
1620 J. Opt. Soc. Am. B/Vol. 10, No. 9/September 1993

Quantum optics in a dielectric: macroscopic
electromagnetic-field and medium operators

for a linear dispersive lossy medium-a microscopic
derivation of the operators and their commutation relations

Seng-Tiong Ho and Prem Kumar

Department of Electrical Engineering and Computer Science, Robert R. McCormick School of Engineering and
Applied Science, Technological Institute, Northwestern Universit, Evanston, Illinois 60208

Received July 22, 1992; revised manuscript received March 8, 1992

We derive the macroscopic electromagnetic-field and medium operators for a linear dispersive medium with a
microscopic model. As an alternative to the previous treatments in the literature, we show that the canonical
momentum for the macroscopic field can be chosen to be -eoE instead of -D with the standard minimal-
coupling Hamiltonian. We find that, despite the change in the field operator normalization constants, the
equal-time commutators among the macroscopic electric-field, magnetic-field, and medium operators have the
same values as their microscopic counterparts under a coarse-grained approximation. This preservation of
the equal-time commutator is important from a fundamental standpoint, such as the preservation of micro-
causality for macroscopic quantities. The existence of more than one normal frequency mode at each k vector
in a realistic causal-response medium is shown to be responsible for the commutator preservation. The process
of macroscopic averaging is discussed in our derivation. The macroscopic field operators we derive are valid for
a wide range of frequencies below, above, and around resonances. Our derivation covers the lossless, slightly
lossy, and dispersionless as well as dispersive regimes of the medium. The local-field correction is also included
in the formalism by inclusion of dipole-dipole interactions. Comparisons are made with other derivations of
the macroscopic field operators. Using our theory, we discuss the questions of field propagation across a dielec-
tric boundary and the decay rate of an atom embedded in a dielectric medium. We also discuss the question of
squeezing in a linear dielectric medium and the extension of our theory to the case of a nonuniform medium.

1. INTRODUCTION

A proper understanding of the macroscopic electro-
magnetic field operators in a medium is important
in quantum optics. For example, the field operator com-
mutation relations give us the various uncertainty rela-
tions for the measurement of the electromagnetic field.
The electromagnetic-field amplitude for each quantized
mode is important in determining the spontaneous decay
rate of an atom embedded in the medium. There have
also been questions raised about the squeezing of the
electromagnetic-field fluctuation in a linear dielectric me-
dium. To provide proper answers to quantum-optic-
related questions in a material medium, it is important
to derive properly the macroscopic electromagnetic-field
and medium operators. Although there have been a
number of treatments of medium-field quantization, there
has not been a direct microscopic derivation of the com-
mutation relations for the macroscopic field and medium
operators. Here we provide an understanding of the
macroscopic electromagnetic-field operators based on a
microscopic model, which we hope will help to resolve some
questions regarding macroscopic field and medium opera-
tors that are often not fully answered in the literature.

There are many treatments in the literature on quantiz-
ing the macroscopic electromagnetic field in a linear
dielectric medium. A few of these treatments are pre-
sented in Refs. 1-8. Pantell and Puthoff,1 Marcuse,2
Abram,3 Yariv,4 and Glauber-Lewenstein 5 obtained the
macroscopic field operators by quantizing a macroscopic

Hamiltonian or an equivalent Lagrangian. The macro-
scopic Hamiltonian that they used is for a linear, homoge-
neous, lossless, and dispersionless dielectric medium
given by

e = f d3x 1 (E2 + ,uoH 2 ). (1.1)

Later Hillery and Mlodinow6 extended the macroscopic
treatment to the case of a dispersionless nonlinear me-
dium, Drummond and Carter7 extended the macroscopic
treatment to the case of soliton quantization in a disper-
sive nonlinear medium, and Drummond' extended the
macroscopic treatment to the case of a general dispersive,
nonlinear, and inhomogeneous medium. The treatment
of Drummond and Carter7 was successful in explaining
soliton squeezing in a nonlinear dielectric medium. The
treatment of Drummond' is interesting because of its gen-
erality but suffers from the appearance of unphysical pho-
ton modes that have to be neglected.

As is discussed below, while the above-mentioned macro-
scopic treatments of dielectric media are successful for
their own purposes, the problem we find with the field
operators derived from these treatments is that the com-
mutation relations for the macroscopic field and medium
operators suffer from a number of difficulties, including
the violation of causality. The problem could be due to
the association of one frequency mode with one k-vector
mode in all these treatments. The refractive-index dis-
persion for a realistic medium obeys causality imposed by
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the Kramers-Kronig relation so that one k-vector mode is
associated with more than one frequency mode. The use
of a microscopic theory that automatically satisfies cau-
sality can resolve these problems and is the main subject
of this paper. Specifically, we show that, if one looks at

coarse-grained spacing that is large compared with the
distance between two adjacent atoms, the equal-time com-
mutators among the macroscopic electric-field, magnetic-
field, and medium operators have the same values as their
microscopic counterparts. Furthermore no unphysical
photon modes exist in our model, and we do not foresee
them in an extension of our microscopic model to the case
of a nonlinear medium either. It would be interesting to
see whether the existence of the unphysical photon modes
in the general theory of Drummond' could be due to the
fact that causality is not explicitly imposed in his theory.

There are many microscopic treatments of dielectric
media given in the condensed-matter literature, including
the pioneering work of Hopfield9 and the recent work of
Knoester and Mukamel.0 The main subject of Hopfield's
work is the problem of polaritons, and Knoester and
Mukamel's work is on the decay rates of atoms embedded
in a bulk dielectric. The main subject of our paper, how-
ever, is the properties of the macroscopic field and medium
operators. Recently we learned that Huttner and co-
workers"' 2 quantized the macroscopic electromagnetic
field with an oscillator model for the medium and obtained
operator results similar to those given here (we learned
about this after the submission of our paper and the pre-
sentation of our results at a conference'3 ). The main ap-
proach of their paper is similar to that of our paper. The
minor difference between their approach and ours is that
they do not use a fully microscopic method, as they have
no lattice and no dipole-dipole Coulomb interaction.
Also, they solved for the results by a method different
from ours in that they worked on diagonalizing the
Hamiltonian, while we worked on transforming the opera-
tor equations of motion. One advantage of our method
may be that it permits a straightforward extension to the
nonuniform medium case, as discussed in Appendix C.

Currently there are three main areas of interest in the
application of the macroscopic electromagnetic field opera-
tors. The first area is the propagation of electromagnetic-
field operators across a dielectric boundary. This problem
was first raised by Abram.4 Abram considered the case of
a dispersionless dielectric medium. We discuss this prob-
lem briefly in Appendix A for the more general case of a
dispersive dielectric medium. We show that the quantum-
field-mode amplitudes we derive are consistent with the
picture that the strength of the vacuum field fluctuation
is altered as the field propagates from free space into the
dielectric. Specifically, we show that one can derive the
mode amplitudes for the macroscopic-field operators in a
dielectric medium by using an argument based on the di-
electric boundary conditions for the vacuum field.

The second area is the squeezing of the polariton modes
in a linear dielectric postulated by Ben-Aryeh and Mann,'4

Artoni and Birman,"5 and Abram.4 We point out in our
theory that in the real ground state of the medium-field
system there is no squeezing phenomena.

The third area is the decay rates of atoms embedded in a
bulk dielectric. This problem was treated on the basis of
macroscopic models by Pantell and Puthoff,' by Marcuse,2

and by Glauber and Lewenstein5 for the simple case of lin-
ear, homogeneous, lossless, and dispersionless medium.
However, in these macroscopic models the local-field cor-
rection factor crucial for the calculation of the decay rate
is derived by use of either a model of a real cavity or a
virtual cavity around the embedded atom. As a result,
the decay rates obtained can be very different, depending
on whether a real or a virtual cavity is used. For ex-
ample, Glauber and Lewenstein5 obtained a theoretical
decay rate that is different from that given by Marcuse2

because of their implicit assumption of a real cavity. The
question of whether a real or a virtual cavity should be
used has been resolved by Knoester and Mukamel,'0 who
used a microscopic model. They showed that the use of a
virtual cavity is correct. Compared with the previous
treatments, the Knoester-Mukamel theory is valid for the
more general case of a dispersive medium. Later, Barnett
et al.'" treated this problem for the even more general case
of a dispersive and lossy medium. However, in their the-
ory the local-field correction factor was inserted into
Fermi's golden-rule formula and was not derived from a
microscopic model. In Appendix D we apply our formal-
ism to obtain the decay rate by using an operator Langevin
equation approach instead of the master-equation ap-
proach used by Knoester and Mukamel. In our theory
the local-field correction factor is introduced with a
microscopic approach. The decay-rate result that we ob-
tain agrees with that given by Knoester and Mukamel,0

Marcuse,2 and Barnett et al.16

There are several issues that we wish to address in this
paper regarding operator properties of the macroscopic
field and medium operators. To clarify the issues, let us
first discuss the type of result that one would obtain with
the simple macroscopic Hamiltonian given by Eq. (1.1).
Using this Hamiltonian, one finds that a quantum model
of the dielectric medium can be built by canonically quan-
tizing the fields so that We becomes an operator W'. Al-
though there have been variations in the methods, they
invariably end up with the following expressions for the
field operators:

E(z, t) (

X em,[et..(t) - a-m (t)]exp(ikmz), (1.2)

oH'(, t) ( j 1/

m,E 2EflpmVQ/

X (km X ema)[am,r(t) + ,ama,(t)]exp(ikmz),
(1.3)

where for discussion we specialize to modes with km along
the z direction so that km = kmez = (2nrm/L,)e, in the
sum. This specialization is denoted by primes on the
field operators. In our notation, flpm= IkmIc/n, e= n2,
where n is the medium refractive index. We used VQ =

LXLYLZ to denote the volume of quantization and ema(r =
1, 2) to denote the two polarization vectors for the mode
m. Note that Eqs. (1.2) and (1.3) differ from the free-
space field operators in that eo has been replaced by e, and
flpm is the physical frequency for mode km in the medium.
One can show that WC = marifpm(mtame + 1/2), from

which the time evolution of am, can readily be deduced to
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be am.(t) = &mr(0)exp(- ipmt). Moreover, one can obtain
the Maxwell equations. For example, Ampere's law,

aE( t) = V xH'(z, t), (1.4)

can be derived.2 The field quantization thus seems to be
self-consistent. Nevertheless, it is not clear whether a
microscopic model of the medium, after proper macro-
scopic averaging, would give the same macroscopic field
operators as in Eqs. (1.2) and (1.3). Even without a micro-
scopic model, there are a number of questions that one can
raise about Eqs. (1.1)-(1.3). For example, the operator
version of Eq. (1.1) is equivalent to

W = Jd3xl/2(E D+oH 2 ) D=EE.

The polarization operator associated with the medium
(denoted Pg), which is proportional to E, will not com-
mute with the magnetic-field operator H. On the other
hand, in a microscopic model we usually assume that the
atomic operators commute with the field operators at equal
time. Thus it is puzzling that Pp., would not commute
with the macroscopic magnetic-field operator. A more se-
rious question that we wish to raise, however, has to do
with the commutator between the electric- and magnetic-
field operators. With Eqs. (1.2) and (1.3) the equal-time
commutator between the noncommuting components of
the electric and magnetic fields can be computed readily.
For example, we have

ii a[Ex'(z, t), H'(z', t] - -8(z -Z'). (1.5)
az

We see that the commutator value is altered from its free-
space value by the factor 1/e. The dependence of this field
commutator on e has led many to suggest that the canoni-
cal field quantization of a macroscopic medium should be
done6 with the displacement field D rather than the elec-
tric field E [as the commutation between D = E and H is
independent of e according to Eq. (1.5)]. It will be made
clear here that such a step is not necessary. Instead,
from our point of view it is the commutator given by
Eq. (1.5) that is to be questioned. We find the dependence
of this field commutator on a medium parameter 
puzzling because it is a basic property of the standard
minimal-coupling QED Hamiltonian that the equal-time
commutator between the microscopic electric and mag-
netic fields is independent of the presence of atoms. To
see this property, let us consider the following standard
minimal-coupling Hamiltonian describing a collection of
atoms interacting with the electromagnetic field:

WMC= [Pj(t) + eA(rj, t)] 2
2m

+ 2 -fd3xreoE2(x,t) + .o 2(x,t)] + (1.6)

In the standard quantization procedure in which the
Coulomb gauge is used, we express A(x, t) in terms of a set
of generalized coordinates {m(t)}. The electric- and
magnetic-field operators can be derived from A(x, t), giv-
ing E(x, t) rx (a/at) m = £.. and H(X, t) c q2m. The gener-

alized momentum conjugate to 02m is then given by Pm
aL/adm, where L is the Lagrangian operator corresponding
to WMC. The Lagrangian has the form'7

L~rj, rj, q qm) eA 2 - r

+ 2 -fd3x(eoE2 + poH2) (1.7)

where

ij= (Pj + eA)/me. (1.8)

Since the atom-field interaction term in Rmc (or L) de-
pends onl,y on A(x, t) [this is not so for R', in which
'/2( - Eo)E2 is the interaction part], which in turn depends
only on qm (and not on qcm), the generalized momentum
m(aL/&qm) is independent of the presence of atoms and is

always given by pm = qm. Quantization then imposes
[AUmcqn] i m, giving [m,2n] = ih8nm. Since
E(x, t) x qm, the commutation between E(x, t) and H(x', t)
can readily be computed and be shown to have a fixed
value irrespective of the presence of atoms. Thus it is
clear that in the presence of interaction the microscopic
electric- and magnetic-field operators in Wmc retain their
free-space equal-time commutator value. For the same
reason,, the field variable canonical to A, given by aL/aA,
is -o E, which is also independent of whether the medium
is present.

The main theme of this paper is that the macroscopic-
field operators derived with our microscopic model retain
their free-space commutator value and the field variable
canonical to the macroscopic A remains as -eo E, where E
is the macroscopic electric field. We show that the com-
mutator given by Eq. (1.5) does not hold for this medium.
Moreover, we show that all the macroscopic field operators
commute with all the macroscopic medium operators.

Another question often raised on the literature is, How
does one quantize a linear medium when there is disper-
sion? On the basis of an energy argument (see Appendix
A), there have been suggestions that the field operators in
that case should be given by7 8

11 , l MV 1/2
E'(z, t) = I ( pm m

ma 2eoVQnmc

X e,,[am(t) - &.ma(t)]exp(iknz), (1.9)

o H'(z, t) = (2eo pmc)

X (ikm X e,)[&m,(t) + a mt(t)]exp(ikmz),

(1.10)

where vm is the group velocity and nm is the refractive in-
dex at frequency pm. Note that Eqs. (1.9) and (1.10)
reduce to Eqs. (1.2) and (1.3) when there is no dispersion.
We show in Appendix A that one can also obtain the mode
amplitudes in Eq. (1.9) simply by using the dielectric
boundary conditions as well as the energy argument.

However, such expressions for the field operators raise
further questions. For example, one finds that the equal-
time commutator of the fields in Eqs. (1.9) and (1.10)
would, in general, not be a delta function in space because
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the product of the normalization constants in A' and H is
proportional to (Vm/nm), which, in general, is frequency de-
pendent. A delta-function equal-time field commutator is
often required in field theory to satisfy microcausality.' 5

Should one then conclude that the macroscopic field opera-
tors violate microcausality when there is dispersion?

Because the macroscopic field operators are derived in
this paper from a microscopic theory, they will be valid in
the dispersionless and lossless regime of low frequency,
the dispersive and lossless regime far above resonances, or
the dispersive and lossy regime around a resonance fre-
quency. The results we obtain show that there is nothing
wrong with the field operators of Eqs. (1.2) and (1.3) or

those of Eqs. (1.9) and (1.10). The macroscopic field oper-

ators we obtain are of a form similar to Eqs. (1.9) and
(1.10), except that they explicitly include the fact that for
each k vector there is more than one normal-frequency
mode in the case of a realistic medium. Specifically,
there are two modes in our model. Our derivation shows
that it is the existence of these two normal-frequency
modes for each k vector that helps preserve the delta-
function equal-time commutator between the macroscopic
field operators, makes the field operators commute with
the medium operators, and preserves the equal-time com-
mutator between the macroscopic medium operators.
The functional form of vm and nm in a realistic medium
cannot be arbitrary and must obey causality constraints
such as the Kramers-Kronig relation. We conclude that it
is the causal dispersion curve for a realistic medium that
answers the questions mentioned above.

In addition to resolving the various questions, our micro-
scopic derivation of the macroscopic field operators in-
cludes the local-field correction. It also gives macroscopic
field operators valid in the lossy regime around a reso-
nance, where Langevin forces have to be included properly
to preserve the operator commutations. In Appendix C
we also discuss an extension for treating a nonuniform
medium.

2. METHOD OF TREATMENT

The relationship among different sections of this paper is
as follows: In Section 3 we consider a microscopic me-

dium consisting of a uniform distribution of atoms. In
the low-excitation limit of interest here, we approximate
these atoms by quantum-harmonic oscillators. The atoms
are coupled to the electromagnetic field by means of the
standard minimal-coupling assumption. In Sections 4
and 5 the Hamiltonian so obtained is expressed in terms
of the creation and annihilation operators for the modes of
the free field and the free transverse polarization. In the
condensed-matter literature, one often transforms the re-
sulting Hamiltonian directly into a diagonal form, such as
in Ref. 9. We take a different approach. First, instead of
working directly with the Hamiltonian, we work with the
equations of motion for the creation and annihilation op-
erators. Second, we show that the diagonalization proce-
dure can be carried out in three different steps.

The first step, carried out in Sections 4 and 5, is a
Bogoliubov transformation of the type

am-) (tV) + va ) 9 am,

Bmf) "(f) + vff) Bin,

where aef' and B"f are the annihilation operators for the
free field and the free polarization wave, respectively. am
and Bm are the resulting operators. We show that this
transformation has the effect of giving an apparent fre-
quency change to both the field and the polarization wave.
The second step, carried out in Section 6, is a dressing
transformation of the type

am am + imG(Bm + B-mt) =

Bm Bm + imG(&m + a-mt) bin.

This transformation mixes the field and the medium op-
erator. In spite of this mixing, the resulting dressed op-
erators, denoted am and Bi, respectively, can still be clearly
identified with either the field or the medium. One prop-
erty of this transformation is that it preserves am +
a mt and m + Bmt (i.e., am + a-mt & Em + a-mt, Bm +
Bmt Bm + Bmt). The preservation of am + a&mt and
Bm + Bmt results in the preservation of the form of the
coordinate operators for the field and the medium, which
are proportional to am + a-mt and Bm + B-mt , respec-
tively (the coordinate operator for the field is just the
vector potential operator). The transformation does,
however, change the form of the momentum operators for
both the field and the medium so that they each have a
partial contribution from {am} and a partial contribution
from {Bm}.

The net transformation generated by the above
two steps removes the counterrotating terms from the
Hamiltonian (i.e., bilinear products such as af)alfm
BmJf)Bm, amf )B(fm and their conjugates). It, however, pre-

serves the physical picture of the coupling between the
medium and the field in that the coupling terms stay in
the form dmtBm and Bmtam. The new {am} and {Bm} are

purely positive-frequency operators. We note that they
are similar to a transformation used by Drummond in a
different context.'9

In the third step, carried out in Section 9, the coupled
equations for am and Bm are solved in terms of two normal
modes, '5m and dm, which rotate at different frequencies.
Operators cmt and dmt are the commonly known polariton
creation operators, each of which evokes a partial excita-
tion of the medium and the field. Thus each k-vector
field mode am is a linear combination of two normal-
frequency modes cm and dm. The same can be said of the
polarization mode Bim. The existence of two normal-
frequency modes for each k vector helps preserve the
equal-time commutator between the macroscopic electric
and magnetic field operators. The equal-time commuta-
tor between the macroscopic medium operators and the
macroscopic field operators is also preserved. In our
treatment the preservation of the equal-time commutator
requires no extra proof, since it can be clearly seen as a
direct consequence of the canonical nature of the transfor-
mation (i.e., a transformation that preserves equal-time
commutators) of the free-field and free-polarization-wave
operators amf) and Bmf) to am and dm. However, we note

that because of the macroscopic averaging involved in solv-
ing for the mode operators (see Section 5), the macroscopic
field operators are meaningful only if one looks at a dis-
tance that is large compared with the medium atomic
spacing. In other words, because of the approximation,
we can meaningfully say only that the equal-time commu-
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tators preserve their microscopic form until they reach
the coarse-grained distance involved in the averaging.
But that is exactly what is meaningful when we talk about
macroscopic field operators.

We note that the vacuum state |0)afi annihilated by a.
and B. (also by 6, and d.) is the lowest state of energy for
the entire medium-field system. Hence there is a net en-
ergy change when the atoms are brought close to one an-
other from infinity. The original vacuum state O)aA
annihilated by eff' and Bf ) is not the state of lowest en-
ergy for the entire medium-field system. The transfor-
mations in the first two steps are similar to the well-known
squeezing transformation in that they create particles.20' 2l
When the atoms are brought close together, the lowering
of total energy creates particles. Nevertheless, in steady
state the entire system should relax to its ground state
IO)a, . There is thus no squeezing of the polariton modes
in steady state. This is in contrast to some suggestions in
the literature that these modes are squeezed.4 4" 5 It can
be shown that the polariton modes are the ones detected
by a detector in the medium.22

As is explained in Section 5, the transformations em-
ployed do not straightforwardly give rise to damping of
the medium by means of spontaneous decay. A proper
treatment of spontaneous decay requires careful treat-
ment of the field modes near the atomic resonance fre-
quency, which is complicated and beyond the scope of this
paper. Instead we introduce damping to the harmonic os-
cillators composing the medium by means of phenomeno-
logical method that is quantum mechanically consistent.
A theory with damping introduced into the medium is
given in Sections 8 and 10, where the medium operator
iL(r, t) is coupled to a thermal-field reservoir. Since the
medium operator -c (r, t) depends solely on positive-
frequency modes {B}, this treatment gives us the damp-
ing for the polarization modes {B} directly. In Sections 7
and 9 we discuss the macroscopic Maxwell equations and
the macroscopic field operators. For completeness, in
Section 11 we introduce the local-field correction by in-
cluding dipole-dipole interactions. A cubic lattice is as-
sumed in this local-field treatment. We show that the
local-field correction does not affect the equal-time com-
mutators among the macroscopic field and the medium op-
erators, which is also an obvious result of the canonical
transformations employed. By showing preservation of
the macroscopic field equal-time commutators, we thus
reaffirm that, in a realistic causal-response medium,
-e 0 can be interpreted as the canonical momentum op-
erator for the macroscopic field.

The macroscopic averaging that brings the microscopic
model into the macroscopic realm is discussed in detail in
Section 5. There we show that the macroscopic averaging
involves neglecting modes that have wavelengths smaller
than the separation between the atoms. We also show
that it has no effect on -oE's being the field momentum
operator. We further point out that the macroscopic aver-
aging is equivalent to simply replacing the sums with the
integrals in the Hamiltonian.

3. MEDIUM HAMILTONIAN

We model the medium as a collection of uniformly distrib-
uted harmonic dipole oscillators. This harmonic dipole
oscillator model is valid in the limit of weak excitation as

discussed by Fano.2 3 The resonance frequency of these
oscillators in the absence of coupling with the electro-
magnetic field is assumed to be woa. The momentum and
position operators of the jth oscillator at position r are
denoted Pi and ij, respectively. We couple these dipoles
to the electromagnetic field by means of the minimal-
coupling prescription of replacing Pj(t) with Pj(t) +
eA[rj(t), t], where A is the vector-potential operator and e
(e > 0) is the electron charge. The total Hamiltonian of
this medium-field system is then given by

WCToT(t) =-Y [ (t) + eL(rjt)] 2
XTOT W 2m,

+ meCw2 ij2(t)
2

+ f ° + A/o'2(rt) + + X
VQ 2

(3.1)

where me is the electron mass, XCnc is a Hamiltonian that
couples the atoms to a thermal-field reservoir, and N'D de-
scribes the dipole-dipole Coulomb interaction energy.
The expressions for Rc and 'D are given below. We have
chosen the Coulomb gauge so that A,, E, and H in
Eq. (3.1) are the transverse vector-potential, electric-field,
and magnetic-field operators, respectively, and the
Coulomb interaction between the electric charges is de-
scribed by the scalar potential. Following the usual pre-
scription of expressing P and xj in terms of creation and
annihilation operators, we have

= E .(me~i~) (bjat - bja,1/2

(3.2)xj (m 2(m e t + brae

where a E {x, y, z}, with e, e, and e being the coordinate
unit vectors. The operators {j bj t obey the commuta-
tor [bja, bka] jk Baa' so that [Pj e, Xk a'] =

ieiaa Sjk. The variable is commonly chosen to be &)a,
but that is not necessary. In fact can take any value
without affecting the commutation between bja and bka't .
In the case of free-dipole oscillators the choice of c = Wa

is necessary to give bjat(t) the negative-frequency solution
bjat(0)exp(+iwa) that makes jat(t)bja(t) a stationary op-
erator. This allows one to interpret jat(t) as the creation
operator of a long-lived quanta of excitation. However, in
the presence of coupling to the electromagnetic field, the
choice Co = a no longer gives bjat(t) a negative-frequency
solution. In such a case we shall treat as a parameter
with an appropriate value to be determined later. We
shall find that a different value must be chosen for C in
order to give bjat(t) a negative-frequency solution [See
Eq. (6.16) and the paragraph after Eq. (5.5)].

The electromagnetic field is quantized in the Coulomb
gauge. In the usual method of canonical quantization of
the electromagnetic field in a box of volume VQ, one ex-
presses the vector-potential operator AL (r, t) in terms of a
set of generalized coordinate operators {q.(t)} such that

(3.3)

Here {u.. (r)} is a set of complete orthonormal spatial
modes defined over the quantization volume VQ. The
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electric- and magnetic-field operators are then given by

a 

E±(r, t) = -tA(r, t), (3.4)

gH±(r,t) = V X A,(r,t). (3.5)

After imposing the commutation condition

[i5.(t) qm(t)] = ih8nm (3.6)

on {qm(t)} and the corresponding generalized momentum
operators {pm(t)}, one then transforms them into sets of
annihilation and creation operators {am(t)} and {&m'(t)}, re-
spectively. The transverse fields are then expressed in
terms of these creations and annihilation operators as

A±(r, t) = > \/7I.gFem[amu(t) + &mett)]

X exp(ikm r), (3.7)

E±(r, t) = > i\I'hf_1mgFemG[ame(t) - a met(t)]
m'a

X exp(ikm r), (3.8)

/oHl(r,t) = N /Vfl mgFikm X eme0fa&(t) + a-met(t)]
m'a

x exp(ik,, r),

where g, = (1/2eOVQ)"2. We imposed periodic boui
conditions for the spatial modes {um(r)} over the vc
Vie For reasons similar to C in Eq. (3.2) the var
{fm} are also parameters to be fixed later [see Eq. (<
though in free space they are usually given by [Im =
We note that, through the use of pim(t) = adm(t)/a
electric-field operator has been expressed in ter
{fmu(t)} rather than {(atm(t)/at)}. Substituting Eq.
and Eqs. (3.7)-(3.9) into Eq. (3.1), we obtain

WCTOT =

NeM =

MeM + WA2 + XF + WCMF + CE,

, (2m m 2 )
2~~~~

-2 a a Ia

2+)(bjatbjat + 6jabja)],

= i E --(1

jA 2me

= ihE-iG2(a... + a-mt)(a.mt + -mU)
m m

WCF= dr(,E L2 + Ao iL2)
2 f.Q

=ih _ (Qml. + 1(am.ta + )

- (iM2 1 (a ma-m. + amata-m.) 

(3.9)

dary
)lume
tables
3.11)],
lkmlc.
t, the
ns of
(3.2)

where kmkm Ic (not to be confused with the parameter
fim) and G = egmgF with gm = (1/2me)." 2

In Eq. (3.10) we may regard RM as the free-medium en-
ergy, WCA2 as the medium plasma energy, XCF as the free-
energy, and WCMF as the medium-field interaction energy.
The energy A2 can be identified as the medium plasma
energy because it is responsible for the dielectric response
of the medium far above resonance frequency where the
electrons behave as a free-electron plasma.24 25 In deriv-
ing Eq. (3.12) we have taken the sum over all the dipole
positions and have used the formula

I exp[i(km - kn) rj] = NSmn, (3.15)

where N is the total number of dipoles in volume VQ. This
formula is valid for km - kI < (N/VQ)"3 . Before we
leave this section, we note that leaving 11m as a free pa-
rameter is equivalent to making the transformation
ama - am"I, where

(3.16)amo'(t) = /L&m(t) + Va mt(t) .

For example, the substitution of Eq. (3.16) into

Al (r, t) = f \/fjjgFem[ameU(t) + amet(t)]exp(ikm r),
m'a

(3.17)

with

= ½ /2( +
v = '/2( -

V a./a.),
V l- -l) ,

(3.18)

(3.19)

will transform Eq. (3.17) into Eq. (3.7). Similar substitu-
tion of Eq. (3.16) into the E and AoH operators corre-

(3.10) sponding to Eq. (3.17) will also transform them into
Eqs. (3.8) and (3.9), respectively.

4. EQUATIONS OF MOTION FOR BARE
OPERATORS
We shall refer to { em, m} and {bja, bjat} as the bare cre-

(3.11) ation and annihilation operators for the field and the
atoms, respectively. They reduce to the free-field and
free-dipole operators with the choice of SIm = lkmlc and
° = Wa. The equations of motion for these bare operators
can be found by use of the Heisenberg equation of motion,

(3.12) giving

dam= .fam [ ( am2 1 a M+ m2
-e 2= G -L&m.2 + a-me+ 2

_ 2iN G (am + a -mat)

(3.13)

WKMF = 2, A A (rj, t)me 

= i E E GV5)/&'im * eae,(bj,,t - bja)(&mu + a-meat)

x exp(ikm rj), (3.14' 

dbja _

at

- I)amat

- I \/_11.Ga(bja - bjat)exp(-ikm rj),

)[(Wa2 + 2 i)&c t]

(4.1)

+ E ;-,nGa( m, + a-ma')exp(ikm rj), (4.2)
m'a

) where Gea = Gee, ea.
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5. TRANSVERSE POLARIZATION WAVE
OPERATORS

From Eq. (4.1) it is obvious that the photon operator amU
couples directly to the operator 2jaea* ebja exp(-ikm-
rj). Here we define

Bma- 1 1: 6ia°)exp(-ikm *rj), (5.1)
A - NA -

BmUW 2.emU- eaBmaw (5.2)
a

where we have put a superscript Co on bja, because the op-
erator ba is really a function of , which is apparent from
its definition in Eq. (3.2). This superscript will be omit-
ted when the context is clear. The relation between bja 6
and b6ja" for different values of ci and C' is given in
Appendix B. A The operator Bma is the spatial Fourier
transform of bja. Its inverse transform is given by

bj-= Bm exp(ikm rj). (5.3)

The prime in the preceding summation denotes a re-
stricted sum over km = (27rmx/L,)e + (27rmy/Ly)e +
(2'7rmm/L,)e, with 0 c mx, my, m, < N and LXLYLZ = VQ.
The operators {BmU} are the transverse components of
{BmU}. They have the commutation [B me, Bnat] = mnaeU'-

In terms of {BmU} the equations of motion corresponding
to Eqs. (4.1)-(4.2) are

OamU * Qm [(f/m2 \ flm i tat = 2 Y + ,mU + KQ2 - 1)a-UJ
2iNG2 (&mU + a-in:)

- V;;'mN/&lmG(m, B- mat), (5.4)

aBmU = _ 7ClXm a)a + I) + &)2
at 2 +am2 -met,

+ VCiN&mG&U+ -mat),

I) Bmt]

good approximation to neglect them if a is not very far
from the frequency of BmU of interest given by iim. Thus
the right-hand side of Eq. (5.5) should really have many of
these near-resonance modes. Coupling of the atomic op-
erator to the near-resonance modes is responsible for
causing radiative damping. We note that the summation
overj performed on the exp(ikm r) terms for these near-
resonance modes when one transforms Eq. (4.2) to
Eq. (5.5) can affect the number of near-resonance modes
effectively coupled to Bm, and can, as a result, cause the
radiative damping to be altered at high enough atomic
density.2 However, a full treatment of radiative decay
with these near-resonance modes is rather complicated
and is beyond the scope of this paper. Hence, although
these near-resonance modes are in principle not negligible,
we shall nevertheless neglect them here. Instead, we
shall treat the decay of BmU later by using a phenomenolog-
ical method that is quantum mechanically consistent.

All the modes that we neglect have wavelengths shorter
than the lattice constant or the separation between any
two atoms. As a result we are smoothing out those field
components whose spatial variations are smaller than the
lattice constant. This is the process of macroscopic aver-
aging that takes the microscopic model given by WCTOT in
Section 3 to a macroscopic model. The same result of
macroscopic averaging can also be obtained by replacing
all the jf(rj) in the Hamiltonian WCTOT of Eq. (3.1) with
fd3 xf(x)pA, where PA is the atomic number density. In
that case Eqs. (5.4) and (5.5) will be an exact result of the
replaced Hamiltonian27 because, under the continuous in-
tegral, terms that couple BmU to {an} with Ikn > (NVQ)"3

will simply drop out. It is clear that this replacement
does not change the reasoning in Section 1 as to why the
momentum canonical to qm(t) isp3m(t) = (acm/at). Hence
macroscopic averaging does not change the fact that the
momentum canonical to A is -E E. We see from this dis-
cussion that a quantum formulation of macroscopic me-
dium can be obtained from a microscopic formalism with
a simple replacement of the discrete sum over atoms with
an integral. Such a replacement constitutes the process
of averaging.

For later use it is also of interest to obtain the equations
of motion for the operators am + 6-mt)am - amatv
Bm + B_.mt, and Bm - B met, which can be obtained by
adding Eqs. (5.4) and (5.5) to their own complex conju-
gated versions, giving

where we have denoted Co with an additional mode sub-
script m as 6im. We do so because we will choose its value
later, which will be different for different modes.

We note that the last term of Eq. (5.5) is also obtained by
use of Eq. (3.15), which is valid only for those {&a,} modes
with km - k < (N/VQ)"3. Thus Eq. (5.5) is in a sense
not exact, as we neglected the coupling of BmU to modes
{af} with Ik.I > (NVQ)-1 3. In general these modes would
be rotating at a much higher frequency so that it is a good
approximation to neglect them. However, for those {&af}
modes with frequencies near the resonance frequency ta,
their refractive index n can assume a large value, so that
their wavelengths can be shorter than the atomic dis-
tance. Put another way, their k,,l value, with Ik,,l 
wacnn/c, can be larger than (NVQ)Y 3 . Although these
near-resonance modes have kn > (NVQ)113, it is not a

a(am + am.l)
at

a (am -a-met1)at

at(Bm + Bme)

at 

-iflm(am - a-mU ), (5.6)-n (am, + &-ma )
4iNG2

_ .iG(am + amt 

- 2V'G(B7~Gm - B-inmt), (5.7)

-ito(B.. - B. t),
m me;( -me '

+ 2 V&mN eG(amU + a-met) , (5.8)

- - (Bme + B-m:). (5.9)
Win
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The following identity will be of interest below:

E bja"'(t)ea' = E exp(ik,, * r)1na'.(t)
a a in

X E (ea, ' em)em + (ea, ' km)km/lkmI2
e

= E E exp(ikm rj)Bma'9(t)e,,,
m

+ E O'mjj°km/jkmj,
m

(5.10)

6= E exp(ik,,, rj)Bma,(t)(ea. km/lkm ),
a

(5.11)

where &inI16 is an operator whose equation of motion is not
coupled to the transverse electromagnetic field.

6. DRESSED OPERATORS

Here we define the following dressed operators:

adm' = am + jvmG(BmeW + B mU) (6.1)

BUma = BinU, + ivmG(&mew + &-mU') (6.2)

The superscript c will be omitted when the context is
clear. These operators have the following commutations:

[am.,a,,,t] = [BimnU, iUt] = 5 m8 ,, (6.3)

[Bnmaflt] = [BnmUaf',t] = 0. (6.4)

They have the following properties:

am + a-m = am + a-me (6.5)

am , - a-m - 2imG(BmU + fi-mU),
(6.6)

Bm.e + B -met = Bm, + B -met X

Bi- B , = BmU- i- 2i'm G(imU

The equations of motion for am is given by

dme i2(2 +1)&U
-= -- 2 2+ ~m

2

- QmvmG(BmU + Bi-et)

- 2iG2N(a + a t)

- V;7mN/mG(Bm -B-mt)
+ 2imV'EiimN/fmG2(amU + a-mt)

+ vmComG(Bm, - mt)
-2im 2ciumG2(&imU + a-met)

+ 2mG 2VmN/fl(am, + a-met),

from the second term of Eq. (5.4), which arises from the
XdA2 part of the Hamiltonian. The fifth and sixth terms
come from the third term of Eq. (5.4) and the use of
Eq. (6.8). The seventh through ninth terms come from
differentiating the (BinU + B3mt) term in Eq. (6.1) and the
use of Eqs. (5.8) and (6.8).

We want to choose the value of . such that the B-met
terms are nulled in Eq. (6.9). This gives us

(6.10)A = VNci;/fm
f.+ 6im

The value of ml,,, is to be chosen so that the & m terms
in Eq. (6.9) are nulled. After some algebra we get the
condition

(6.11)2 2 4NG 2 Q 2fi .. (f~ + ii)j
With these choices of 'm and fim, Eq. (6.9) reduces to the
simple form:

dame = ia - 2GVN&;; -
dt= -I~m&m fl. + im Bm,. (6.12)

The equation of motion for BmU is likewise given by

- .- + 1 Bn,
at 2 \w~m /

in _ (wa2

- am'mG(&mU_ + a-met)

+ Vc;/ mf(&mU + a-met)
+ 'mfmG(&mU - a-met)
- 2i"'m2

flimG
2 (BinU + B. t). (6.13)

We see that the value of Am given by Eq. (6.10) also leads to
(6.7) the cancellation of the -mt terms in Eq. (6.13). The can-

cellation of the b met terms, however, can be achieved by
(6.8) choosing ciim to satisfy

(6.9)

m2 21 ._ 4NG 2cim2
(2

- m + om)2 (6.14)

Using Eqs. (6.11) and (6.14), we get the relation flm
2

(iim
2

-

toa2) = CO2(fl. 2 - flm2), which gives us Com =Qmca/Qm
This can be used to eliminate Com in Eq. (6.11) and to solve
for fam, giving

4NG 2 1/2

f = Qm (fl + oa)2

which can then be used to solve for it,,, giving

Win ra[1+ 4NG2 11/2
6m = (0 1 + (fm+&.2

With the above values for Am and Cam, Eq. (6.13) reduces to

(6.15)

(6.16)

where the first three terms come from the first term of
Eq. (5.4) and the use of Eq. (6.6). The fourth term comes

d Bm, * 2 2G VN -m 
d = i mBm + fm - 6e.dt + m + a

(6.17)

S.-T. Ho and P. Kumar
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We note that the right-hand side of Eq. (6.12) can be writ-
ten in terms of (aAmU/at) by using Eq. (6.17), giving

aame .-.2GNfl.
at =- imamU + (fl + 6 )2am

i2GV~l_,,, afim,-2GV~ m ~mU ,; - X(6.18)
6. (( , + Co.) at

which is used below to show Ampere's law.

7. MACROSCOPIC FIELD OPERATORS AND
THE MACROSCOPIC MAXWELL EQUATIONS
It is straightforward to derive the macroscopic Maxwell
equations. Before we do that, we need to express the field
operators in terms of the dressed operators {amU} and
{BmU}. Using Eqs. (3.7)-(3.9), (6.5), and (6.6), we have

A±(r, t) = , /gemU[amU(t) + -a."(t)]
mU

X exp(ik,,, r), (7.1)

E±(r, t) \ 7 ,gFen{aU(t) - a me(t)
me

- 2imG[BmU(t) + B_m:(t)]}exp(ikm r),
(7.2)

A 0 A,(r, t) = hE;; gFikm X ea(t)

X [,,(t) + 6,_,t(t)]exp(ikn r), (7.3)

gF = I~2, (7.4)

(2, = kmlc[1 + W)2] X (7.5)
(Ik.1c + 2O.

2iGn = (4NG 2 Cd/2 )1
2 (7.6)

m + im)

+ 4NG2 11/2 77
Win = W,,I + Il 2 (77)

(1k.Ic + Wu.)
2

where we have expressed all variables in terms of the
physical parameters IkIc and W,,. We can also express
the atomic operator in terms of the dressed operators by
using Eqs. (3.2), (5.3), (5.10), (6,7), (6.8), and (B1)-(B5).
Doing so, we have

:i= jil + *i II (7.8)

*J1 = 2 (2 m<tvmiN)1 em[Bm.(t) + BimUt(t)]

X exp(ikm r), (7.9)

i II (2 m N) (km/k)(6mI + OmMI1), (7.10)

pi = + ll, (7.11)

pl = S _it 2N e[B -mU(t) - Bn(t)]exp(ikm rj),

(7.12)

pi= ti i2 NM) (k./Ikl)(O1t - 6) (7.13)

We note that in Eqs. (7.1)-(7.13), BmUe= BmUm, Om, =
O,,,14. Note that the free-field frequencies {l =Ik Ic}
and the free harmonic-oscillator frequency o,, play similar
roles in Eqs. (7.1)-(7.13). We can define continuous ver-
sion of *j and Pj by replacing rj with the continuous posi-
tion variable r. In particular, we are interested in the
continuous version of i, j, and we define

i 1(r t)-2 ~(2 me&N) 1 e [B (t) + B-,7 (t]me a e~N em m

X exp(ikn r). (7.14)

One can also define Pj (r, t) in a similar way as the con-
tinuous version of Pj L. We note that Eqs. (7.1)-(7.3) and
Eq. (7.14) are really macroscopic operators. It is clear
from the above that the macroscopic operators ±L(r, t) and
P, (r, t) retain the commutation relation of their micro-
scopic counterpart until they reach the coarse grain de-
fined by the smallest separation between atoms. That
this is so is easily seen from the fact that their commuta-
tion is independent on the values of {c,,}. The coarse-
grained nature comes in because the sum in Eq. (7.14) is
only a restricted sum over small-k modes. The set of
small-k modes forms a complete set only for functions
with spatial variations larger than the coarse-grained
spacing between atoms. With these macroscopic opera-
tors defined, it is straightforward to derive the macro-
scopic Maxwell equations. In fact, one can do it by using
either the original Eqs. (4.1) and (4.2) or the transformed
Eqs. (6.12), (6.17), and (6.18). Here we do it by using the
transformed Eqs. (6.12), (6.17), and (6.18). From Eq. (6.12)
we get

At ( -me) -im(aiU- a
2 G VNi67, - t)

_a2G- (B..- + B-.m .
e + (Bn

(7.15)

which gives us the Faraday's law2 :

a-poH±(r,t) = -V x E±(r,t).
at

Using Eq. (6.18), we get

at [are-a-met 2GV r?((BmU + Bint)]
at + u,,

=j~m~l(fl2GN )2) ~iU+c-,,

.1(G 2N1 "2D(fm + Bm t)at

= -i(flm/m)(amU + a-me ~,)-i 2egFgmN a ( -m + .- t)X
Vu&~Nat mUBmt,

(7.16)

(7.17)

where we have used Eq. (6.11). This gives us Ampere's
law:

a A r = t)-V aateo E1 r,t) = V H±(r,t -Q a[-ei±(r,t)]. (7.18)
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We note that in the dressed picture the field coordinate
operator A,(r, t) [see Eq. (7.1)] is dependent solely on
{amU(t)} and the atomic coordinate operator i1 (r, t) [see
Eq. (7.14)] is dependent solely on {BinU(t)}. Both {&me(t)}
and {BmU(t)} are purely positive-frequency operators,
which is obvious from their equations of motion given by
Eqs. (6.12) and (6.17). Hence we can interpret am(t) as
the amplitude operator for the light wave with wave vector
km and BmU(t) as the amplitude operator for the polariza-
tion wave with wave vector km. We note, however, that
the field momentum operator P 1 (r, t) and the atomic mo-
mentum operator P, (r, t) are dependent on both {amU(t)}
and {BmU(t)}, showing clearly the dynamical coupling be-
tween the medium and the field.

8. DAMPING OF THE MEDIUM OPERATORS

Let us incorporate damping of the medium operators
BmU(t) by coupling them to separate thermal field reser-
voirs.2 8 This would provide a simple, consistent quantum
model of damping sufficient for our purpose. We assume
the reservoir coupling Hamiltonian *Rc in Eq. (3.1) to be
of the following form:

XCRc = i ES (BmUtrmU- BmUmT) + WR

rmU(t) = E Clme(t) X
lo-

RR = E IWlRCm, CmX
mrlU

(8.1)

(8.2)

(8.3)

where {clmrt, 61,nj are creation and annihilation operators
for the reservoir quanta and i)R = 27r1/T, with I being an
integer. T is taken to be longer than any time period of
interest. We note that Eq. (8.1) is a generic form. A more
realistic form should be given by lj xj 1* Rj, with Rj being
a reservoir field operator.2 9 Near the resonance fre-
quency co,,, these more realistic forms can always be re-
duced to the generic form of Eq. (8.1) by making the
rotating-wave approximation. These results obtained
with the generic form of Eq. (8.1) should be valid near
resonance. If the damping is weak, then it will have little
effect away from the resonance frequency, and whichever
form we use will not have much effect on the off-resonance
results. Hence we expect the results obtained with the
generic form to be valid at all frequencies if y << (,..
Following the standard technique in quantum optics,28 we
obtain decay terms additional to Eq. (6.17) because of the
damping reservoir, giving

aBmoU =. -

atm = _ihmBm., + a°moaU - 'yBmo + Lia,
at

y= (T/2)%/2 ,

(8.4)

(8.5)

(=E 2~Y\1/261.
ILIm - E( T') clmU(0)exp(-i&zRt), (8.6)

where FLmU is a Langevin force term with the commutation
[rLmU(t), PLw't(tP)] = 2'y8m,,5(t - t') and

am = (2G TmhN)/(fim + m).

Equation (6.12) is then

aa = -ifmam- am-ma.
at

(8.7)

In the absence of field the damping introduced will lead
to the following form of equation describing the usual
damped Harmonic oscillators [by using Eqs. (7.9) and
(8.4)]:

a2X = 2 i (t) - W,2Xjj(t) + f(t) 
at2 ~~at

(8.8)

where F(t) is a Langevin force operator and we have taken
y << Wp.

9. NORMAL-MODE SOLUTIONS AND THE
MACROSCOPIC FIELDS

The coupled equations (8.4) and (8.7) can be solved by di-
rect integration. Before we give the general solution, let
us solve the simple lossless case in which y = 0. In this
case the coupled equations can be solved by straightfor-
wardly diagonalizing them in terms of new normal modes.
Let us define

c8. = /LmamU + iJm BinU,

dmU = amim - 0iim BmX

-A2 + -M2 1

(9.1)

(9.2)

(9.3)

where Am and M are real constants. These new modes
obey the commutations [6m nU, CnUt1 = mna' = [dmaidnUt]
and [CmU d,,U't] = [m, dnA] =O When we use the equa-
tions of motion for m, and dma, it is straightforward to
show that, with the following choice of Am and m (the sign
of Am is arbitrarily chosen to be positive),

(9.4)

(9.5)

ilm - +{1/2 + 1/2 [1 - (4am 2/y 2)]1/2}1/2

Ym2 - 4a m2 + (, - )2

am(2tm 2
- 1)

Am (6m j nm),
(9.6)

we will have the normal-frequency form for the equations
of motion for CmU and dm,:

aCa
at= - ifpm cma

at

Qpm= (2mAn2 + Wini - 2im2 m a.,

adt = -i(pinddm",
at P

lPm d = fmm2 + 4,mj2 + 2Amam.

Equations (9.7) and (9.9) give the solutions

cinU(t) = mU(0)exp(-i(2pmct),

d.U(t) = dm,(O)exp(-iflpmdt).

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

Note that we used a subscript p to denote the physical fre-
quencies, such as in flpmC and Qpd One can show alge-
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U 1 2 3 4

I. = Ik.nIC
Fig. 1. Plot of fZpmC (solid curves) and 11,md (dashed curves) as a
function of Qm= Ik=mc with 4NG2

= 1 and Wa = 2.

0 1 2 3 4

= I Ic
Fig. 2. Plot of Qp. (solid curves), Qp.E, (lower dashed curve),
and (p2 E2 (upper dashed curve) as a function of (,m with 4NG2

2
1 and cW, = 2. 'y = 0.5 for the 2piE1 and OpmE2 curves.

braically that the combined function of (p. c and lPM d is
equivalent to QPm, where

lpm = m/nm, X(9.13)

nm = Vi X Xm, (9.14)

4NG2

Xm 2
- 2 (9.15)

Co, a PM

The function l,,m given by Eq. (9.13) is the familiar disper-
sion relation for a linear medium with resonance fre-
quency W).. The algebra that is necessary to show that
the combined function of flPMC and 1PM" is equivalent to
QPM is, however, very tedious. Instead, let us illustrate
their equality numerically for the special case of 4NG2

=

1, and co. = 2. First, we plot the values of flpmC and lpm d
as a function of Jkmc = flm, using Eqs. (9.8), (9.10), (9.4)-
(9.6), (6.15), and (6.16). Figure 1 shows the functions (pmc

and fpnMd as the solid curves and the dashed curves, re-
spectively. Then we plot QPM also as a function of (2,,
which is shown in Fig. 2 as the solid curves. It is clear
from Figs. 1 and 2 that (QpmC and lPM d are just separate
branches of pm. pm C is the photonlike branch, while
(lPMd is the polarization-quanta-like branch.

The inverse relations for Eqs. (9.1) and (9.2) are

amp = ImCmin + mdmU,

BimU = -i(mc-mUr - ilmdmU).

(9.16)

(9.17)

In Fig. 3 we plot the constants SAm and iM as functions of
(m; they are shown as the solid curve and the dashed

curve, respectively. We do so again for the case with
4NG2 = 1 and ),, = 2. We see that near resonance
1A.1 IJI i/V2, so that CinU and dmU have equal weight-
ings in amU. At far above or below resonance, Item is much
larger than iM, so that ama is determined mainly by the
photonlike operator CinU whereas BmU is determined
mainly by the polarization-quanta-like operator dmU We
can express the macroscopic field operators in terms of
the normal modes, {cim} and {dmU}. For example, AL(r, t)
will be

Ai(r, t) = E> fi;igFemUr[mcmU(t) + imdm(t)

+ Fma-ma (t) + i;dcL- t)]exp(ikm r). (9.18)

We see that at each k vector there are two normal-mode
operators under the sum of Eq. (9.18). We can rewrite
Eq. (9.18) by defining

Ac (r, t) = E C.VlgFemlU[ a¢(t) + C-m (t)]
ma

X exp(ikm r), (9.19)

Ald(r, t) = E Dm VgFemU[dm.(t) + d-att)]

X exp(ik. r),

Cm = ; mX

D = ; mv

so that

A± (r, t) = ALc(r, t) + Ad(r, t).

(9.20)

(9.21)

(9.22)

(9.23)

The normalization constants Cm and Dm depend on both
{,,, Pm} and fim. It turns out that, like (2mC and fi Cm
and Dm can also be simplified. It is again algebraically
complicated to show the simplification. Let us state the
answer here and show the simplification graphically. We
define Cm' _\/mc/pmcnmcc, where nc is the refractive
index and vc is the group velocity given by

(clumc)~~ =n )m 1se +Qp )fp~ ] ](c/vinc) = ~ (n mc)2[C0.2 - (n2pic)2
]

nmC= = T + c

C 2 4NG 2

M 2- (pmc)2lo,

u 2 3

0.5

(9.24)

(9.25)

(9.26)

k.. = k.Ic
Fig. 3. Plot of A .. (solid curve) and m (dashed curve) as a func-
tion of flm.
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Al(r, t) = I emU{ (E ;C )2 [8mU(t) + ^_..(t)]
2,reoVQf1,,m nmC
Vm -) 1/2 }

2EVQfl, dnmc Jd,- dmW
x exp(ikm r). (9.27)

The other macroscopic operators can similarly be shown
to be given by

E (r, t)

Q = knzkc

Fig. 4. Plot of (pmc)l/ 2Cm (lower solid curve A), (flpmd)l12Dm
(lower dashed curve B), 1 + (m C)1/2Cmt (upper solid curve C),
and 1 + \'¶dDm' (upper dashed cruve D) as a function of ,,,
with 4NG 2 = 1 and w. = 2.

0 6 8 10

fm = IknIC

Fig. 5. Plot of ( C)l/2C. (curve A), /?fmdDm (curve B), £ZpmC

(curve C), and lpod (curve D) as a function of m with
4NG 2 = 20 and Wta = 2.

= E ilg~e.,jCM Qpmc[6m, - 6-mer(01

+ DM11(pmd(dmin(t) - dmt)]}exp(ikm r)

E iem{( '2V ) U [m(t) - 8_m0t(0)
+ ( iv~ %,,,d )1/2 A I*

+ )eV~m [dmU(t) - d-M.'(0]Jexp~tkm )

(9.28)

(9.29)

,uoH±,(r, t)

= E \/lg(ikn X eU){Cm [CU(t) + _m(t)]

+ Dm'(dmU(t) + dmt,(t)]exp(ikm r) (9.30)

= Y(ik m X em U
4 ( __ __ __ 1/2 ( 6 n.

MU 2eoVQf(pmcnmc)

+ ke (d) [dU(t) + d m(t)]Jexp(ikm r),
2eoVQflpmdnmc

(9.31)

- e±(r, t)
VQ

Similarly, we define Dm' vMd/(2mdnMdc)] 1/2, where vMd
and nmd are the same as v and n,, but with (2PmC replaced
by Qpm We propose that C. = Cm' and Dm = DM To
demonstrate that, in Fig. 4 we plot ((p2C)l/

2 Cm and
((pmd)/ 2Dm as a function of Q2m for the case of 4NG 2

= 1
and t,, = 2, which are shown as curve A (solid curve)
and curve B (dashed curve), respectively. We also plot
(WpmY)1/2Ci and (WPMd)l12Dm' as functions of (,m for the
same case; they are shown displaced upward by 1 as curve
C (solid curve) and curve D (dashed curve), respectively.
The equality of Cm and Cm' and Dm and Dm' is then appar-
ent. This proves the statement in Section 1 about the ba-
sic correctness of Eqs. (1.9) and (1.10) provided that we
properly include two normal-frequency modes at each k
vector as in Eq. (9.18). In Fig. 5 we show the case of high
atomic density with 4NG2 = 20 and w,, = 2. Curves A
and B are the coupling coefficients ((2pmc)l/2c. and
(WPMd)l/2Dm, while curves C and D are the frequency dis-
persion curves (2pmC and Qpmd Note that (2p.c)l/2c. and
(Amd)l1/2DM are bounded below unity. We see that there is
a broad polariton frequency band gap inside which there is
no mode. As is pointed out below, this photonic band gap
may close up when loss is included.

Thus we have shown that the vector potential operator
is given by

= co E iigF em,,-Cm XMcQpmc[j.1W C mU (t)]

+ DmXmid(2pmd[dmU(t) - dcLr(t)]}exp(ikm r)

iv(2 1/2

+ () 1/2 -[d (t)-d-m t)]}exp(ikm r).

(9.32)

From Fig. 1 we see that, when (2pmc is below resonance,
then (Pm2d is above resonance and vice versa, so that xmc
and Xmd at the same km always have opposite signs [see
Eq. (9.26)]. Because of this difference in signs, it can be
shown numerically that the quantity CmP2xmCf1PMC +
DmP2 Xm d PMd = 0, which is the quantity one will get by
commuting i± with H1 . That is why the atomic operator
.j(r, t) in Eq. (9.30) would commute with the magnetic-

field operator /.uoHl±(r,t) at equal time. Its commutation
with t , (r, t) is obvious.

10. LOSSY REGIME

In the lossy regime near resonance the coupled-mode
equations (8.4) and (8.7) can be solved by direct integra-

4-

3

2 D- - - - -

A
02 -. - _1 =.....Il.. .1 ........... ....

O. .
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tion by use of the Caley-Hamilton theorem, a standard
procedure in linear algebra.30 The solution is

BmU(t) =Tmb(t)BmU(0) + umb(t)amU(o)

am~U(t) = Tm(t)dmU(0) + U(t)BmU(0)

+ f UU(t -t')rm(t')dt', (10.2)

T6b(t) [E,( + Qm)/2 + E2(l- Qm )/2] (10.3)

U +b(t) = [Ef m/(2Wm) - E2 a/(2W )] (10.4)T.'(t) = [El(l Qm)/2 + E2(l + Qm)/2] X (10X6)

Tma(t) = [El(l - Qm)/2 + E 2 (1 + Qm)/2], (10.5)

Uma(t) = [-Elam/(2W.) + E2 a./(2W.)], (10.6)

Q. = [i(4M - Q) + y]/(2Wm), (10.7)

iY i2y(Ym - m)] - W2 R + iWmIs

(10.8)

Ym = +[4am 2 + (, - QM)2 _ .2]1/2 (10.9)

El = exp(-Smt + WMt), (10.10)

E2 = exp(-Smt - Wt), (10.11)

S. = /2[i(fim + 4,) + 'Y]. (10.12)

We can rewrite E1 and E2 as

E = exp(-i(pm2E t - yEt),

E2 = exp(-ilpm E2t - yE2t),

QpmEl = /2(Qm + 4m) - W

YE1 = 1/2Y - WMR,

Q E 1/2(fi. + 4,) + W

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

The actual expressions for the various macroscopic field
and medium operators can be obtained from the solutions
given in this section. Using them, one can show that the
macroscopic-field and medium operators in the lossy
regime take on complex coefficients when expressed in
terms of the normal-mode operators. In addition, there
are Langevin forces in the field and medium operators,
which help to preserve their commutation relations.

11. LOCAL-FIELD CORRECTIONS

Following Ref. 9, we include the local-field corrections by
including the dipole-dipole Coulomb interaction energy
kCL. We let be

WeL = ih E Y ( 
kslja' ja 4rheoEXka ' ja 3 (:kk.' Rkj)(*j. a Rkj)

IRkjI3 1kl' (11.1)

where Rkj is the distance vector between dipole k and
dipolej. We assume that the atoms are in a cubic lattice.
This gives us the following term additional to aBmU/at:

aBm iee
at 4rtieo a ej a

X exp(-km rj) (6ka"

(bha + bk,,')3(ea Rkj)(ea'. Rki)

IRkil 5 J

We will need the following formula:

> exp[ik,,,(rj - rk)][ea' ea
j,'k IRk I

4ir N
3 VQ

+ bka')ea ea

IRkI 113

(11.2)

3(ea'* Rkj)(ea' Rkj)

IRkJIl 

8' a - 3km 1)2 , (11.3)

YE2 = /27 + WmR. (10.18)

The normal frequencies 2PM El and (2pmE2 are plotted as a
function of m in Fig. 2 for the case of 4NG2 = 1, y = 0.5,
and W = 2. They are shown as the lower dashed curve
and the upper dashed curve, respectively. The solid
curves in Fig. 2 are Qpm plots of Eq. (9.13) without loss.
We see that loss induces a frequency shift. The loss coef-
ficients E1 and E, are plotted as functions of Qp in
Fig. 6. This lossy limit can be shown to be well approxi-
mated by a complex Xm of the form

4NG2

Xm (Wa
2

_ PM2) - 2iyf~PM (10.19)

The approximation is good when y << Wa We see from
Fig. 2 that when there is high enough loss, the polariton
frequency band gap between (2pm'£ and 2pmEl curves will
close up. Last, we note that modes (2PmEl and (2pmE2 are
not the same as modes 2Pmc and Qp. , as they correspond
to different subsections of the two branches of Qpm.
Their difference is only an artifact of how their solutions
are obtained and written.

which is valid for a cubic lattice and for km I < ld (d is the
lattice constant). This formula is well discussed in the
condensed-matter literature. Inserting the formula given
by Eq. (11.3) into relation (11.2), we obtain

aBt i e2N )( A
at 2 3eoMe4,VQ/(m +B'

(11.4)

0 1 2 3 4
npm

Fig. 6. Plot of yE1 (left solid curve) and 'E2 (right solid curve) as
a function of the frequency Qpm with 4NG 2

= 1, r = 0.5, and
wa = 2.

-
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In doing the sum in Eq. (11.2) we have also used the fact
that

E E exp(-ik,,, rj)
j, k j,a'

-> E exp(-ik. *rj) (11.5)
k, a'jlk, a

E E exp[-ik,,, (rj - rk)]exp(-ikm r). (11.6)
k,a' jk,a

The extra term given by Eq. (11.4) can be generated by W,

in Eq. (5.5) if we substitute Wa,
2 for o,,2 in Eq. (5.5), where

toa 2 = Co 
2 _ e2N

3eom,VQ

= , 
2

- 4/aNG2 . (11.7)

Thus Xm in Eq. (9.15) is modified to

NX_ 4NG
2

Xm = 1 - (N,,/3) M132 2- NG-
4G2

Xa ((Oa 2 - 2) 

Langevin-force operators are derived by coupling the
atomic operators to a thermal-field reservoir. Although
we treat a linear medium from the general discussion in
this paper, we have reasons to believe that the preservation
of field and medium commutators and the fact that -E
is the field momentum operator should hold for a nonlin-
ear medium such as an atomic medium. They should also
hold for the nonuniform medium discussed in Appendix C.
We apply our theory in Appendix D to compute the decay
rates of an atom embedded in a dielectric medium. The
question of field propagation across an air-dielectric in-
terface is discussed in Appendix B, where we show that
the mode amplitudes for the macroscopic-field operators
in a dielectric can be derived by an argument based on the
dielectric boundary conditions for the vacuum field.

We note that the normalization constants that we ob-
tained for the field operators are in agreement with those
obtained by a more sophisticated macroscopic approach
such as that given by Drummond.' This shows that there
is basically nothing wrong with a macroscopic approach,
provided that one carefully considers causality in order to
avoid unphysical results, such as the unphysical behavior
of field commutators.

(11.8) APPENDIX A

where xa can be recognized as the electric susceptibility of
a single isolated dipole. Since the effect of local-field cor-
rection is a simple change of the value of Wa, it does not
alter the commutation relations for the field and medium
operators.

12. CONCLUSIONS

In conclusion, we have given a rigorous microscopic ap-
proach for deriving all the macroscopic field and medium
operators for a linear medium. We show that one can
readily obtain a macroscopic Hamiltonian for the medium-
field system from a microscopic Hamiltonian by simply re-
placing sums with integrals, and there is no need to
change the field canonical momentum from electric field
to displacement field. Our results show that the electric-
and magnetic-field operators for a lossless dispersive
medium are given basically by Eqs. (1.9) and (1.10), except
that there is more than one normal-frequency mode at
each k vector. (In our simplified model there are two
normal-frequency modes.) In discussing the ground state
of the medium considered we concluded in Section 2 that
the polariton modes in a stationary linear medium are not
squeezed.

We show that the macroscopic-field and medium opera-
tors retain the equal-time commutation relations of their
microscopic counterparts (when below the coarse grains of
the macroscopic averaging), implying that they carry the
same quantum uncertainty relations as their microscopic
cousins. We think that such results are a consequence of
the causal property of the realistic medium that we con-
sider, which may not be true for fictitious noncausal
media. We also rigorously derive the macroscopic field
operators in the dispersive and the lossy regimes. In the
lossy regime Langevin-force operators are needed to pre-
serve the operator commutations. In our model these

We obtain the mode amplitudes in the electric-field opera-
tor [Eq. (1.9)] for a dispersive medium by an argument
based on the dielectric boundary conditions for the vac-
uum fields. We also give a brief energy argument. For
simplicity, we talk about the vacuum fields as stochastic
fluctuating fields. The derivation remains valid for op-
erator fields. Consider a dielectric boundary between air
and a dielectric medium (Fig. 7). Let the frequency-
dependent dielectric constant of the medium be e(cW). Let
Eo and Ei be the incident vacuum field amplitudes in air
and in the medium, respectively, as shown in Fig. 7. Let
Er be the vacuum field amplitude in the medium propagat-
ing away from the boundary. These fields are assumed to
be at frequency w. We may assume a narrow frequency
bandwidth aW for all these fields, so that their vacuum
field energies are nonzero. From the boundary condi-
tions we have

Er = TEo + RE, (Al)

where T = 2/(1 + n), R = (n - 1)/(1 + n), n2
= e6(W).

Since the fluctuations in E0 and E, should be independent,
the expectation value for the field amplitude square of E,

E so

E

E i

Fig. 7. Schematic diagram showing the various vacuum fields at
the air-dielectric boundary.
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can be easily computed, giving

(E 2 ) = T2 (E 0
2 ) + R2 (E, 2 ). (A2)

Since Er and Ei are both steady-state vacuum fields in the
medium e, they must have the same fluctuating properties
so that (Er2 ) = (E 2); Eq. (A2) then gives

(Er 2) = (1/n)(EO2). (A3)

Equation (A3) gives us the relation between the vacuum
field amplitudes in air and in the medium. These fields
are assumed to span the same frequency bandwidth.
However, in Eq. (1.9) we want to compare the field ampli-
tudes that span the same k-vector bandwidth k. Here
we denote the field amplitudes E,' and Eo'. It is straight-
forward to show that they are related to E, and Eo by
means of the respective group velocities in the medium
and in air as follows:

(E,2) = (Er 2)(dWo/dk)6k, (A4)

(E,'2 ) = (E,2)c~k, (AS)

where (dc/dk) is the group velocity in the medium. Equa-
tions (A3) to (A5) then give

(Er'2) = ( (Ek0c 2).
n(dkdw)/c

(A6)

By taking (E0
2) = hco/(2VQeo) in Eq. (A6) we obtain the

mode amplitudes of Eq. (1.9). Note that VQ is the volume
of quantization whose value determines Ak for each mode.

The energy argument can be described briefly as fol-
lows. The total energy in a particular field mode for a
dispersive dielectric medium is given by'7

= f d3x 2[d Em2 + oHm2]

= d3xcnm EeOEM2, (A7)

where Em and Hm are the electric and magnetic field
that mode. The normalization constant in the elec
field operator is equal to the electric-field strength cai
by half a photon energy. It can be found by set

= 2,pm/2, giving

= (2mvrnC1/2,
Em = ( lif~mem)

which is to be compared with Eq. (1.2).

APPENDIX B

We give the relations between bj ", and bj,.6 as well a
tween BW and BmUW' with # (V. From the defi
equation, Eq. (3.2), and the commutation relation!
tween bja and bj,,, it is clear that

A . A . A .

bjawl A-lbbj,, + bbj.,

b = 1/2(\/ + VO @

Vb = '2(Vdl6 - ),

which can be verified simply by substitution of them into
Eq. (3.2). Similarly,

BmU, = I.LbBmU' + bB-mat, 

BMoa'9= A.bBmU + bB-mUt.

(B4)

(B5)

We note that the derivations of the above relations are
similar to that of Eq. (3.16) for am'.

APPENDIX C

We discuss the extension of our formalism to the case of a
nonuniform medium. A complete treatment will be com-
plicated, and we intend to point out here only the major
difference between a uniform and a nonuniform medium.
For a nonuniform medium the required transformations
to amand bJ, are

ama = am.U + I ZmnG2 (an,' + a-na')
ja'

x exp[i(kn - km) rj]e, em,

+ ab inmG(bja + bjat)exp(-ikn rj)ema, ea,
jna

(C1)

bja = bia + EPaG2(bja' + biat)e. - ea'
a'

+ i.G(a.U + a-m )exp(ikm rj)e,,,, ea .

(C2)

It can be shown that these transformations reduce to the
transformations given earlier in this paper when the me-
dium is uniform. With the choice

Pa = > (71m2 2 pm/Wa)(ema ea) 2,

71 = V/Waf/(o.a + pm) 

Z fmn n = ,((2pin +2 aQpm +pn 
mn 'mf;n(f1Pm + ~a)(pn + W9a)(pn + Qlpm)

(C3)

(C4)

(C5)

one can show that to the order of G2 the equation of mo-
tion for am reduces to

(AS) am., ai-pmam - ipm E 4G2 (zmn pn /pm)
at ,tlinjna'

X< &aneno, em exp[i(kn - km) r]

(Q1pmG 'a~1/ ,e, , e,,ba exp(-ik . rj).
UIM+ Wa,) WM) ja

(C6)

s be- We see that for the case of a uniform medium the second
ining term on the right-hand side of Eq. (C6) will be reduced to
3 be- only the aa term after the sum is carried out over j.

However, for a nonuniform medium there will be terms
aiU with n 0 m on the right-hand side of Eq. (C6). These

(B1) terms will give coupling between modes of different wave
(B2) vectors and will account for Rayleigh scattering when the

medium is not uniform. Such is the major feature for a
(B3) nonuniform medium.
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APPENDIX D

We outline the calculation of the decay rate for a two-level
atom substituting at one of the lattice sites of the dielec-
tric medium. The embedded atom is assumed to have a
resonance frequency WA that is different from the reso-
nance frequency of the dielectric medium. Let the upper-
and the ground-level eigenfunctions of the embedded
atom be u) and g), respectively. We define the atomic
transition operator V = Ig)(ul, the upper-level population
operator QU = lu)(uj, and the ground-level population op-
erator Ng. The total Hamiltonian of the embedded atom
plus the dielectric medium is given by

we(t) = WeTOT(t) + NA(t), (Dl)

where NCTOT(t) is given by Eq. (3.10) and WeA(t) is given by

NA(t) = IWANu(t) + WA(AV - fLV) A(rA, t)

+ -A(rA,t) AI(rA,t) + NCD(t), (D2)

where = (ujeiAjg), A is the electron displacement op-
erator for the embedded atom, rA is the position vector of
the embedded atom, and XeD(t) is the interaction energy of
the embedded atom with the dielectric medium, given by

=E )(A ja _ 3(iA RAj)(*ja RAj)
j. 47rtEo RAjl 3 IRAJl5

(D3)

where eA = [vt(t) + ,p*V(t)] and RAil is the distance
between the medium dipole at rj and the embedded atom
at rA.

Using we(t) and the expression for A (rA, t) given
by AjC(rA, t) of Eq. (9.20) [or Ad(rA, t) of Eq. (9.23) de-
pending on the frequency of OJA], one can derive the fol-
lowing equations of motion by making the rotating-wave
approximation:

aCma am. A i ^at = _ifpml - V exp(-ikm rA),

at A (N e- N)
at = -- AV + 

(D4)

K'A '~je (fN \12 'X E tmaCimU + E e 1 eR/ 1
M'0- mi,U3eoVQ 2Me&J inI~n

x exp(ik. rA),
(D5)

at = im - V'3mU + aaU + r

+ EEe ex (-ik .rj)( ie )( 1/2

a j PN m 4 4Tieo 2mm
J({u*V + At) ea [3(,I*V + juth -RA (e.- RAj)}

RAjJ3 IRAil |

(D6)

where Ng = VV, N,, = VV, (C., = (ema U U)[(UvinWA)!
(2eOVQ(2pmnmc)]12 vm is the group velocity, and nm is the
medium refractive index. The frequency Qpm is the
physical frequency given by (2pmC (or lpmd'). The field

modes Idin. responsible for the decay of the atom are the
field modes close to the resonance frequency WA. The op-
erator 1BmU in Eq. (D6) can be solved adiabatically at fre-
quency (OA by setting a13mU/at = -tiAW3in, giving

p = iaam + 

(. 4-(A -iY) (D7)

where Cp is an operator associated with the last two terms
of Eq. (D6) and am = /-LinCmU [see Eq. (9.17)] with Mum =

(VMfM)A1pnme) It turns out that C3 does not contrib-
ute to the decay rate if WA is far from the resonance fre-
quency of the dielectric medium W,a (It gives only a
frequency shift to the decaying atom.) Here we assume
that WA is far from (Oa. By substituting Eq. (D7) into
Eqs. (D4) and (D5) we can show that

av (Ng N)E inUA(1 + m )
at IWOAV + g- emU' 1 3

X exp(ikm rA), (D8)

a ma _ifpmam- h V(1 + X3 exp(-ikm rA),
at ~(PniU-~ V( 3~

(D9)

where we have used the relation

fim4NG2 _ pm4NG2 _ n .,+ u)(ro- - (2p,) (&)a2 2- (2 - v pmAm-

In Eq. (D8) we have dropped an operator that gives only
the frequency shift of V. The modes of interest in
Eq. (D5) are those with the physical frequency Qpm close
to WA. One can find the decay rate of V by solving for
mU,, NU,, and Ng formally (the equations of motion for N,,

and Ng can be similarly derived), then substituting them
into Eq. (D8). For example, the formal solution for CmU is
simply

cm,(t) = c6m(0)exp(-i(2PMt)-J dt' -a' V(O) 1 + Xm

X exp{-i[(WA - (pm)t' + (Qpmt]}exp(-ikm rA)
(D10)

where we have approximated V(t') by V(0)exp(-iCWAt').
The solution after we discard a frequency shift term cor-
responding to Lamb shift gives

-V= -IWAV - -V + v.
at 2

(D11)

where Fv is a zero-mean Langevin force operator and y/2

is given by

Y = ' 1 e 2 VmOA (1 + Xm2 of - Q )
inm, 2flE0V~(2~,pnmc 3/

(D12)

This expression can be reduced to

V = [2 +(e/o) 2 7 (D13)

where Fs is the decay rate of the same atom in free space.
Note that the group velocity v [in Eq. (D12)] is canceled
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by another group-velocity term when one changes the sum
Em to the integral fd3 k = fdcoidk/dWI(W/c)2nm2 in Eq. (D12)
to arrive at Eq. (D13). We assume that the vacuum state
is the state annihilated by CmU (or dmU) in this decay-rate
calculation. The above decay-rate result is correct in the
regime where the embedded atom sees a transparent di-
electric. In the regime where the embedded atom sees an
absorbing medium, the decay-rate result can be altered as
a result of the Op term mentioned above.

REFERENCES AND NOTES

1. E. H. Pantell and H. E. Puthoff, Fundamentals of Quantum
Electronics (Wiley, New York, 1969).

2. D. Marcuse, Principles of Quantum Electronics (Academic,
New York, 1980), Chaps. 2 and 3.

3. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York,
1989).

4. J. Abram, Phys. Rev. A 35, 4661 (1987).
5. R. J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467 (1991).
6. D. M. Hillery and L. D. Mlodinow, Phys. Rev. A 30, 1860

(1984), and references therein.
7. P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4, 1565

(1987).
8. P. D. Drummond, Phys. Rev. A 42, 845 (1990).
9. J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

10. J. Knoester and S. Mukamel, Phys. Rev. A 40, 7065 (1989).
11. B. Huttner, J. J. Baumberg, and S. M. Barnett, Europhys.

Lett. 16, 177 (1991).
12. B. Huttner and S. M. Barnett, Phys. Rev. A 16, 4306 (1992).
13. S. T. Ho and P. Kumar, Conf. Quantum Electron. Laser Sci.

Tech. Dig. 11, 110 (1991).
14. Y. Ben-Aryeh and A. Mann, Phys. Rev. Lett. 54, 1020 (1985).

15. M. Artoni and J. L. Birman, Phys. Rev. B 44, 3736 (1991).
16. S. M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. Lett.

68, 3698 (1992).
17. L. D. Landau and E. M. Lifshitz, The Classical Theory of

Fields (Pergamon, New York, 1975).
18. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields

(McGraw-Hill, New York, 1965).
19. P. D. Drummond, Phys. Rev. A 35, 4253 (1987).
20. We note that such Bogoliubov transformations are not the

same as what one would usually call squeezing, which couples
the signal and image modes and not the km and -km modes.

21. H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
22. One can show that a detector in the medium detects the

positive-frequency normal modes, which are the polariton
modes.

23. U. Fano, Phys. Rev. 103, 1202 (1956).
24. The NCA

2 term dominates at far above resonance. The dielec-
tric response in that regime behaves as a free-electron
plasma (see Ref. 25).

25. L. D. Laundau and E. M. Lifshitz, Electrodynamics of Con-
tinuous Media (Pergamon, New York, 1960).

26. P. S. Lee and Y C. Lee, Phys. Rev. A 8, 1727 (1973).
27. To be more precise, if we have neglected the large-k modes,

then whether we use sums or integrals in Eq. (3.1) will not
make a difference; and if we use integrals in Eq. (3.1), then all
the equations of motion for small-k modes will not be coupled
to the large-k modes, and we can ignore all the large-k modes.

28. W H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).

29. The form Y2-± * R gives extra term to the time derivative of
Pj± (since Aj± does not commute with j), which simulates
damping forces like the frictional damping of classical har-
monic oscillators.

30. S. T. Ho, P. Kumar, and J. H. Shapiro, J. Opt. Soc. Am. B 8,
37 (1991).

S.-T. Ho and P. Kumar


