q) be an irreducible rate matric. Then the following hold:
(1) if QV(i) <0 on I\ F, and {i : V(i) < K} is finite for all K, then {X;}er, is
recurrent;
(2) suppose for some b >0 and € > 0 that

(QV)(i) < —e+blp(i) Viel
Assume further that {i : V(i) < K} is finite for all K or that {X;}ier, is non-

explosive. Then {Xi}ier, is positive recurrent.

The result is proved using the discrete-time results (Theorems 47 and 49) by analyzing
the jump DTMC. First we have a version of Lemma 12.

Lemma 13. Suppose QV < —f + g on I where f and g are non-negative functions. Fix an
initial state ig, let N be a stopping time for the jump DTMC {Y, }nez, , and let Jn be the
time of the N jump of {X:}ier,. Then

s [ [ rxonar) < viw e[ [ sexonal

Proof. Let D denote the diagonal matrix with entries ¢;. Since the jump DTMC transition
matrix [T is given by IT = D~ 'Q+1, the condition QV < — f+g implies that IIV -V < —f+g,
where f:= D 'f and g := Dilg Now applying Lemma 12 to the jump DTMC yields

> o) £ |3 0n

<Vl()

740

From the holding-times and Jump-chaln description of {Xt}teR . it is easy to see that
N-1
9(Ys)

%ﬂm > =ﬂ4[ﬁwwﬂ

The result then follows. [

Proof of Theorem 52. Part (1) is quite straightforward. The condition QV < 0 is equivalent
to the condition IV — V' < 0, which using Theorem 47 implies that the jump DTMC
{Yo}nez, is recurrent. This then implies recurrence for {X;}ier, too.

Now consider part (2). First note that on I\ F' we have QV < —e < 0. Thus, from part (1)
we get recurrence of { X, },cr, ; therefore, it is non-explosive in either case. Let f(i) = —e and
g(i) = 1p(i). Fix an iy € F and set N = inf{k > 1:Y}, € F} (i.e., first passage time to F in
the jump DTMC starting out in iy € F) and Jy to be N*! jump. Then Lemma 13 implies
that eE;[Jn] < V(i) +b/qi,. Since Jy is finite a.s. and since {X,;}icr, is non-explosive, we
must have that Jy is the first time to hit set F' after leaving state ig. Since F' is finite, this

10

_E, { OJN f(X(t))dt] and E;,
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then implies that the first passage time to F' beginning from any state in F is finite. Now
the continuous time equivalent of Lemma 11 proves the positive recurrence of {X;}icr,. O

We can now get other equivalent results as follows.

Proposition 3. Suppose V', f and g are non-negative functions on I and suppose that
QV < —f+g onl. In addition, assume that Q is an irreducible and positive-recurrent rate
matrix with stationary distribution w. Then [ :=7nf < g:= 7g.

Corollary 6. Let Q) be an irreducible rate matriz and V', f and g are non-negative functions
on I such that QV < —f + g on I and the set ' = {i : f(i) < g(i) + €} is finite for some
€ > 0. Suppose also that {i : V(i) < K} is finite for all K. Then Q is positive recurrent and
wf < mg where w is the (unique) invariant distribution of Q.

5.4. Kurtz’s theorem. This result presents a differential equation based approximation to
a class of CTMCs with specific assumptions. The special class is general enough to model
logistic growth, epidemics and chemical reactions; in fact, the formal proof of mass action
kinetics (also knows as the Chemical Master Equation) is a consequence of Kurtz’s theorem
(Theorem 2.1, Chapter 11 in reference that follows). The material for this section comes
from Chapter 11, S. N. Ethier and T. G. Kurtz. 1986. Markov processes: Characterization
and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics. John Wiley & Sons, New York.

The main result is based on characterization of CTMCs via Poisson processes that we
already discussed; the exact representation is obtained by random time changes. For this
section we constrain the state-space to be Z¢ for some d € N. If @ is the rate matrix and
{N,}1eza be a collection of independent rate 1 Poisson processes. Let X be some fixed point
in Z%, ¢ be the explosion time and oo the exploded state, then we have the (dx,, Q) CTMC

{Xi}ier, given by

. {XO S iena N (fy @xxon ds) e < ¢
00 ift > ¢
See Section 4, Chapter 6 in Ethier & Kurtz book for more details. Note that we have changed
notation for the Poisson process from N! to N;(t) where [ € Z¢ and t € R, for the sake of
readability.

For the result we consider a sequence of CTMCs indexed by n € N. We will be interested
in how the sequence of processes behave as n — oco. We will start with a simple result
that follows from the strong law of large numbers. Let {Z,,},en be a random process taking
values in R that satisfies the strong law of large numbers, i.e.,

1 n
fm 2 A= s

for some i € R; an example is an i.7.d. sequence that is integrable with mean p. Fixa T > 0
and for all ¢ € [0,7] define S =1 Z,Eg Zy, then we have the following result.

Proposition 4. The sequence of processes {S} }iepo,r) and n € N converges to {ut}icom)
such that uniform norm converges to 0 a.s., i.e.,

lim sup [S;"'—ut| =0 as.

N0 10,7
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Proof. Tt is possible to justify that sup,co 7 [Sf — pt| is a random variable for every n € N
but we take this as given here. Note that SJ = 0 for all n € N. Thus, we fix a t € (0,7] and
consider n > [1/t]. Now notice that

[nt]
|57 — pt| = —ZZk—Mt

_ z_(u)

Now for a fixed ¢ > 0 we can choose (fixing a sample-path that satisfies the strong law of
large numbers) a K* such that for all K > K*

KE:%_

Now for n > 4“ the second term is less than equal to §. Thus, if ¢ > K?*, then first term is

less than for all n > 4“ Now for 0 < t < £~ we have

>+
k=1

where we note that the right side goes to 0 as n — oo. Thus, taking n large enough (and

greater than 4—”) we can make the right side less than §. Therefore we have for n large

enough that sup;cp 775t — pt| < €, which proves the result. O

This proof is the same as that of Theorem 4, “Ordinary CLT and WLLN Versions of
L = W, Peter W. Glynn and Ward Whitt, Mathematics of Operations Research, 13(4),
1988, pp. 674-692. This yields the following corollary that we will use later on.

€

4T

pE”
n

1
S —pt] < —
n

Corollary 7. Let {N(t)}ier, be a rate 1 Poisson process. Then for all T € Ry we have
limy, 00 SUPg<;<7 |2 N (nt) —t|.

Proof. First note that N(nt) = ZWJ( N(i)—N(i—1))+N(nt)—N(|nt]). By the independent
increments property of the Poisson process each of these segments is independent and N (i) —
N(i — 1) is distributed as Poisson(1) for all i € N while N(nt) — N(|nt]) is distributed
as Poisson(nt — |nt]) which is smaller than N([nt|) — N(|nt]) which is distributed as
Poisson(1). Therefore, we have

sup |LN(nt) —t| < sup [EN(|nt]) — ¢| + D) = N({t))

0<t<T 0<t<T n
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The first term goes to 0 a.s. owing to Proposition 4 (since an i.i.d. sequence of Poisson(1)
random variables satisfies the strong law of large numbers) and it is easy to see that the
second term also goes to 0 a.s., and the independence allows us to combine these results
without any trouble. 0

Kurtz’s theorem applies to a class of CTMCs with a specific form for the rate matrix.
We start with a collection of non-negative functions 3, | € Z¢, defined on a subset E of R¢
such that >, 5 Bi(z) < oo for all @ € E. Setting E, = EN{£ : k € Z}, we require that

x € E, and fi(x) > 0 imply —i—% € E,. We define a set of CTMCs {X”}neN to be a density
dependent family if process X" has state-space E,, and rate matrix given by

qgg ::n¢ﬁdy—m)ct) T,y € Ey;

in other words, a transition of size I/n (with | € Z%) from state £ occurs at rate ng;(£).
From the random time change representation we then have that

XZ‘ _ {X{f + ZZEZd [N, (nf()t B <)ifn> ds) if ¢t < (m

00 ift>¢"

where X{ is the initial condition and 77 is the explosion time. Now set F(z) = > ez Bi(x)
and X' = % for all t € R;. Then we obtain

X, = X0+ D ez lNl(nfO 5;()(;‘) “) iftt < ("
00 ift>¢"

Consider the case of t < ("™ where we can further write the following

Xp=Xp+ Y ( foﬂl ds /5 (X™) +/0tF(X§)ds,

lezd

where we used non-negativity of 3, to exchange the integral and summation. Note the term
in the parenthesis is (conditionally) a difference between a Poisson random variable and its
mean. Using this we have the following theorem.

Theorem 53. Suppose that for each compact subset K of E, we have

> Ml sup iz

lezd

and there exists an My > 0 such that
|F(z) = F(y)lh < Mk|lz —yli z,y€ K.

Suppose X™ is such that lim, . X§ = xo, and {x,}cr, satisfies

¢
xt:aso—i-/F(a:s)ds t € R;.
0

Then for every t > 0

lim sup [|[XJ -1 =0 a.s.
n—)OOOSSSt
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Implicitly the result assume global existence for solution to differential equation %xt =
F(z;) with zy given. The Lipschitz assumption on F' guarantees this. The notation | - ||
stands for the [; norm, i.e., the sum of the absolute values of the entries.

Proof of Theorem 53. Since {zs}o<s<¢ is a continuous function, for every fixed ¢ > 0 the
values taken by {x;}o<s<; lie in a compact set. Now, for the desired convergence it is enough
if we consider a neighbourhood of {z}o<s<: (again compact) so that without loss of generality
we can assume that (3, = sup,cp Bi(z) satisfies >, 54 ||{[l18; < oo, and that there exists a
fixed M > 0 such that

[1F(z) = F(y)lh < M|z =yl z,y€E.
Using this we get

e = sup |X, —X{ — / F(X7)ds
0<u<t
<Z||l||1— sup Nl( / B (XY) )—n/ Bu(XY) ds
lezd 0

< ZHlHl— sup. |Nl nuf;) — nuf)|

lezd
< il
Z ||l||1n OSup N, (nBu) + nBu
lezd
< Sl (3 (o) + it
leza

where the inequalities hold term by term from the second inequality onwards; note that the
second inequality follows via monotonicity as

Nl(/ﬁl (X7 )_n/ouﬁl(xg) ds

sup IN(u) —u| < sup  |Nj(u) —u| = sup |Ny(nBu) — nbul

0<u<n fo Bi(X™)ds 0<u<nft 0<u<t

sup
0<u<t

Now noting that the process on the right in the bound on €} has independent increments,
and using the strong law of large numbers we get

lim Z||z||1( N; (nfit) +Blt> > Ml lim ( N; (nfit) +5lt) —2t2||l|| B < oo

lezd lezd

where the limits hold in an a.s. sense. Of course, this implies that we can interchange the
limit and summation. The term by term inequalities then imply that we can also interchange
limit and summation in the third expression and using Corollary 7 we get that lim,, .. €/ =0
a.s.

Using the Lipschitz nature of F' now yields

t
IX7 — 2lly < X3 — ol + e + / MIIXT — 2, uds,
0



STOCHASTIC MODELS FOR WEB 2.0

and then by using the Gronwall-Bellman inequality we finally get
IX7 = @illy < (| X5 — @olly + €) ™

Therefore, the result follows as n — oc.

69
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5.5. Exercises. Please show all your work. For all exercises simulate an example.

(1)

Consider network shown in Figure 1. Assume discrete-time, let arrivals {4;};en be
i.i.d. taking values in Z, such that E[A?] < co. Server 1 can serve up to R; arrivals
and server 2 can serve up to Ry arrivals with both Ry and R; in N. Queues hold
arrivals if they cannot be served and queues cannot go negative. After service from
server 1 arrivals go to server 2. Assume that arrivals in a slot can only be served
in the next slot. Show that {(Q1,,Q2,)}nez, is a DTMC; assume Qly = Q29 = 0.
What are its parameters? Can you write down a state recursion? Show that DTMC
is transient if E[A;] > min(Ry, Ry) (Hint: use the strong law of large numbers).
It is possible to prove that DTMC is positive recurrent if E[A;] < min(R;, Rs).
However, show that using a quadratic Lyapunov function, i.e., V(Q1,,Q2,) = Q12 +
aQ1,Q2,+bQ2?%, one cannot prove this result. In other words, find the best conditions
for positive recurrence using a quadratic Lyapunov function by varying a and b.
Important: a and b cannot be chosen arbitrarily.

—}: (>

Server 1 Server 2

F1GURE 1. Tandem queues

Lamperti’s criterion: Consider a DTMC in Z, with lim,_,o 2E[X,, 11— X, | X, = z] =
—c and lim, o E[(X, 11 — X,)?| X, = 2] = b where b and c¢ are positive constants.
Use an appropriate Lyapunov function to show that the DTMC is positive recurrent
if 2¢ > b. Can you prove it is transient if 2c¢ < 0?7 Extra credit

Lindley’s recursion: Let {A,}nen taking values in Z be i.i.d. with E[A4;] < 0 and
E[A?] < co. Show that the DTMC given by X,,1; = max(X,, + A,.1,0) forn € Z,
is positive recurrent; assume that X, = 0. Can you show that it cannot be positive
recurrent if E[A;] > 0 (without assuming E[A?] < oo)? Can you show positive
recurrence without assuming E[A?] < co? The last part is Extra credit.

Consider queueing system in Figure 2. Arrivals are assumed to be Bernoulli with
parameter p and can be routed to either queue. Service (when possible, i.e., when the
queue is non-empty) is also Bernoulli with parameter R; for server 1 and R, for server
2. Let 1, and Q)2,, be the queue-length of each queue; assume Q1) = Q29 = 0. The
routing policy that we follow is to route to the shorter queue with ties broken in favour
of queue 1. Assume p = 0.7 and R; = Ry = 0.4. Show that V(Q1,,@2,) = Q1,+Q2,
does not satisfy the Foster-Lyapunov criterion for any choice of b and finite set F'. Is
the DTMC positive recurrent for given p, Ry and Ry? Can you guess the conditions
for positive recurrence? Show that V(Q1,,Q2,) = Q12 + Q22 allows one to use
the Foster-Lyapunov criterion to prove positive recurrence. The last part is Extra
credit.

Take the birth-death CTMC, i.e., () matrix on Z, such that gg; = A and for » € N we
have ¢; ;+1 = A and ¢;;_1 = p with every other entry (except the diagonal ones) being
0. Show using the Foster-Lyapunov condition that the CTMC is positive recurrent



STOCHASTIC MODELS FOR WEB 2.0 71

i

) f server 1
\
*—-}
Server 2

FIGURE 2. Shortest queue routing

if A < pu. Can you also show that it cannot be positive recurrent for A > u? Hint:
Use uniformization to convert to a DTMC. The last part is Extra credit.
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6. CONTROLLED MARKOV CHAINS

The sources for this section are:

e J. R. Norris, “Markov chains,” Cambridge Series in Statistical and Probabilistic
Mathematics, 2, Cambridge University Press, Cambridge, 2006.

e P. R. Kumar and P. Varaiya, “Stochastic systems: Estimation, identification and
adaptive control,” Prentice Hall, Englewood Cliffs, N. J., 1986.

e S. M. Ross, “Applied Probability Models with Optimization Applications,” Dover
Publications, 1970.

Thus far our Markov chains were governed by fixed rules. However, in real systems there
is considerable flexibility in designing the rules/taking actions so as to meet some objective
(eg., reach destination while not having an accident in the shortest time without speeding).
From real systems it is also clear that actions taken in the past influence the future evolution
of the state, and therefore the future actions.

A general means of modelling this control aspect in a stochastic framework is via controlled
Markov chains. We will stick to the discrete-time setting. Let us suppose we are given some
distribution A\ on state-space I and an action space A such that for every action a € A we
have a transition matrix P(a) and a cost function ¢(a) : I — R; note that the cost of an
action also depends on the state. This set-up is the input for a Markov decision process,
although we may not always get a Markov process! To actually get a process, we have to
decide on a methodology to pick actions. This is called a policy which is sequence of functions
Uy @ 1"+ A for n € Z,; we have assumed that a policy can depend on the current state
and the entire past state but in general, it could also depend on the past actions directly
(instead of through the state). Each policy then determines how the process evolves, i.e.,
the probability law P* for the random process {X,, }nez, with values in I by

(1) P*(Xo = i0) = Nig;

(2) Pu(Xn+1 = in+1|X0 = ?:0, ce ,Xn = Zn) = Pin7in+l (Un(io, .. ,in».
We also distinguish something called a stationary policy u : [ — A where u, (i, ...,i,) =
u(i,) for every n € Z,. Note that under a stationary policy, the probability law P* makes
{Xn}nez, a DTMC with transition probabilities Pjj = Py;(u(in)).

We suppose that a cost c(i,a) = ¢;(a) is incurred when action a is chosen in state i. We
will assume that ¢(i,a) > 0. Then with a policy v we can associate an expected total cost
starting in state ¢ which is

o)
Vi) =B DY (X un(Xo, -, X)) |
n=0
we use the index u to remind us that the probability law is determined by policy u! We also
define something call the value function, namely, V*(i) = inf, V*(¢) which is the minimum
expected cost starting from 7. The basic problem in Markov decision processes is to find out
the u that will yield the minimum expected cost.

We will make some technical assumptions to prove our results. These are

(1) (Assumption 1): for all i, j € I, the functions ¢; : A+~ [0,00) and P,; : A — [0, 1] are
continuous;

(2) (Assumption 2): for all i and all B < oo, the set {a : ¢;(a) < B} is compact;

(3) (Assumption 3): for each i, for all but finitely many j, for all a € A we have P;j(a) =
0.
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A simple case where (1) and (2) hold is when A is finite set; we will often make this assump-
tion.

We first develop the function V,,(i) for n € N and i € I; assume V(i) = 0 for all 4. This
is iteratively defined as follows for every i € I:

Vi(i) = inf c(i,a)

n+1():1nf{cza—|—z ()} n>1

By induction we can prove that V,,(i) < V,,41(¢) for all 4, i.e., V,,(7) increases to a limit V(4)
(maybe be infinite). Note also that we have

and by letting n — oo we have
Vao(i) < inf {c(i,a) + 2; Pij(a)Vao (5)}
je

We hazard the guess that V(i) is V*(i) as at every time we are choosing the best action
assuming there is finite amount of time to go. This is not true in general but does follow
under our assumptions.

Lemma 14. There is a stationary policy u such that
Voo (1) = (i, u(i)) + Z (7)-
jel

Proof. If V(i) = oo, then this true for any policy, so let us assume that V(i) < B < oc.
Clearly there is no reason to take actions that will cost more than B. Then we have

Vn+1<i> = ggff{ {6@7 a) + Z sz<a>vn(])}

where K is the compact set {a : ¢(i,a) < B} and J is the finite set {j : P;;(a) # 0}. Now,
by continuity, the infimum is attained and

Vn—i—l(Z) Z Un ‘l’ ZPU un Vi )

for some u, (i) € K. By compactness of K, there is a convergent subsequence u,, (i) — (i)
(for some u(i) € K). Passing to the limit as £ — oo in the equation above we get the desired
result. O

We state without proof a simpler statement of Theorem 4.2.3 from J. Norris’ book on
Markov chains.

Theorem 54. Let {X,},ez, be a DTMC with transition matriz P and let (¢; : i € I) be a
set of non-negative values/costs associated with each state. Set ¢; = E; [> 7 e(X,)] (which
exists but can be infinite). Then we have the following results:
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(1) the function ¢ = (¢p; : i € I) satisfies
¢i=ci)+>_ Pyd; Vi€l
jeI
(2) if v = (Yy;4 € I) is another non-negative function that satisfies
i > c(i)+ Y Py Viel,
jel
then ; > ¢; for alli € I.
A main result of this section is the following.
Theorem 55. We have
(1) V,.(3) T V*(i) as n — oo for all i;

(2) if u* is any stationary policy such that a = u*(i) minimizes

c(i,a) + ZPij(a)V (J)

Jel
for all i € I, then u* is optimal, i.e., V¥ (i) = V*(i) for all i.

Proof. For any policy u we can write the following

V(i) = Ef Zc(Xmun(Xo,...,Xn))]
n=0
2 UO +ZP” UD Vu[z]( )

jel
where u[i] is the policy constructed using u and given by
uli](io, .+ s in) = Uny1 (2,00, - -y 0n) VN E Zy

Since V*(j) is a lower bound over all policies we get

V(i) > c(i,ug(i) —l—ZPw uo (i )>31€1£{ @a)—i—ZHj(a)V*(j)},

and taking an infimum over all policies we then obtain

V(i) > inf {c@,a) ¥ Zﬂj(a)V*(j)}
jel
Now note that V(i) = 0 < V*(i) and assuming V,,(i) < V*(i) for all i € I, it is easy to see
that V,,41(i) < V*(i). Therefore by induction and taking limits, we find that Voo (1) < V*(3)
for all » € I.
Let u* be a stationary policy such that

Voo (i) > c(i,u*(i +ZP” Voo (7).
jel

By Lemma 14 we know that such a policy exists. Now

Z (X, U*(Xn))] )

VY(i) =EY

n=0
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so it can be shown that

V() = i (0) + D Pl ()Y )

jel
and V% (i) < V(i) (from Theorem 54). However, we know that V*(i) < V* (i) which then
implies that V(i) = V*(i) = V¥ (i) for all i € I. O

Theorem 55 says a few remarkable things: (i) there exists a policy that meets the lower
bound and, in addition, the optimal policy is stationary; and (ii) once the value function
V*(i) is obtained (by computing V,,(i) and taking n — o0), then solving the minimization
problem in the second part of Theorem 55 yields the optimal policy. The latter procedure is
called value iteration as the iteration is over the value function and the policy is determined
at the end of the value iteration procedure; note that we followed a backward induction
procedure for value iteration. Note that the value function satisfies a fixed point equation,
which is the called the Bellman equation. The optimality rule for control actions is called
the Bellman optimality principle. A similar iteration can be performed in the space of
stationary policies. Given a stationary policy v and its value function V* we can obtain
another stationary policy fu by choosing

Ou ()Gargmmcz a —l—ZPw WV(5)
jel

Some natural questions are whether this procedure will converge and whether we obtain the
optimal policy in the limit. Under some assumptions that does follow.

Theorem 56. We have

(1) V(i) < V(i) for all i € 1, i.e., the value function is lowered in each iteration; and
(2) VO L V*(i) as n — oo for all i, provided that

EY[VYX,)] —0asn— oo Viel,
where u* is the optimal (stationary) policy.

Proof. Part (1): Using Theorem 54 we get for all i € [
V(i) = i, uli)) + Y Py(u(i) V()

jel

(i, Qu(i —I—ZPU (Ou(2))V*(4),

and since for all 7 € I by Theorem 54 we also get for all i € T
VO (i) = c(i, Qu(i +ZP” Ou(i)) V7 (5),

jel

it follows from the second part of the same theorem that V%(i) < V(i) for all i € I. Note
that iterating this we get V?"(i) < V" '“(3) for all n € Z, so that a limit exists as n — 0
for all © € I. It is also clear that we have

V(i) < cliya) + Y Py(a)VTU(j) Vi€ I&a € A

jel
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Part (2): Let {X, }nez, be a DTMC obtained by following the optimal stationary policy
u* and let {F,}necz, be the natural filtration of this process. Fix an N > 0 and for n =
0,1,..., N define the process

MY = VTN ) e( X, ut (X))
k=0
Then we have
n—1
B MY F) =Y P, (' (X )V 0) + e X u' (X)) + D el X, w' (Xp)
jel k=0
n—1
> VX)) e( X ut (X)) = MY
k=0

where we used the decreasing property of V"% with a = u*(X,). Thus, it follows that
E* [M}Y,,] > E*" [M}] so that we have

Vo) = B (MY < EX (MY

=B [V*(Xy)] + EY

Z (X, u" (X )] :

n=0

Therefore, if B¢ [V*(X,,)] = 0 as n — oo for all i € I, the right side converges to V*(i) and
so does V") (7) (we also know V(i) > V*(i) for all i € I and N € Z_.). O

Thus far we discussed minimization of expected total cost. Thus, if the optimal policy
u* were such that any of the recurrent states have non-zero value, then for any such state
i we get V*(i) = oo. Note that the transient states contribute a finite cost. Since this is a
major restriction, we have to consider modified versions of the cost to cover the recurrent
case. A first step is to discount the value/cost of the future actions; the idea is that the value
dissipates over time. Assume we are given a discount factor v € (0,1), then for a policy u
we define the expected total discounted cost to be

Vi) =B Y a"e(Xn, un(Xo, -, X)) | |
n=0
and the discounted value function V(i) = inf, V*(i). Note that the discount cost version

reduces to the total cost problem if we enhance the state by adding an absorbing state 0
and define a new Markov decision process by

Py =aPyla), Pop=1-—a,Py=1

¢i(a) = ci(a), ¢sla)=0
Thus, the new process follows the old one until a geometrically distributed time (with pa-
rameter o and duration at least 1) when it jumps to 9 and stays there without accumulating

any cost/value. For later use we will deemed the value function for policy u in the new
process V(u) and the optimal value function V*.
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Similar to the total cost case we can define V{,(i) = 0 and, inductively,

Vit1.a(?) = mf { c(i,a +O‘Z },

and given a stationary policy u, devise a new stationary policy #,u by choosing
Ou(i) € argmmc(z a +aZPw WV (3).
jel
Then we have the following result.

Theorem 57. Assume that the cost function c(i,a) is uniformly bounded. Then we have
(1) Vauli) T V(i) asn — oo foralli e I;

(2) the value function V. is the unique bounded solution to

V;(z’):mf{ za+az };
(3) let u* be the stationary policy such that a = u* (1) minimaizes
c(iya) + oY Py(a)Vi(j) Viel,
jel
then u* is optimal, i.e., V¥ (i) = V(i) for all i € I; and
(4) for all stationary policies u we have Vao"(i) | V*(i) as n — oo for all i € I.
Proof. Since V* = V¥ V* = V* and f,u = 6, (where 6 is the 8 operation in the new total
cost Markov decision process), parts (1), (2) and (3) follow from Theorems 55 and 56, except

for the uniqueness claim in (2). However, note that for any bounded solution V' to the said
equation in part (2), there is a stationary policy @ such that

V(i) = c(i,u(7) —1—04213”

JelI
then by Theorem 4.2.5 in J. Norris’ book, we have V' = V*. Therefore 6,u = u and so if
part (4) holds, then @ is optimal and V' = V*.
Since ¢(i,a) < B < oo (for some B), we have for any stationary policy u that

Za"c<xn,u<xn>>] <D

V(i) = EY
) =E; 2
in fact this holds for any policy. Therefore, we also have

I

B
(Xo)] = 1

—

EY [VY(X,)] = o"EY [V A" =0 0,

where E refers to expectation in the new Markov decision process. Thus, Theorem 56 proves
the required result. [l

We could, instead, consider minimizing the long-run average cost as our criterion. For a
policy v and for n € N, define V,*(7) as
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As in the discounted cost case we will assume |c(i,a)] < B < oo for all ¢ and a, which
makes |V(i)] < B but a limit may not exist. Therefore, the exact quantity that we’ll
attempt to find is V*(i) = inf, limsup V,“(i). If we had a stationary policy u that resulted
in a DTMC that was positive recurrent with equilibrium distribution 7, then we know that
lim,, so0 V= E,, [c(X, u(X))] and we could then try to find the best such policy. However, as
before it is not clear that there is an optimal policy and a stationary one at that. In general,
the long-run average cost criterion is tricky and the standard approach is to find conditions
for a stationary policy to be optimal. The most general result here is the following.

Theorem 58. Suppose we can find a constant V* and a bounded function W (i) such that
V*+W(i):1nf{ za—l—ZPZ] j} Viel.

Let u* be a strategy such that a = u*(i) achieves the infimum above for each i. Then

()V“()—>V* asn — oo for alli € I; and
(2) liminf, o V“(i) > V* for all i, for all u.

Note that the optimal cost does not depend on i, which is to be expected from our earlier
discussion on the ergodic theorem for Markov chains.

Proof. Fix a policy u and let { X, },,ez, be the resulting process. Define U,, = u,(Xo, ..., X,,)
(note that U, is (Xo, ..., X, ) measurable) and
n—1
My, = W(X,) =V + > o( Xy, Up).
k=0
Setting F,, = 0(Xo, ..., X,), we then obtain

B (M| Fn] = My, + {C(Xm Un)+ Pxn,j(Un)W(j)} — (V" + W(X.))

> M,
with equality if v = u*; thus, {M, }nez, is a submartingale in general but a martingale when
u = u*. Therefore
W (i) = E{[Mo] < Ef[M,] = EY[W(X,)] — nV" + nV'(d).
This then yields

This proves part (2) by letting n — co. When u = u* we also have

_ _ W (i
Vnu(Z) S V*+2supl’n (Z>|7

which proves part (1). O

Note that |M,, 11 — M,| = [W(X,y1) — W(X,) — V* + (X, Uy,)| < 2(sup;e; |W ()| + B).
Now using a theorem on martingales known as the martingale stability theorem, one can
show a much stronger result, namely, lim inf % ZZ;& (X, Ug) > V* a.s., and equality for
the optimal poilcy u*, if u* results in a positive recurrent DTMC.
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If I and A are finite and one assumes that P(a) is irreducible for every a € A, then one can
prove that the long-run average cost problem can be viewed as the discounted cost problem
where the discount factor o 1 1. For this one fixes a specific state, called 0, and defines the
following W (i) = V*(i) — V*(0) and V* = (1 — a)V*(0). Then W, (i) — W (i) — W(0) and
V¥ V*iasatl.

The results for the discounted cost problem generalize to the scenario where Assumption
3 can be replaced by a condition that P;; is uniformly continuous in a uniformly over j. If
the action/control set A is finite, then we can remove Assumption 3 for both the discounted
cost and long-run average cost problem results. The association between the discounted cost
and long-run average cost problems with this new assumption carries through if W}(i) is
uniformly bounded for all + € I and a € A; a sufficient condition for the latter is uniform
(over i and «) boundedness of the mean first passage time to state 0 from any state i € [
(including 0) for the optimal policy for each «a.
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7. MULTI-ARMED BANDITS AND APPLICATIONS

The sources for this section are:

e P. R. Kumar and P. Varaiya, “Stochastic systems: KEstimation, identification and
adaptive control,” Prentice Hall, Englewood Cliffs, N. J., 1986.

e T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Ad-
vances in Applied Mathematics, 6, 4-22, 1985.

e P. Auer, N. Cesa-Bianchi and P. Fischer, “Finite time analysis of the multi-armed
bandit problem,” Machine learning, 47 2/3:235-256, 2002.

e N. Cesa-Bianchi and G. Lugosi, “Prediction, learning, and games,” Cambridge Uni-
versity Press, Cambridge, 2006.

We’ll apply the results of the previous section to a specific problem called the multi-armed
bandit problem. We will also be interested in non-classical formulations. Applications of
this then follow. The general stochastic formulation is the following. We are given N € N
stochastic processes { X} }rez, andn =1,2,..., N taking values in N (after remapping if nec-
essary). At each time k, we choose a control/action a from the action set A = {1,2,..., N}.
If Uy = n, then the state (X},,..., X}Y,) at time k + 1 is given by

X=X Yme A\ {n}
Xy, =J  with probability Pxn ;

where P = {P,;,4,j € N} is a pre-specified transition matrix. The state is observed and the
goal is to choose policy w that determines {Uy}rez, so that

iakmx,’fk)]

is maximized, where R : I — R is a bounded reward function and « € (0, 1).

In words we can describe the problem as follows: at each time we can pick one process to
evolve in a Markovian fashion while the remaining processes remain frozen, and this must
be done so as to maximize the expect total discounted reward where the reward at each
time is a function of the state of the process that’s picked. Specific examples of this will be
mentioned after the main result is presented. We have for this problem what is called the
exploration-exploitation tradeoff. We would like to play the arm whose state gives us the
highest reward at any given time but its probabilistic evolution may lead to a bad system
state in the future that may take a long time to recover from. Therefore, one needs to explore
the states and find out good states (so that rewards are high for some period of time) and
balance this with exploiting current good states.

We start by noting that Theorem 57 applies to this problem in the form generalized to
countable state-space and finite action space. Therefore, the value function V* : NV — R
solves the following dynamic programming equation

E’LL

ac{l,..,N}

Vi, .., 2N) = max {R(x“) + aZnga,jV;(xl, oz gt ,xN)}

J=1

The main result is the following theorem.
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Theorem 59. Let {Yi}iez, be a DTMC with transition matriz P taking values in N. For

each i € N define

[Zk 0 O‘kR(Yk)}
[Zk o0& }

(i) := sup v(i,7)

1<7<00

and

v(i,T) =

Then the particular halting time
7; inf{k € N: v(Yy) <~(i)}

attains the supremum above for every i € I.
For the bandit problem the index rule policy that chooses the process with the largest current
indez, i.e.,

U, € arglgaxNy(X,i)

18 optimal.

The index function « is called Gittins’ index and the policy is the dynamic index assign-
ment policy. For the finite state case there is means to calculate the Gittins index - see
Chapter 11, Section 7 of the Kumar-Varaiya book.

Proof. We start by proving the first statement. Assume a simpler problem where we only
have two arms with one of them fixed/static, at a position that yields reward R*. Here the
only state we need to be concerned with is the state of the stochastic arm, say 1. Thus, the
value function is now given by

o0
Vi (i) = max (R(i) +ay PyVi(), R+ aVJ(l’)) ,
j=1
where one plays the static arm if the second term equals the maximum. Now one can observe
that if one chooses the static arm at any state 4, since the state does not change, one continues

with the static arm forever. States ¢ € I for which it is best to use the static arm are such
that V(i) = £, which we deem as M. Here we have

V (i, M) = max (R(i) +a) PV(j, M), M)
jel
Thus, it is sufficient in this case to consider halting times (when we stop playing the stochastic

arm) and for non-trivial solutions we assume that R* € [inf;cy R(7), sup,oy R(2)]. For a
halting time 7, the cost is (abusing notation)

Vi, 7, M) :=V(i,1,R")

Za (Yx) —|—ozTM]

where we can also write oM as >_,° «o'R*. The optimal stationary policy for this two arm
case (or the 1.5 arm case as it is sometimes called) for each M is easy to determine. We can
partition the state space into three sets, namely,
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(1) strict continuation set, which is given by Cyy = {i : V(i,7, M) > M}, and where one
plays the stochastic arm;
(2) strict stopping set. which is given by Sy = {i : M > R(i) + a}_.,.; V(j,7, M)}, and
where one plays the static arm; and
(3) indifferent set, which is given by Oy = {i : M = R(i) + a ;. V(j,7, M)}, and
where one can play either arm.
Then the optimal policy is given by the stopping time 7(i, M) which is the first passage time
to Sy. Note that as M increases, C); becomes smaller, Sy, becomes larger, and 7(i, M)
decreases.
For halting time 7 = 0, we know that V' (i, 7, M) = M for all i. Therefore, the only way it
is optimal to play the static arm at time 0 (for state i) is when sup,~, V(i,7, M) < M. Now
we can show the following -

Vi, 7, M) =

Za

_E S RO B = o T Efo’|M
Ee]  1-o Z
= yl(z_’zy)Ez[l — OéT] + EZ[OéT]M

= YT Ran) + Efan)M,

11—«

Eila"|M

which then implies that we need = ”) < M for all halting times 7 > 1. This then implies
we need v(i) < (1 — a)M. Thus i we seb (1 —a)M (i) = ~(i) for each ¢ € I, then
V (i, M(i)) = M(i) solves the dynamic programming optimality equation from Theorem 57;
note that it is a bounded solution. The characterization in terms of 7; is now clear from the
discussion above and the first part is proved.

We will now prove the second part, which will be done using an interchange argument and
forward induction. Let u be the specific index rule policy for which

Ui = n if n = min {m € arg HllaXNv(X,i)} :
where we break ties by choosing the smallest label. We now show that m, which is a stationary
policy, is optimal.
Suppose that u chooses process ¢ at time k = 0, i.e., Uy = ¢. Consider j # i and let @ be
a non-stationary policy that chooses process j at time 0 and thereafter proceeds according
to policy w. Under policy u, process j will be chosen at times 0,1,...,7; — 1 where

L inf{k > 1y (X)) <y (XD} i >
P inf{k > 1 (X)) < y(XY)Y if 5 <.

Thereafter, under 4, process ¢ will be chosen at least for times k = 7;,7; +1,...,7;+7, — 1
where

74 7o=inf{k > 7+ 1y (XE) < y(X1) = v(Xp)}

Consider now another policy @, which chooses process ¢ at times £k = 0,1,...,7 — 1, then
process j at times k = 7,7 + 1,..., 7, +7; — 1, and thereafter does exactly what @ does.
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Comparing the cost of policies 4 and u we have

i o R(XU® i o R(XU®
k=0 k=0
Mo TitTi—1 T TitTi—1
=E" ) o"R(X)+ > o R(X] D dfR(X])+ ) oFR(X})
Lk=0 k=7; k=0 k=;
. 7i—1
=E" |} o"R(X})| +E* |a"E" |} oR(X]) ]
L k=0 k=0
Tj Ti—1
> a"R(X])| —E" |a7E" | Y oFR(X}) ]
k=0 k=0
Ti—1 7i—1
> a*R(X})| (1 -E"[a7]) Z o"R(X])| (1 - E"[a7])
k=0

o[£ -z z] )

= (7(Xg) —7(X3))(1 —a) (1 - E*[a7]) (1 ~E*[a"]) 2 0,

where we used the definition of the Gittins’ index in the penultimate inequality; the first
term is equal as @ follows u until 0 < k < 7; — 1, while the second term is smaller than the
term with the Gittins’ index. Therefore, @, which coincides with u for 0 < k < 7; — 1, is an
improvement over u. If at time 7;, @ does not follow u, then by shifting the time origin to
7;, we can repeat the argument above to obtain yet another policy that improves the reward
while coinciding with u even at time 7;. In this way we can obtain policies which coincide
with u over arbitrary large initial segments of time, and which are all improvements over .
We can, thus, conclude that w itself is better than @. This shows that following u at time
k = 0 is optimal. We can repeat this argument from any point that we diverge from u by
shifting the origin to that time. Hence, this argument clinches the result. 0

There are multiple proofs of the optimality of the Gittins’ index policy, each proof reveals
something new and allows for generalizations in the different directions. Some good sources
for this are:

e E. Frostig, G. Weiss, “Four proofs of Gittins’ multiarmed bandit theorem,” Appl.
Probab. Trust (1999).

e J. N. Tsitsiklis, “A short proof of the Gittins’ index theorem,” Ann. Appl. Probab.
4 (1994), no. 1, 194-199.

The multi-armed bandit problem models many real problems. First is the eponymous
problem of playing slot machines. Say there are ten slot machines and a priori we have
no idea of the actual chances of winning on any of them but you know the statistics, i.e.,
each machine has a fixed probability of winning that is chosen independently from some
know distribution. Assuming we have a large pot of money to back us up, we have to
decide which machine to play at any given time. The objective is to maximize the expected
winnings. Only by playing a machine can we estimate the probability of winning. Over
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multiple plays of each machine, we get a better idea of the unknown probability of winning.
A better example is clinical trials where we assume that there are three drugs/treatment
options whose probability of successful treatment is unknown (except for a gross statistical
knowledge). The goal is to design a sequence of trials to maximize the expected probability
of successful treatment. Another application is in processing of jobs with different rewards
where the processor only gets a finite amount of time to complete a task and the amount
of time to complete any given task is random with a known distribution. Once a task is
finished another one of the same kind appears. Routing problems are also examples if one
assumes that the routes never overlap, then we need to decide which route to use for a given
packet where the chance of it arriving at the destination by a given time is stochastic. The
multi-armed bandit problem has many interesting modern-day applications as well. The
first is related to online advertisements. An online advertiser stands to make revenue if and
only if a user clicks on the ad and then buys the product being advertised. The advertisers
negotiate with a search engine to come with the price that the advertisers have to pay to
display the ad, and this revenue is paid only if the user buys a product. Thus, each ad is
like a slot machine for the search engine, with some probability (which is user dependent)
the ad gives a reward and otherwise nothing. Assuming that the search engine can only
display one ad, this then becomes the standard multi-armed bandit problem. The second
modern application is to dynamic spectrum access, perhaps for cognitive radio applications.
Assume that we have many frequency bands available for transmission. These channels are
for so-called primary users, e.g., TV broadcast, who take precedence. A secondary user has
to sample the channel space to find an empty channel to use or one where the likelihood of
a primary user operating is low at the current time. In addition, the rate that the secondary
user receives (the reward) could be dependent on the channel. This can then be modeled
by the multi-armed bandit problem. There are lots of problems in microeconomics that
fall within the multi-armed bandit umbrella. An example is the work on optimal dynamic
auctions by M. Pai and R. Vohra in 2008. Some other papers that consider applications
in economics are: D. P. Foster and R. V. Vohra, “Asymptotic calibration,” Biometrika 85
(1998), no. 2, 379-390; S. Hart and A. Mas-Colell, “A general class of adaptive strategies,”
J. Econom. Theory 98 (2001), no. 1, 26-54; S. Hart and A. Mas-Colell, “A simple adaptive
procedure leading to correlated equilibrium,” Econometrica 68 (2000), no. 5, 1127-1150;
and D. Fudenberg and D. K. Levine, “The theory of learning in games,” MIT Press Series
on Economic Learning and Social Evolution, 2, MIT Press, Cambridge, MA, 1998.

We will discuss one application in some detail. First is the slot machine problem. We
have N slot machines, M;,..., My. For machine M;, the probability of success (reward
1) on a play is 6; with the probability of failure (reward 0) being 1 — #;. The parameters
(01,...,0N) are assumed to be independent random variables with prior distributions given
Py, ..., Py. At each time only one machine can be played. As we play the different machines,
the conditional probability distribution of the success probability parameter changes. Let
PE. ..., P¥ be these conditional probability distributions given the observed past history up
to time k. Assume that we choose machine M,, to play at time k. Then at time k + 1, the
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conditional probabilities will be:
PHY = P oymoe {1,...,N}\ {n}
: (o) o ];;Ecdfw)) with probability [ 6Pk (d6)
Pn den = 1 . 1. 1
m—<d9§ with probability 1 — [, 0P¥(d6)

The expected reward for playing machine M,, at time k is fol O P%(df). The book by Kumar
and Varaiya discusses many more applications in Chapter 11.

7.1. No Regret Formulation. We now discuss a variation of the multi-armed bandit prob-
lem initiated by Lai and Robbins. Here the aim to achieve asymptotically efficient adaptive
allocation rules. The (simplest) set-up is the following. There are N arms and each play of
arm ¢ produces an i.i.d reward with unknown (finite) mean p;. The rewards are assumed to
be independent across arms as well, though not identically distributed. As always a policy,
or allocation strategy, u is a rule that chooses the arm to play based on past rewards and
actions/plays. Let T;(n) be the number of times machine i is played by policy u until time
n. Then the regret of u after n plays is defined by

wn — Z,u]]E“ )] where p* = 121%)1(\7 L,

e., it is the expected loss when compared to a genie-aided strategy that only plays the
best arm; note that Zjvle](n) = n for all n. If the requirement for u is such that
lim, 0 = Zjvzl w;B*[T;(n)] = p*, i.e., the policy be asymptotically optimal (also known as
Hannan consistency), then the class of policies one should explore will include ones that use
the following approach: (exploration phase) experiment with the different arms sufficient
number of times (sublinear in n) to get a good estimate of the mean and then (exploitation
phase) play the best arm. Then the design problem changes to finding out a class of poli-
cies that will minimize the regret because one can easily construct a policy that yields the
optimal long-run average reward. The minimum regret was first characterized by Lai and
Robbins, and they found, for specific families of reward distributions (indexed by a single
real parameter), policies satisfying

B {10] < (o + o1 ) gt

D(p;llp
where o(1) — 0 as n — oo and

D) i= [ p(a) o (igg) "

is the relative entropy (Kullback-Leibler divergence) between the reward density p;(-) of an
suboptimal machine j and the reward density p* of the machine with the highest reward (in
expectation). Thus, under this class of policies, the optimal machine is played exponentially
more often than any other machine, asymptotically. Lai and Robbins also proved that this
regret is the best possible when the reward distributions satisfy some mild assumptions, i.e.,
E*[T;(n)] > log(n)/D(p,||p*) asymptotically for all (Hannan) consistent policies.

We will know present a simple policy that achieves this logarithmic regret (source is Auer-
CesaBianchi-Fischer paper). The policy (called UCB) is the following:
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e [nitialization: Play each arm once;
e [terative step: Play machine j that maximizes
, 21
o+ og(n)
nJ
where Z7 is the average reward obtained from machine j, n/ the number of times
machine j has been played so far, and n is the total number of plays so far. After
every play, update the variables and repeat.

Define A; := p* — p; to be (expected) loss of machine i when compared to the optimum
reward. Then the result is the following.

Theorem 60. For all N > 1, if policy UCB is run on N arms having arbitrary reward

distributions Py, ..., Py with support in [0,1], then its expected regret after any number of n
plays is at most
N
log(n) w2
<8z L)) (127 (2o,
L <p* Jj=1
where fiy, ...,y are the means of the distributions Py, ..., Py.

Proof. Let ¢; s :== +/2log(t)/s. Also define by the following
1l
Xi=-> X
n
t=1

where {X/};cy is the random process of rewards for arm i if it is played successively. For
any machine i, we upper bound T;(n) on any sequence of plays. Let I; denote the machine
played at time ¢, then we have with [ being an arbitrary positive integer that

Tl(n) =14+ Z 1{It=i}

t=N+1

<l4+ Y lpmimensy
t=N+1

< l 1 Vo Vi
=t t—;rl {XPeor) + vy < Xpygony + corme—n), Li(t — 1) > 1}

n

<l+ E I, . < .

= {min X7 +¢_1, < max X{ +c14,}
t=N-+1 0<s<t 1<s;<t

co t—1 t—1

<Ii+ ZZZ 1{)?; + e < XL F o)

t=1 s=1 s;=l

Now we observe that X7 4 ¢, < X! + ¢, implies that at least one of the following must
hold

X: S ,u* — Cts
X; Z ,U/Z + Ct,si

*

lu‘ < /’Ll + Qct,si'
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Note that the converse statement is the following

We can bound the probability of the first two events by using a version of the Azuma-
Hoeftding inequality since both s X} — su* and siX;i — s;14; are martingales null at 0 with
increments in [—p*, 1 — p*] and [—p;, 1 — 1], respectively. This then yields the following

~ $2¢2
PX; < p™ =) <exp ( 2J) — g 4log(t) — 41
S

¢ SH los(t ,
]P)(X; < i + Ct,si) < exp —9— 7t | = e~ og(t) _ t
1 Si

Also note that we have

21 1
W= pi — 2015, = og og —A;=0
\/ log

for s; > 8log(n)/A? (since n > t). Thus, if we take [ = [8log(n /A2 then we cannot have
W < pi + 2¢5, and only the ﬁrst two 1nequahtles can hold. Thus, we get

oo t—1 t—1
E[Ti(n)] < [8log(n)/A71+ > Y Y (P(X: < p” — ) + P(XL < i — 1))
t=1 s=1 s;=I
oo t—1 t—-1
< [Slog(n)/A2] + 53 S 2r
oo t—1 t—1

< [8log(n)/AF1+> Y ) 2t

t=1 s=1 s;=1
2

< 8log(n)/A + 1+ %

which completes the proof. 0

This does not yield the best regret but is presented for ease of analysis. In the homework,
we will look at other strategies.

We will now present a different formulation of the multi-armed bandit problem. Until now
the rewards from the arms changed in via a fixed random process. However, these could be
chosen in an adversarial fashion, i.e., possibly a worst-case sequence of rewards. Even in this
scenario we’d like to construct a policy that has the minimum regret. Here the rewards are
assumed to be generated using a sequence {Y;};eny where Y; can depend on all the actions
until time ¢t — 1. The reward at time ¢ for action 7 is ¢(i, Y;) for some function g taking values
n [0,1]; note that we don’t get to see Y}, else we could evaluate the gain for every arm.
The objective is now to minimize weak regret, i.e., minimize loss of reward when compared
to max;—;, N> 1 9(7,Y:); note that the comparison is with a strategy that plays a fixed
arm. The strategy that we will present is a randomized strategy that chooses action I; at
time ¢ using a probability distribution \; where \! is the probability of choosing arm i. We
will also have time-varying weights for each actions, which we denote by w! for arm i at
time ¢t € Z,. We choose three non-negative numbers 3, n and ~, all less than 1. Then the
algorithm (called MAB) is the following.
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e Initialization phase: Set wi =1 and A} = 1/N;

e [teration phase: For each t € N repeat the following:
(1) Pick arm I; € {1,..., N} according to distribution A;
(2) Calculate the estimated gains as follows

JUYOAE if [, =
§(0,Y)) = 0, Y () + 2 —{ N t

EA— t
A} % otherwise;
t

(3) Update the weights w! = wi_;e"®Y) and W, = Y7 | wi;
(4) Calculate the updated probability distribution

i w ~
At+1:(1—7)wi+% Vie{l,...,N}.

Note that A! is never 0 for any i as we always add the term v/N. Also note that

deN) i I, =
i, Y(t) =4 M ‘
9 (®)) {O otherwise

is such that E[g(¢, Y (t))|I1,...,L;_1] = g¢(i,Y;), which then implies that g(i,Y(¢)) is an
unbiased estimator of the gain. However, by using §(7,Y;) we are biasing the estimates.
Define the true gain of strategy ¢ till time n to be G, = Y7, ¢(¢,Y;) and the (biased)
estimated gain of strategy i till time n to be GI, = Y1 9(i,Y;). Then we have the following
Azuma-Hoeffding type result.

Lemma 15. Let § € (0,1). For any 3 € [\/log(N/8)/(nN),1] and i € {1,..., N}, we have
P(GY > G + fnN) < §/N.

Proof. By Markov’s inequality, we have

P(G! > G + fnN) < Elexp(B(GE, — G))]e 7.

Since 8 > 4/log(N/§)/(nN), we have e~#"N < §/N. Thus, we only need to prove that
Elexp(8(Gi — Gi))] < 1. We denote the random variable of interest by M, i.e.,

M = exp(5(;, — G3)) = e (5 (90030 —at0.v(0) - 1) ) i
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For t =2,...,n, we get the following

E[M/|I, ..., I,

= ot Blesp (5 (960, ~ 3.Y () = ) ) I 1

< Miye ME[L+B(9(,Y)) = 30, Y (1)) + 8% (9(i,Ye) — 9, Y (1)) [ L1, ... L}
(since 8 < 1,9(i,Y;) — (5, Y(t)) <1 and e” <14z + 22 for x < 1)

8
=M e ME[1+62(g(i,Y) —g(i,Y () |, ... . 1]

>~

S

(since E{(g(i, ¥;) — 30, Y (1)) [, .., L) = BI§(0, Yo L, .. 1] — g(i, Yo)? <
< M} | (since 1+ z < e").
In other words, { M}y is a supermartingale. Now we have
E[M]] = e N Elexp(B(g(i, Y1) — (i, Y1))));

since 8 > 0 and ¢(i,Y;) € [0, 1], we can show that E[M{] < 1 (use the same bounds as above).
Using the supermartingale property we now get E[M!] < 1, which proves the result. U

We now have theorem that shows good performance of the MAB policy.

Theorem 61. For any § € (0,1) and for any n > 8N log(N/9), if the MAB policy is run

with parameters
0% 1 N
— —1 — 1,1
SN andﬁel nNog(é)’]’

then, with probability at least 1 — 0, the (weak) regret is at most

0<n<

N | —

log(N
n(y+n(1+ BN + 280 | onns
In particular, choosing
1 N AN v
one has the regret being at most
log(N
anog((s)—l—Og; )
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Proof. We begin by noting that

o (1) - ($50) e

Since f < 1 and n < v/(2N), it is easy to verify that ng(i,Y;) < 1 for all t = 1,..., N.
Therefore, we have

=1
5
= log Z Ai ;Veng(%‘/t

j(lﬂm(@ Y,) +n*g° (i, Y%)))

Wt ) t 1 Y;
lo =1lo eniiye)
g(WH s ZWt :
N z

l

1

=1

N 9 N
<log | 14— > Xgli, Yo) + — 7ZW(z m)

=

1 Z)\“2(z Y;) (since log(1l+z) <z Vo > —1).
Y

i=1
By the definition of §(i,Y;) we note that
ZA i,Y;) = g(I,,Y;) + NS, and that
N :
ins 9(i,Y) B
Z NG (i, ) = ; A9 (i, Yr) (1{It=i}T + )\—%
N
= §(I, Y)g(I, ) + B 4(i,Yy)

N =1
9130,
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Substituting this into the upper bound above, summing over ¢ = 1,...,n and denoting
Gn=>1",9(1,Y;), we obtain

W, n 1+8
<— (
log( 0) 1 ’yG —1—1 5 Nﬁ—f— E G

Comparing the upper and lower bounds on log (W,,/W;) and rearranging, we get

which

is another way of writing

log(NV)

Gn > — —nNB+ (1—~—n(l+B8)N ) max Gl

-----

By Lemma 15 and the union bound, with probability at least 1 — 4,

maXNG” > max G! — fnN

whenever 3 € [y/log(N/§)/(nN),1]. Thus, with probability at least 1 — &, we have

G, > _lOg(N)

—nNB2—7v—n(1+B)N)+(1—v—nl+B)N )HllaXNGfl.

=1,...,

By the choice of parameters 1 — v —n(1 4 5)N > 0. Therefore the regret is at most

) _ 1 N )
_HllaXNG;—GnS og7(7 ) +nNB(2—=v—n(1+B)N)+ (y+n(1+B)N) '_HllaXNG;
log(N
< ng] )t onNg + (v +n(1+ B)N)n,
which concludes the proof. O

7.2. Other generalizations. Other generalizations of the multi-armed bandit problem are:

Multiple plays and switching costs: In the multi-armed bandit problem, only one arm
was picked at a time. In applications, it is often necessary to model multiple plays.
In addition, switching arms may also have a cost associated with it. In either case,
the simple index policy is no longer optimal. In this space, most of the work has
been on producing good no-regret policies. Some references are:

(1) V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation
rules for the multiarmed bandit problem with multiple plays. 1. [.I.D. rewards,”
IEEE Trans. Automat. Control 32 (1987), no. 11, 968-976.

(2) V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation
rules for the multiarmed bandit problem with multiple plays. II. Markovian
rewards,” IEEE Trans. Automat. Control 32 (1987), no. 11, 977-982.

(3) R. Agrawal, M. Hegde and D. Teneketzis, “Multi-armed bandit problems with
multiple plays and switching cost,” Stochastics Stochastics Rep. 29 (1990), no
4, 437-459.
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(4) R. Agrawal, M. Hegde and D. Teneketzis, “Asymptotically efficient adaptive
allocation rules for the multiarmed bandit problem with switching cost,”” IEEE
Trans. Automat. Control 33 (1988), no. 10, 899-906.

(5) S. Guha and K. Munagala, “Multi-armed bandits with metric switching costs,”
Proceedings of 36th International Colloquium on Automata, Languages and Pro-
gramming. Rhodes, Greece, 2009.

e Restless bandits: In the multi-armed bandit problem, the arms that are not picked
remain static. If the arms that are not picked can also change, then the problem is
called the restless bandits problem. This has been proved to be a hard problem to
solve. It is conjectured that a variation of the Gittins’ index (called Whittle’s index)
will lead to close to optimal performance. This is an important area of research.
Some references are:

(1) P. Whittle, “Restless bandits: Activity allocation in a changing world,” A cel-
ebration of applied probability. J. Appl. Probab. 1988, Special Vol. 25A,
287-298.

(2) J. Nino-Mora, “Dynamic priority allocation via restless bandit marginal produc-
tivity indices,” TOP 15 (2007), no. 2, 161-198.

(3) S. Guha, K. Munagala and P. Shi, “Approximation algorithms for restless bandit
problems,” J.ACM, 58(1), 2010.

e Others: These are generalizations that yield faster computational solutions, general-
izes to semi-Markov processes, etc. Some references are:

(1) P. Varaiya, J. Walrand, and C. Buyukkoc, “Extensions of the Multi-armed Ban-
dit Problem,” IEEE Trans. Autom. Control, AC-30, 426-439, 1985.

(2) M. Katehakis and A. Veinott, “The multi-armed bandit problem: decomposition
and computation,” Math. Oper. Res., 12(2), 262-268, 1987.

(3) I. Sonin, “A generalized Gittins index for a Markov chain and its recursive
calculation,” Statistics and Probability Letters, 78, 1526-1533, 2008.

(4) J. Nino-Mora, “A (2/3)" Fast-Pivoting Algorithm for the Gittins Index and
Optimal Stopping of a Markov Chain,” INFORMS Journal of Computing, 19(4),
596-606, 2007.
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8. PEER-TO-PEER NETWORKING
The sources for this section are:

e L. Massoulié and M. Vojnovic, “Coupon replication systems,” IEEE/ACM Trans.
Networking, 16(3):603-616, 2008.

e B. Hajek and J. Zhu, “The missing piece syndrome in peer-to-peer communication,”
Proc. IEEE ISIT 2010, June 2010, pp. 1748-1752.

e J. Zhu and B. Hajek, “Stability of a peer-to-peer communication system,” To appear
in Proceedings of ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, June 2011.

Fix N € N, then let N’ = {1,...,N} and 2V be the power set of N'. Each n € N
is a piece/part of a file in a file-sharing network such as BitTorrent, eDonkey or Kazaa.
These networks have a distributed architecture via an overlay network. The main goal is for
participants of the network to download the file that is uploaded to the network without a
centralized server to access the file from. Often some users who have downloaded the whole
file stay on the network and gives out chunks to neighbours who contact them, although a
majority leave as soon they’ve downloaded the file. Since a large portion of today’s Internet
traffic is generated by these applications, it is useful to analyze their performance. A key part
of the protocol of these applications is choosing the piece of the file that one user requests
from another. BitTorrent uses what is called the rarest piece first, i.e., user A downloads the
latest piece of the file from user B that user A does not possess. The goal of this section is to
analyze a mathematical model of a file-sharing protocol using techniques that we developed
earlier. We will model the system in continuous time where each user is called a peer to
highlight the distributed nature of the system. The papers above provide a good overview
of this application area.

Consider following random process. A type C' peer is one that has pieces corresponding
to C C N; a type N peer is called a peer seed. If a type C peer receives a piece i € C,
then its type changes to C' U {i}; note that types never reduce. Arrivals from the outside
of type C form a rate A¢ Poisson process such that A = ZC’EQN Ac > 0; typically one
will assume that A\g or A; (for Ap;y, i.e., users with just one piece) for all ¢ € N are the only
non-zero arrival rates. The idea is that users do a search when they first think of download
a file, pick up some pieces and then join the file-sharing experience with users possessing the
whole file doing so only to help others get the file. We assume that there exists exactly one
fixed seed in the network that has type N that never ever leaves the network. The fixed
seed contacts a uniformly chosen peer at instances of a U, rate Poisson process and gives it
a piece that it doesn’t already possess, choosing uniformly amongst such pieces; none of the
peers can contact the fixed seed. Each peer in the system (not the fixed seed) contacts a
randomly chosen peer (again not the fixed seed) at instances of a rate p Poisson process and
uploads a piece that the contacted peer does not possess, again choosing uniformly amongst
such pieces. Note that we are not modeling the rarest-piece-first policy in order to keep the
state-space simple. If a peer becomes a peer seed and if v € (0,00), then it can leave the
network once an exponential clock with parameter « ticks, where the clock starts as soon as
the peer seed status is achieved. If 7 = oo, then peer seeds leave instantly and in this case
we also assume that Ay = 0.

Now it is easy to see from the description that we have a CTMC with state being n =
(nc : C C N), where n¢ denotes the number of type C' peers. Denote by ot := Ecc NaLe;
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to be the total of number peers in the system when the state is n where we never count
the fixed seed. We let ec denote a vector with dimensions the same as n, with a one in
position C' and zero in every other coordinate. The positive entries of the rate/generator

matrix @ = (¢(n,n’) :n,n € ZiN) are given by
C_I(Il, n-+ eC) = )\C'
g(n,n —ey) = yny

n . .
¢n,n —ec +ecupy) = ¢ ( \C! + Z \C\) (ne>1npm>1) if C C N and @ & C.

Niotal BCN: EB

This resulting Markov process is {IN(?) }ser, -

First we will analyze this system taking a large system limit and applying Kurtz’s theorem
(Theorem 53) look at the result ordinary differential equation. Let K be the parameter by
which we will scale the systems. In the K system, let the arrival rate for type C peers
be A5 = K. and the sampling rate of the fixed seed be UX = KU,. We will also assume
that the initial state in the K™ system is such that K *N®(0) = 2(0). Now we have the
following

Kmn,n+ec) = Ko

q
ny
d“(nn - ey) = 7K"Y

K

K i %

¢"(n,n—ec+eouy) = K,y N cp 2 B\ 0] | ek ploen oy,
K BCNzEB

Let us denote the Markov process of scale K as {N*(¢)}icr,. Note that we are in the
density-dependent setting where it is possible that we can apply Theorem 53. First we write
down the form for F(x) for x € Ry with zypa := ch v Tc, as follows:

F(x)
- Z e [)\C 7 Tt 1{“““90} pre ZBCA;Z\;|>O i Layorar>0}
CCN
TN \UC;! 1 Zie:ccmf;\{i} Lorara0) + 1 ; o ZBQN;:&W Hotrz0)
+en | A — v + (Us + M@ﬂ%l{wmmﬁ(ﬂ

If Us = 0, then we can show that |8FC(X) | < oo uniformly for all x (even for x = 0) and
for all B,C' C N, and this implies that F(-) is Lipschitz. Then noting that we satisfy the
conditions of Theorem 53, we get for every T' € R, that
L K

= N7 (1) — (1)

lim sup =0 a.s.

K—o0 g<¢<T




STOCHASTIC MODELS FOR WEB 2.0 95

where component z¢(-) of {x(t)}icjo,r) where C' C N satisfies

d > BCNAB\C|>0 LB > BCNieB TR
Ztc(t) = Ac — pre=——= D s0) + 1Y Tr(i) e Lz ira>0}
Ltotal icC Ltotal
and when C' = N the corresponding equation is
%f_/\/( ) = )\N - ’Yx./\/ + /’L',”UNL\{}]‘{xtotal>o}'
Ttotal

If v = oo, then we assume Ay = 0 and z, = 0; this is the case for the flat system from
the Massoulié-Vojnovic paper. Solution of these equations is non-trivial but can reveal what
the system performance will be like. One can also make comments on positive recurrence
and transience if the resulting ODE has a globally asymptotically stable point; trying a few
examples it is easy to see that here this is not necessarily the case.

We will analyze the CTMC using more regular tools (Foster-Lyapunov) to prove positive
recurrence and transience. The main result is the following.

Theorem 62. Given (A\c : C € N), U, p, v and the rate matriz Q, the following hold:

(1) the Markov process with generator matriz Q is transient for 0 < v < p when, for
some piece k € N, we have U, + ZCQ/\/:keC Ao =0, and also when 0 < p < v < 00,
if for some k € N we have

)

—

Motat > |Us+ Y Ae(N+1-1C))

CCN:keC

where |C| is the number of elements in set C;

(2) the Markov process with generator matriz Q is positive recurrent for 0 < v < u when
for all k € N, we have Us+ 3 o prpec Ao > 0, and also when 0 < p <~ < oo, if for
all k € N, we have -

v

CCN:keC

)\total <

In both cases, for v = oo the inequalities are interpreted by taking limits as v increases to
infinity.
We will only outline/sketch the proofs of this theorem.

Theorem 62, Part (1). We consider the case of 0 < 1 < v < oo and without loss of generality
assume that the inequality is true for k =1, i.e.,

A = Z)\C—

U+ Y. Ade(N+1-|C)| ——

con CCNLeC TTH
C
_ Z Ao — U B Ac —|CDy+n -0
c:1¢C - CCN:1eC TR

Now partition the peers into five groups as follows:

(1) Normal young peer: this is a peer that does not have piece one and does not have at
least one other piece;
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(2) Infected peer: this is a peer that obtained piece one after arriving, but before obtaining
all the other pieces. Once a peer is infected, it remains infected until it leaves the
system; it is considered to be infected even when it is a peer seed;

(3) Gifted peer: this is a peer that arrives with piece one. A gifted peer is gifted for its
entire time in the system, and even when it is a peer seed;

(4) One-club peer: this is a peer that has all pieces except piece one, i.e., of type
{2,...,N}; and

(5) Former one-club peer: this is a peer in the system that was at some earlier time a
one-club peer. Note that a former one-club peer is a peer seed but the converse is
not true, infected peers and gifted peers can be peer seeds too.

Consider an initial state where there are many peers in the system, and all of them are
one-club peers. Piece one can arrive into the system from the outside in two ways: uploads
by the fixed seed or arrivals of gifted peers. Initially we ignore the effect of normal young
peers getting piece one (and becoming infected). Most of the uploads by the fixed seed are
uploads of piece one to one-club peers. Each such upload creates a new peer seed, which
on the average will upload piece one to p/ more one-club peers (geometric number of such
uploads occur), and each of the resulting peers will upload piece one to another p /v one-club
peers, and so forth, as in a branching process. Thus, each upload of a piece by the fixed seed
finally results in about v/(y — u) departures from the one-club. Each gifted peer, with type
C' on arrival, where 1 € C, will directly upload to, on average, K — |C|+ u/7y one-club peers,
and these will become peers seeds that then initiate the branching process type reduction
in one-club peers, so that the total expected number of one-club departures caused by the
type C gifted peer is (K — |C|4 p/7)7/(7 — 1). The set of one-club peers increases with the
arrival of peers without piece one. Taking the difference of the arrival rate and departure
rate of one-club peers, one gets A which is strictly positive so that over time the one-club
peer set increases without bound.

The discussion above neglected the possibility that normal young peers can also receive
piece one, and thereby, creating infected peers. An infected peer can upload to one-club
peers, creating former one-club peers, and to normal young peers, creating more infected
peers. This results in another branching process evolution of infected peers and former one-
club peers. However, the expected number of infected offspring of a former one-club peer or
an infected peer converges to zero, as the fraction of one-club peers converges to one. Hence,
when the one-club peer group is large enough, the existence of infected peers is negligible; it
will not affect the growth of the one-club peer group. 0

Note from the logic described above that when the departure rate of one-club peers is
large enough, then the system can recover from high loads of one-club peers.

Theorem 62, Part (2). Again we will only consider the case of 0 < p < v < oo. This relies on
using a Lyapunov function and the Foster-Lyapunov criterion. Let r, d, 5 and « be positive
constants (left unspecified), with r and § small, d large, and « less than but close to one.
Let & = {B : B € N, B C C} is the collection of all subsets of C| i.e., collection of types
of peers which may become type C peers in the future. Let Ho = {B: B € N,|B\ C| > 0}
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be the set of types of peers who can help type C' peers. Using these define

EC: ZTLB

Beée

g
Ho=—— Y (K —|B|+u/7)ns.
v ”BGHC

Let ¢ : Ry — R, a function with parameters d and beta be given by

2d—{—%—a: if x € [0, 2d]
— B 1 2 : 1
o) =4 (v—2d-1) ifze (2,2d+ 1]
0 if 2 > 2d + §

Then the candidate Lyapunov function is given by

LE2 + aEcg(He) it C#N

V(n)= > rlT¢, with T = {1 !
CCN 2

97

It can be shown that this has negative drift (QV') as required by the Foster-Lyapunov

criterion for CTMCs. When H¢ is small, then the drift of %Eé is positive and the drift of

the term aEc¢(He) is sufficiently negative to compensate. The main idea is to consider sets

like the one-club peer and show negative drift of those.

O



98 VIJAY G. SUBRAMANIAN

8.1. Exercises. These are exercises for the last three sections. Please show all your work.

(1) Total cost criterion: Prove that V(i) < V,,41(4).

(2) Total cost criterion: In Theorem 55, prove statement that V(i) < V*(7) implies that
Via1(2) < V*(1).

(3) Multi-armed bandits: The goal is to simulate four no-regret policies for 10,000 steps
and see which is best. Take N = 10 and assume that the rewards are i.i.d. random
variables {6:};en for arm i with 7 for arm ¢ chosen in [z,x + dx] with probability
proportional to z°~*dx for z € [0, 1] with the rewards being independent across arms.
Let u; = E[0] be the mean reward for machine i, u* = max;—1,. n fi and A; = p*—p;.
The algorithms to consider are:

(a) Algorithm 1 is UCB that we analyzed in class. It is the following;:
e [nitialization: Play each arm once;
e [terative step: Play arm j that maximizes
o 210g-(n)
nJ
where Z7 is the average reward obtained from machine j, n/ the number
of times machine j has been played so far, and n is the total number of
plays so far. After every play, update the variables and repeat.
(b) The second algorithm is a refinement of UCB called UCB2. Pick a € (0,1)
(parameter) and set 7(r) := [(1 4+ «)"] for r € Z, and

(14 a)log (-5
e = 27'(7“)< ( )> '

Then do the following;:
o Initialization phase: Set r; = 0 for all arms and play each machine once;
e Iteration phase: Select arm j that maximizes 7, + an,,,, where ZJ is the
average reward obtained from arm j, a,,, the quantity described above
and n the total number of plays thus far. Play chosen arm j exactly
7(r; + 1) — 7(r;) times. Increment r; by 1 and repeat.

(c) The third algorithm is called e,-GREEDY which chooses the maximum of 7,
with probability (1 —¢,) and a random arm otherwise. The parameters are ¢ > 0
and d € (0,1) with d < miny,,,<,+ A;. Then choose €, = min(1, <.

(d) The fourth algorithm is MAB that we analyzed in class. The reward at time
t for arm i is also denoted by g¢(i,60;) = 6! where 0; is the vector process of
rewards across all arms. The parameters of the algorithm are § € (0,1), 8 =

ﬁ log (%), v = % and 7 = 5% where n is the duration that the algorithm

is run for. The description of the algorithm is as follows:
e Initialization phase: Set w) =1 and X, = 1/N;
e [teration phase: For each t € N repeat the following:
(i) Pick arm I, € {1,..., N} according to distribution A
(ii) Calculate the estimated gains as follows

—g(i,it_)+ﬁ lf It - Z

. _ p i
0 — 9 — = ‘
g(1,0;) = g(i,0;) + i /\ﬁ otherwise;
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(iii) Update the weights w} = w?_,e"%) and W, = Y1 | wi;
(iv) Calculate the updated probability distribution

. w?
N, = (1—V)th+% Vie{1,...,N}.
What is the best arm? Simulate the optimum policy too. Use the same sample-paths
for all algorithms and in each case have enough runs to get good estimates of the
average regret of each policy. Take note of statistics of how many times each arm is
played as a function of time over the 10,000 steps.
Peer-to-peer network: Consider following CTMC. Fix N € N (say 4), then let NV =
{1,...,N} and 2V be the power set of . A type C peer is one that has pieces
corresponding to C' C N; a type N peer is called a peer seed. If a type C peer receives
a piece i ¢ C, then its type changes to C'U{i}; types never reduce. Arrivals from the
outside of type C' form a rate A¢ Poisson process such that A\ := ZCQN Ao > 0.
There exists exactly one fixed seed in the network that has type AN that never ever
leaves the network. The fixed seed contacts a uniformly chosen peer at instances of a
U, rate Poisson process and gives it a piece that it doesn’t already possess, choosing
uniformly amongst such pieces. Each peer in the system (not the fixed seed) contacts
a randomly chosen peer (again not the fixed seed) at instances of a rate p Poisson
process and uploads a piece that the contacted peer does not possess, again choosing
uniformly amongst such pieces. If a peer becomes a peer seed and if v € (0, 00), then
it can leave the network once an exponential clock with parameter « ticks, where the
clock starts as soon as the peer seed status is achieved. If v = oo, then peer seeds
leave instantly and we also assume that Ay = 0. Simulate this CTMC under the
following different settings (choose your own parameters with U, A\¢ for all C C N,
i < oo, mention them and show how they fit the categories below):
(a) The case where 0 < v < p and where, for some piece k € N, we have U, +
2 cenrec Ao =05
(b) The case where 0 < i < v < oo and for some k € N we have

v

)

Ut Y. Ae(N+1-1C)) —

CCN:keC

)\total >

where |C| is the number of elements in set C

(c) The case where 0 < v <y and where for all k € N, we have U+ o arpec Ao >
0; and

(d) The case where 0 < p < v < oo and where for all k € N/, we have

T H

)\total < Us + Z )\C(N +1- ‘Cl)

CCN:keC

Comment on the different scenarios - make guesses regarding positive recurrence or
transience from simulations.



