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Small embedded systems

◮ High volume

◮ Low cost ($1-$5 per microcontroller)

◮ Low memory (8-32 kB ROM 1-4 kB RAM)

◮ Low computational power (10 MIPS, 10 mW)

◮ Think microwave ovens, simple robots
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Present state of affairs

◮ C or assembly

◮ Low level of abstraction

◮ Manual memory
management

◮ Unsafe
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Enter PICOBIT

◮ Scheme

◮ Automatic memory
management

◮ Closures and higher-order
functions

◮ First-class continuations

◮ Lightweight threads

◮ Built-in data structures

◮ Bignums

◮ Safety
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The PICOBOARD robot
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Goals

◮ Complex applications

◮ Low speed requirements

◮ Low memory footprint

◮ Compact code
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Overview

◮ PICOBIT Scheme compiler
◮ Written in Scheme
◮ Compact custom instruction set

◮ PICOBIT virtual machine
◮ Written in C
◮ Highly portable

◮ SIXPIC C compiler
◮ Written in Scheme
◮ Designed for VMs
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General approach

◮ Omit useless features

◮ Optimizations for code size

◮ High-level bytecode

◮ Controlling the whole pipeline
◮ Adapt the bytecode
◮ Domain-specific optimizations
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Different flavors

◮ Full PICOBIT
◮ 15.6 kB

◮ PICOBIT without bignums
◮ 11.6 kB

◮ PICOBIT Light
◮ 5.2 kB
◮ No bignums
◮ No byte vectors
◮ Limited to 16 global

variables
◮ Limited to 128 heap

objects
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The PICOBIT Scheme compiler
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The PICOBIT Scheme Compiler

◮ Scheme to bytecode

◮ Whole-program compilation

◮ Selected optimizations

◮ Custom instruction set
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Dead weight

◮ Floating-point numbers

◮ File I/O

◮ eval

◮ S-expression input
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Optimizations

◮ Mutability analysis

◮ Trace scheduling

◮ Treeshaker
◮ Standard library : 2064 bytes

◮ Strings : 508 bytes
◮ Networking : 257 bytes
◮ Threads : 141 bytes

◮ Remote control : 106 bytes
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Custom instruction set

◮ Designed for compactness
◮ Short and long instruction encodings

000xxxxx Push constant x

1010xxxx xxxxxxxx Push constant x

1001xxxx Go to address pc + x if TOS is false
10111000 xxxxxxxx Go to address pc + x − 128 if TOS is false
10110011 xxxxxxxx xxxxxxxx Go to address x if TOS is false

◮ Short encodings for frequent values

◮ Short encodings for frequent instructions
◮ High-level instructions

10111001 xxxxxxxx Build a closure with entry point pc + x − 128
11101100 Copy data between the 2 byte vectors on TOS
11110011 Receive network packet to the byte vector on TOS
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The PICOBIT virtual machine
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The PICOBIT Virtual Machine

◮ Designed to be compact

◮ Simple data structures and
algorithms
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Object encodings

◮ Data stack and
continuations
allocated in the heap

◮ Symbols are addresses
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Automatic Memory Management

◮ Mark-and-sweep
◮ Simple algorithm, compact to implement
◮ Compact because no to-space is needed

◮ Deutsche-Schorr-Waite’s algorithm (pointer reversal)
◮ No need to allocate a stack
◮ More room for the heap
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The SIXPIC C compiler
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The SIXPIC C Compiler

◮ Compiles our VM

◮ Omits some features of C

◮ Selected optimizations
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Dead weight

◮ Floating-point numbers

◮ Signed numbers

◮ Structs and unions

◮ Function pointers

◮ Recursion
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Calling convention

◮ Arguments moved directly
to the callee’s local
variables

◮ Whole-program register
allocation

◮ 875 function calls in
PICOBIT

◮ Saves 29.2%

byte f (byte x);

...

f(y);

push $y ; 8b

call $f ; 4b

...

f: pop $x ; 8b total: 20 bytes

move $y A ; 4b

call $f ; 4b

...

f: move A $x ; 4b total: 12 bytes

move $y $x ; 4b

call $f ; 4b

...

f: ; total: 8 bytes
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Optimizations

◮ Register coalescing
◮ Saves 4.1%
◮ Plays well with our calling convention
◮ 2420 byte cells
◮ 1453 byte cells coalesced
◮ 324 bytes of RAM

◮ Trace scheduling
◮ Saves 6.3%
◮ 519 jumps shortened
◮ 228 jumps eliminated

◮ Treeshaker
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Experimental results
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Experimental Results

Flashing led 9 B
Follow the light 101 B
Remote control 106 B

Hello 355 B
Light sensors 374 B

Multi-threaded presence counter 599 B
Web server 1033 B

Network Stack Stack size (kB) VM size (kB) Total size (kB)

S3 3.1 15.6 18.7
uIP 10.0 - 10.0
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Experimental Results

Version MCC18 SIXPIC Hi-Tech C

Full PICOBIT 24.8 kB 17.5 kB 15.6 kB
Without bignums 17.0 kB 13.0 kB 11.6 kB

PICOBIT Light 8.0 kB 7.2 kB 5.2 kB

◮ Mostly the same restrictions for all 3

◮ SIXPIC outperforms MCC18 by about 42%

◮ Hi-Tech C outperforms SIXPIC by about 12%
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Future work
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Future Work

◮ Automatic procedural abstraction

◮ Huffman-encoded bytecode

◮ Exploit more virtual machine properties

◮ More general-purpose optimizations

◮ Port more languages
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Conclusion

◮ Compact Scheme system

◮ Can compete with C in terms of code size

◮ Can fit in less than 20 kB of ROM
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(define root-k #f) ;; root (empty) continuation

(define readyq #f) ;; queue of runnable threads

(define (start-first-process thunk)

(set! root-k (get-cont))

(set! readyq (cons #f #f))

(set-cdr! readyq readyq)

(thunk))

(define (spawn thunk)

(let* ((k (get-cont))

(next (cons k (cdr readyq))))

(set-cdr! readyq next)

(graft-to-cont root-k thunk)))

(define (exit)

(let ((next (cdr readyq)))

(if (eq? next readyq)

(halt)

(begin (set-cdr! readyq (cdr next))

(return-to-cont (car next) #f)))))

(define (yield)

(let ((k (get-cont)))

(set-car! readyq k)

(set! readyq (cdr readyq))

(let ((next-k (car readyq)))

(set-car! readyq #f)

(return-to-cont next-k #f))))

31 / 31


	Motivation
	Overview
	The PICOBIT Scheme Compiler
	The PICOBIT Virtual Machine
	The SIXPIC C Compiler
	Experimental Results
	Future Work
	Conclusion

