PICOBIT: A Compact Scheme System for Microcontrollers

Vincent St-Amour Université de Montréal (now at Northeastern University)

> Marc Feeley Université de Montréal

21st Symposium on the Implementation and Application of Functional Languages September 23, 2009

Outline

- Motivation: small embedded systems
- System components
 - The PICOBIT Scheme compiler

イロト イロト イヨト イヨト 三日

- The PICOBIT virtual machine
- The SIXPIC C compiler
- Experimental results
- Future work

Small embedded systems

- High volume
- Low cost (\$1-\$5 per microcontroller)
- Low memory (8-32 kB ROM 1-4 kB RAM)
- Low computational power (10 MIPS, 10 mW)
- Think microwave ovens, simple robots

Present state of affairs

- C or assembly
- Low level of abstraction
- Manual memory management
- Unsafe

Enter PICOBIT

- Scheme
- Automatic memory management
- Closures and higher-order functions
- First-class continuations
- Lightweight threads
- Built-in data structures
- Bignums
- Safety

The PICOBOARD robot

<ロト < 部ト < 目ト < 目ト 目 のQの 6/31

Goals

- Complex applications
- Low speed requirements
- Low memory footprint
- Compact code

Overview

PICOBIT Scheme compiler

- Written in Scheme
- Compact custom instruction set

(日) (圖) (E) (E) (E)

8/31

PICOBIT virtual machine

- Written in C
- Highly portable
- SIXPIC C compiler
 - Written in Scheme
 - Designed for VMs

General approach

- Omit useless features
- Optimizations for code size
- High-level bytecode
- Controlling the whole pipeline
 - Adapt the bytecode
 - Domain-specific optimizations

(日) (圖) (E) (E) (E)

Different flavors

Full PICOBIT

- 15.6 kB
- PICOBIT without bignums
 - 11.6 kB
- PICOBIT Light
 - ▶ 5.2 kB
 - No bignums
 - No byte vectors
 - Limited to 16 global variables
 - Limited to 128 heap objects

The PICOBIT Scheme compiler

(日) (圖) (E) (E) (E)

The PICOBIT Scheme Compiler

- Scheme to bytecode
- Whole-program compilation
- Selected optimizations
- Custom instruction set

Dead weight

- Floating-point numbers
- ► File I/O
- ▶ eval
- S-expression input

Optimizations

- Mutability analysis
- Trace scheduling
- Treeshaker
 - Standard library : 2064 bytes
 - Strings : 508 bytes
 - Networking : 257 bytes

(日) (圖) (E) (E) (E)

- Threads : 141 bytes
- Remote control : 106 bytes

Custom instruction set

- Designed for compactness
- Short and long instruction encodings

000xxxxx	Push constant x
1010xxxx xxxxxxxx	Push constant x
1001xxxx	Go to address $pc + x$ if TOS is false
10111000 xxxxxxxx	Go to address $pc + x - 128$ if TOS is false
10110011 xxxxxxx xxxxxxx	Go to address x if TOS is false

- Short encodings for frequent values
- Short encodings for frequent instructions
- High-level instructions

10111001 xxxxxxxx	Build a closure with entry point $pc + x - 128$
11101100	Copy data between the 2 byte vectors on TOS
11110011	Receive network packet to the byte vector on TOS

The PICOBIT virtual machine

(日) (圖) (E) (E) (E)

The PICOBIT Virtual Machine

Object encodings

18/31

イロト イポト イヨト イヨト

Automatic Memory Management

- Mark-and-sweep
 - Simple algorithm, compact to implement
 - Compact because no to-space is needed
- Deutsche-Schorr-Waite's algorithm (pointer reversal)

イロン 不通 と 不良 と 不良 と 一度

- No need to allocate a stack
- More room for the heap

The SIXPIC C compiler

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一回 - のへの

The SIXPIC C Compiler

- Compiles our VM
- Omits some features of C
- Selected optimizations

Dead weight

- Floating-point numbers
- Signed numbers
- Structs and unions
- Function pointers
- Recursion

Calling convention

	push	\$y	;	8b			
	call	\$f	;	4b			
 f:	pop	\$x	;	8b	total:	20	bytes
	move	\$y A	;	4b			
	call	\$f	;	4b			
 f:	move	A \$x	;	4b	total:	12	bytes
	move	\$v \$x	:	4b			
	call	\$f	;	4b			
 f:	•		;		total:	8	bytes

byte f (byte x);

- Arguments moved directly to the callee's local variables
- Whole-program register allocation
- 875 function calls in PICOBIT
- Saves 29.2%

Optimizations

Register coalescing

- Saves 4.1%
- Plays well with our calling convention

(日) (圖) (E) (E) (E)

- 2420 byte cells
- 1453 byte cells coalesced
- 324 bytes of RAM
- Trace scheduling
 - Saves 6.3%
 - 519 jumps shortened
 - 228 jumps eliminated
- Treeshaker

Experimental results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Experimental Results

Flashing led	9 B
Follow the light	101 B
Remote control	106 B
Hello	355 B
Light sensors	374 B
Multi-threaded presence counter	599 B
Web server	1033 B

		6	
	R		
C.			

Network Stack Stack size (kB)		VM size (kB)	Total size (kB)
S ³	3.1	15.6	18.7
uIP	10.0	-	10.0

Experimental Results

Version	MCC18	SIXPIC	Hi-Tech C
Full PICOBIT	24.8 kB	17.5 kB	15.6 kB
Without bignums	17.0 kB	13.0 kB	11.6 kB
PICOBIT Light	8.0 kB	7.2 kB	5.2 kB

(日) (圖) (E) (E) (E)

- Mostly the same restrictions for all 3
- SIXPIC outperforms MCC18 by about 42%
- ▶ Hi-Tech C outperforms SIXPIC by about 12%

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Future Work

- Automatic procedural abstraction
- Huffman-encoded bytecode
- Exploit more virtual machine properties
- More general-purpose optimizations
- Port more languages

Conclusion

- Compact Scheme system
- Can compete with C in terms of code size
- Can fit in less than 20 kB of ROM

	0	8	16		24	31
Closure	01 <mark>°</mark>	entry	point	to e	nvir	onment
	0	8	16		24	31
Continuation	1 <mark>GC</mark>	to pare	ent 100	to	clos	sure

(define root-k #f) ;; root (empty) continuation (define readyq #f) ;; queue of runnable threads (define (start-first-process thunk) (set! root-k (get-cont)) (set! readyq (cons #f #f)) (set-cdr! readyq readyq) (thunk)) (define (spawn thunk) (let* ((k (get-cont)) (next (cons k (cdr readyq)))) (set-cdr! readyg next) (graft-to-cont root-k thunk))) (define (exit) (let ((next (cdr readyq))) (if (eq? next readyq) (halt) (begin (set-cdr! readvg (cdr next)) (return-to-cont (car next) #f))))) (define (yield) (let ((k (get-cont))) (set-car! readyq k) (set! readyg (cdr readyg)) (let ((next-k (car readyq))) (set-car! readyq #f) (return-to-cont next-k #f))))