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Abstract— Effective human-robot collaboration in shared
control requires reasoning about the intentions of the human
user. In this work, we present a mathematical formulation for
human intent recognition during assistive teleoperation under
shared autonomy. Our recursive Bayesian filtering approach
models and fuses multiple non-verbal observations to prob-
abilistically reason about the intended goal of the user. In
addition to contextual observations, we model and incorporate
the human agent’s behavior as goal-directed actions with ad-
justable rationality to inform the underlying intent. We examine
human inference on robot motion and furthermore validate
our approach with a human subjects study that evaluates
autonomy intent inference performance under a variety of goal
scenarios and tasks, by novice subjects. Results show that our
approach outperforms existing solutions and demonstrates that
the probabilistic fusion of multiple observations improves intent
inference and performance for shared-control operation.

I. INTRODUCTION

A large variety of application areas involve robots operat-
ing alongside people. For example, robots can help people in
domestic service, search and rescue, surgery and in driving
vehicles. An important application area is assistive robotics,
wherein the augmentation of human control of the robot
with robotics autonomy (shared control) [1]–[5] can alleviate
some of the control burden. One fundamental requirement
for effective human-robot collaboration in shared control is
human intent recognition. In order to meaningfully assist the
human collaborator the robot has to correctly reason about
the intended goal of the user from a number of potential
task-relevant goals—known as the intent inference problem.

One approach to infer the user’s intent could be to have the
user communicate the intended goal explicitly, for example
via verbal commands. However requiring explicit communi-
cation from the user could lead to ineffective collaboration
and increased cognitive load [6]. Humans are very good
at anticipating the intentions of others from observations,
demonstrating that intentions can be inferred from non-verbal
communication [7]. In this work, we investigate how the
robotics autonomy can take advantage of non-verbal cues
and indirect signals that the user implicitly provide when
performing tasks in shared-control operation, to facilitate
faster and natural interaction. We consider the user control
commands as the representative user actions and we model
these actions as observations in a probabilistic behavior
model to inform human intent recognition.
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Fig. 1. Human intent recognition in shared autonomy.

Non-verbal cues have been utilized for intent inference in
recent research within the shared-control literature [2], [8],
[9], but the problem of intent inference remains understudied,
with limited evaluation. The evaluation of the inferred intent
is seldom the central aim of a study, and any evaluation
typically is only in simple scenarios. Incorrect predictions
can result in unfortunate circumstances including collisions,
while imprecise predictions can impact the robot’s ability
to correctly assist the user. Our target domain is shared
autonomy in assistive robotics, for which intent inference
is a key aspect that directly impacts performance.

In this work, we present a mathematical formulation
for intent inference by modeling the uncertainty over the
user’s goal in a recursive Bayesian filtering framework.
Our framework allows for the continuous update of the
probability of each goal hypothesis. Furthermore, it enables
the seamless fusion of any number of observation sources,
allowing the inference to leverage rich sources of contextual
information. Finally, the framework can explicitly express
uncertainty in the resulting inference, which is critical to
know in shared control operation as assistance towards the
wrong goal could be worse than providing no assistance. We
perform user studies to ground the complexity of the intent
inference problem, and furthermore to evaluate and compare
our approach to existing approaches of inferring intent under
a variety of goal scenarios and tasks. Results indicate that
our approach performs well for human intent recognition and
also responds well to changing user goals, thus enabling to
dynamically adjust assistance to new predictions.

The remainder of the paper is organized as follows. Re-
lated work is discussed in Section II. Section III present our
framework for intent inference, with implementation details
in Section IV. Sections V and IV present the experiments
and results, which further are discussed in Section VII. In
Section VIII, we conclude with directions for future research.
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II. RELATED WORK

Intent inference—also referred to as inference of the
desired goal, target, action, or behavior—has been investi-
gated under various settings [10]. Examples include activity
recognition in the area of computer vision [11] using spatio-
temporal representations, and task executions in surgical
systems using Hidden Markov Models [12]. A number of
human-robot interaction approaches investigate the use of
gestures, expressions and gaze. For example, gaze patterns
are studied to understand shared manipulation [13] and
anticipatory actions [14]. Gestures along with language ex-
pressions have been utilized for object inference [15]. A step
further in this direction is the area of intent-driven behaviors
and intent-expressive motions, such as legible motions [16].

We are interested in investigating how shared-control
systems can take advantage of the indirect signals people
implicitly provide when operating the robot through a direct
interface, such as a joystick. Many systems simplify the
intent inference problem by assuming that the robot has
access to the user’s intent a priori [3], [17]. There exist works
that rely on explicit commands from the user to communicate
intent via direct interfaces, such as GUIs [18], that focus on
high-level goals. Some approaches utilize instantaneous ob-
servations (e.g. distance to goal, user command) to compute
an inference confidence [2], [8], [9]. A memory-based infer-
ence approach utilized in previous works involving shared
autonomy [1], [4], [16] considers the history of trajectory
inputs and applies Laplace’s method to approximate the
distribution over goals [8]. In our approach, we consider
probabilistic fusion of multiple observation sources, and
also model user inputs as observations using Boltzmann-
rationality, which has shown to explain human behavior on
various data sets [19]. In the majority of the literature on
shared control, the focus of the experimental work is on
the control sharing and robot assistance [1], [2], [4], [9],
with the intent inference being assessed only implicitly. In
this paper, we present a more extensive evaluation of intent
inference than is typically seen within the shared autonomy
literature, because the intent inference performance directly
affects different aspects of shared autonomy.

III. FRAMEWORK FOR HUMAN INTENT RECOGNITION

We first mathematically define the intent inference prob-
lem and then present our framework (Algorithm 1). Our tar-
get domain is assistive robots endowed with shared autonomy
that assists the user towards his/her intended goal.
Problem Formulation: Assuming the environment has a
discrete set of accessible goals g, known at runtime to both
user and robot (e.g. via perception algorithms [20]), the intent
inference problem is that the robot has to infer (predict) the
most likely goal g∗ ∈ g that the user is trying to reach. With
knowledge of g∗ the robotics autonomy can meaningfully
assist the user in shared autonomy. Note that the user might
change his/her intended goal during the execution, and thus
the intent inference must update in real time so that the
assistance provided can dynamically adjust.

Intent Estimation: We formulate the intent inference prob-
lem for shared autonomy as Bayesian filtering in a Markov
model, which allows us to model the uncertainty over the
candidate goals as a probability distribution over the goals.
Bayesian models have shown to be effective for inference
in cognitive science [21] and human-robot interaction re-
search [15]. We cast the intent inference problem as a
classification task where the robot aims to infer the most
likely goal class g∗ from the set of possible goals g, given
a set of observations (features).

We represent the goal gt as the query variable and the
observed features Θ0,...,Θt as the evidence variables, where
Θt is a k-dimensional vector of k observations θit, i = 1 : k,
and t represents the current time. For compactness we use
colon notation to write Θ1,...,Θt as Θ0:t. The uncertainty
over goals is then represented as the probability of each
goal hypothesis. The goal probability conditioned on a single
observation source θi over t timesteps can be represented by
Bayes’ rule as,

bt(g) = P (gt | θ0:t) ∝ P (θt | gt, θ0:t−1)P (gt | θ0:t−1) (1)

where the superscript i has been dropped for notational
simplicity, and the posterior probability P (gt | θ0:t) at time t
represents the belief bt(g) after taking the single observation
source into account, where bt(g) is a single element of the
posterior distribution bt. Since the Hidden Markov Model
allows for a conditional independence assumption between
observations at the current and previous timesteps given
the current goal estimate (θt ⊥ θ0:t−1 | gt), we simplify
P (θt | gt, θ0:t−1) to P (θt | gt). Applying the law of total
probability, the conditional goal probability becomes,

bt(g) ∝ P (θt | gt)
∑

gt−1∈g
P (gt, gt−1 | θ0:t−1) (2)

which becomes,

bt(g) ∝ P (θt | gt)
∑

gt−1∈g
P (gt | gt−1)bt−1(gt−1) (3)

upon applying the definition of conditional probability to
P (gt, gt−1|θ0:t−1) and the Markov assumption, (gt ⊥
θ0:t−1 | gt−1). The computation of bt(g) thus is a recursive
update, and so encodes memory of prior goal distributions.
Furthermore, P (gt | gt−1) is the conditional transition
distribution of changing to goal gt at time t given that the
goal was gt−1 at time t − 1. The model thus encodes that
the user’s intent or goal can change over time.

We now take into consideration multiple observation
sources θ1, ..., θk as k evidence variables, which can de-
rive from any number of sources—for example, control
commands or cues such as eye gaze. We assume the k
observations sources to be conditionally independent of each
other given a goal g, (θi ⊥ θj | g), ∀i 6= j. Thus, Equation
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Algorithm 1: Recursive Bayesian Intent Inference

1 Given Goals g
2 Initialize P (gt=0) ∀g ∈ g
3 Initialize bt=0(g)← P (Θt=0 | gt=0)P (gt=0) ∀g ∈ g
4 Normalize bt=0

5 while executing do
6 Observe Θt

7 foreach g ∈ g do
8 bt(g)←∏

θt∈Θt

P(θt | gt)
∑

gt−1∈g
P (gt | gt−1)bt−1(gt−1)

9 end
10 Normalize bt
11 Update intent g∗t ← arg maxg∈g bt(g)
12 end

3 becomes

bt(g) = P (gt | Θ0:t) ∝
∏
θt∈Θt

P (θt | gt)

∑
gt−1∈g

P (gt | gt−1)bt−1(gt−1).
(4)

We present our algorithm for inferring the probability
distribution over goals in Algorithm 1. The posterior distri-
bution at time t, denoted bt, represents the belief after taking
observations into account. The set of prior probabilities
P (gt=0), ∀g ∈ g, initially represents the robot’s belief over
the goals. The beliefs then are continuously updated, by
computing the posteriors P (gt | Θ0:t), ∀g ∈ g, as more
observations become available.

Finally, to predict the most likely goal g∗t ∈ g, we
select the goal class that is most probable according to the
maximum a posteriori decision,

g∗t = arg max
gt∈g

P (gt | Θt). (5)

Inference Uncertainty: Within the domain of shared-control
assistive robotics, it is important to express uncertainty in the
robot’s prediction of the intended goal—because assisting
towards the wrong goal could be worse than providing no
assistance. We express prediction uncertainty as a confidence
computed as the difference between the probability of the
most probable and second most probable goals,

C(g) = P (g∗ | Θ)− arg max
g∈g\g∗

P (g | Θ). (6)

When the robot is uncertain about the intended goal of
the user, a variety of behaviors might be implemented, for
example to hold off on providing assistance or assist towards
multiple goals simultaneously if possible.

IV. IMPLEMENTATION

In this section, we detail our implementations of our intent
inference algorithm, and the shared autonomy that utilizes
the inferred intent to provide assistance.

A. Autonomy Inference

Our approach, Recursive Bayesian Intent Inference (RBII),
allows for the seamless fusion of any number of observations
to perform human intent recognition. In order to examine
how the incorporation of multiple observation sources affects
the intent inference and shared autonomy, we implement two
different observation schemes (RBII-1 and RBII-2).
RBII-1: The first observation scheme considers a single
modality, the proximity to a goal, as this feature is utilized
most in existing shared autonomy work [1], [2], [4], [8]. We
compute proximity θd as the Euclidean distance between
the current position of the robot xr and the goal xg . For
Algorithm 1, we model the likelihood using the principle of
maximum entropy such that given the goal g, the class con-
ditional probability decreases exponentially as the likelihood
of g decreases, P (θd | g) ∝ exp(−κ · θd). κ is set to the
mean of the range of values that θd can take.
RBII-2: In the second observation scheme, in addition to
proximity to the goal, we model the actions of the human
agent. Following a model of human action from cognitive
science [21], we model the user as Boltzmann-rational in
their actions to reach a goal g (discussed in Section IV-B).

Lastly, our approach encodes the possibility that the hu-
man’s goal might change during task execution (Section III).
We denote as ∆ the probability of changing goals. In the case
of n number of goals,

P (gt = gi | gt−1 = gj) =

{
1−∆ if i = j

∆/(n− 1) otherwise.
(7)

Note that when ∆ = 0, the model represents the case when
the user exclusively pursues one goal during the execution.
When ∆ = (n − 1)/n, the model represents the possibility
of choosing a new goal at random at each timestep. Our
implementation initializes the probability distribution over
goals to be uniform, and sets ∆ = 0.1.

B. Human Action Model as an Observation

We are interested in investigating how we can utilize
for intent recognition the indirect signals people implicitly
provide to operate the robot. Our RBII-2 implementation
consider the user inputs as representative of the actions the
user wants to take to reach a goal g. We model these actions
as observations using Boltzmann-rationality, which has been
shown to explain human behavior on various data sets [19].

We incorporate adjustable rationality in a probabilistic
behavior model such that at any state s (robot configuration)
the probability that action ug is chosen by a rational human
agent to reach goal g is given as,

P (ug | s, g) ∝ exp(β ·Qg(s,ug)) (8)

where Qg(s,ug) denotes the Q-value when the intended
goal is g. β is a rationality index (discussed further below)
that controls how diffuse are the probabilities. We model
Qg(s,ug) as the cost of taking action ug at configuration
s and acting optimally from that point on to reach the
goal g. We approximate optimal action selection with an
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autonomy policy, and compute this cost as the agreement
between the user control uh and the autonomy control
ur to reach the goal g. In our implementation, a policy
based on potential fields [22] is employed, and agreement
is measured in terms of the cosine similarity, computed
as arccos ((uh · ur)/ ‖ uh ‖‖ ur ‖), where · denotes the
dot product and ‖ · ‖ denotes vector norm. A moving
average filter with a two second time window is applied
to the observations, in order to consider a brief history of
observations and reduce any undesired oscillations due to
noisy or corrective control signals.

A critical detail is to include adjustable rationality in the
model, as in reality a number of factors might induce sub-
optimality—for example, limitations and challenges imposed
by the interfaces to control high-DoF robotic systems, cogni-
tive or physical impairments, and environment factors such as
obstacles or distractions. Adjustable rationality is represented
by the rationality index β and a larger value of β implies
more rationality. We fit the rationality index parameter by
performing simulated annealing optimization to minimize the
prediction log-loss for intent recognition on the data gathered
in a pilot experiment (β = 0.045).

C. Assistance under Shared Autonomy

In this section, we discuss implementation details of
the shared autonomy that ultizies the inferred intent. We
implement a blending-based paradigm to provide assistance,

ublend = uh · (1− α) + ur · α, (9)

where uh denotes the user control command, ur the au-
tonomy control command generated under a potential field
policy [22] and ublend is the shared autonomy command
sent to the robot. Note that ur is available in all parts of the
robot state space, for every goal g ∈ g such that g is treated
as an attractor and all the other goals g \ g as repellers.
α ∈ [0, 1] is a blending factor which arbitrates how much
control remains with the human user versus the autonomy.
In our implementation, α is a piecewise linear function of
the confidence in the intent prediction,

α =


0 C(g) ≤ δ1

δ3
(δ2−δ1) · C(g) δ1 < C(g) ≤ δ2
δ3 C(g) > δ2

(10)

where C(g) is defined as in Equation 6, the difference
between the highest and second highest probable goals.
δ1 is a lower bound on C(g) (set to 30%) below which
assistance is not active, δ2 is an upper bound on C(g)
(set to 90%), above which assistance is maximum. The
upper bound on assistance α is given by δ3 (set to 70%).
Note that: (i) Different approaches to intent inference will
generate different values for C(g), and so the amount of
assistance accordingly will differ. (ii) In particular, if C(g)
is lower, meaning that the inference is not very certain in its
prediction, the amount of assistance also will be lower. (iii)
If the inferred goal is wrong the robot will assist towards the
wrong goal, with potentially serious implications.

V. EXPERIMENTS ON INTENT INFERENCE

Our experimental work aimed to evaluate the performance
of our intent inference algorithm, as well as impact of intent
inference on shared autonomy. We performed two human
subject studies, that aim (i) to characterize the complexity
and variability of the intent inference problem, (ii) to com-
pare the inference performance of our approach to existing
approaches used in shared autonomy and (iii) to evaluate the
impact of inference on shared autonomy assistance.

Our research platform for the designed experiments was
the MICO assistive robotic arm (Kinova Robotics, Canada),
a 6-DoF manipulator with a 2 finger gripper. The control
interface used in the study was a 3-axis joystick that is
typically been utilized for operating robotic arms.
Subject Allocation: We recruited 12 able-bodied subjects
from the local community (5 male, 7 female, aged 19-35).
The subjects were novice users and had no prior experience
operating a robotic arm. All participants gave their informed,
signed consent to participate in the studies, approved by
Northwestern University Institutional Review Board.

In addition to the two variants of our algorithm detailed in
Section IV-A (RBII-1 and RBII-2), for comparative purposes
we also implemented two approaches utilized in previous
shared autonomy works—Amnesic Inference [2], [8], [9] and
Memory-based Inference [1], [4], [8], [16].
Amnesic Inference: The amnesic inference approach asso-
ciates a confidence in the prediction of the user’s goal as
a hinge-loss function, where it is assumed that the closer a
goal is, the more likely it is the intended goal,

c(g) = max(0, 1− d

D
) (11)

where d is the distance to the goal and D a threshold past
which the confidence c(g) is 0. It is possible to design richer
confidence functions, but in practice this function often is
used for its simplicity. The approach is termed as amnesic
prediction [8], because it ignores all information except the
instantaneous observations. In our implementation, d is the
Euclidean distance ‖ xg−xr ‖ between the current position
of the robot end-effector xr and the goal xg , D is set to 1.0
m (maximum reach of the MICO robotic arm).
Memory-based Inference: The memory-based predic-
tion [8] approach is a Bayesian formulation that takes into
consideration the history of a trajectory to predict the most
likely goal. Let ξx→y denote a trajectory starting at pose x
and ending at y. Using the principle of maximum entropy,
the probability of a trajectory reaching towards a specific
goal g is given as P (ξ | g) ∝ exp(−cg(ξ)); that is, the
probability of the trajectory decreases exponentially with
cost. It is assumed that the cost is additive along the
trajectory. Such a solution becomes too expensive to compute
in high-dimensional spaces (e.g. for robotic manipulation),
and so [8] estimates the most likely goal by approximating
the integral over trajectories using Laplace’s method and first
order approximation,

g∗ = arg max
g∈g

exp(−cg(ξs→x)− cg(ξ∗x→g))
exp(−cg(ξ∗s→g))

P (g) (12)
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Fig. 2. Left: Goal scenarios of varied complexity used in human inference
study. Right: Example setup shows the robot executing a trajectory to reach
a goal. The subject predicts the intended goal during the robot motion.

where ξ∗ is the optimal trajectory, s is the starting pose of
robot, x is the current pose, and g is the pose of the goal.
In practice the cost cg is often the Euclidean distance and
the goal probabilities are initialized with a uniform prior [1],
[4], which we do in our implementation as well.

A. Human Inference Study

Humans are very good at anticipating the intentions of
others with non-verbal communication and by observation of
goal-directed actions [7]. We first aim to ground the complex-
ity of the intent inference problem through a study of human
inference ability, by having a human observer interpret the
motion of a robotic arm to infer its intended goal. Related
work has addressed the topic of human interpretation of
robot trajectories generated by autonomy policies [16] for
intent inexpressive motions. We however are interested in
robot motion generated by human control commands, given
our target domain of shared autonomy. In our experiments,
the robot trajectories were pre-recorded demonstrations by
a human expert operating a 3-axis joystick. We furthermore
are interested in how a change-of-intent can affect the intent
inference. We therefore consider two types of robot motion:
(i) No-change-of-intent, where the robot motion maintained
a single goal from start to end, and (ii) change-of-intent,
where the robot motion switched during the execution the
goal it was reaching towards.
Design: The study involved a variety of goal scenarios with
varied complexity: in total, 8 different scenarios involving 2
to 4 potential goals (Figure 2, left). For each goal scenario,
one change-of-intent demonstration was recorded (8 in total)
as well as a no-change-of-intent trajectory for each goal
in the scene (22 trajectories in total). We chose a within-
subjects design and each subject observed the 30 recorded
demonstrated trajectories replayed on the robot.
Protocol: The subjects were given a training period in which
they observed one pre-recorded teleoperation trajectory to-
wards a goal, to get familiarized with the robot motion
capabilities. The 30 teleoperated trajectories for the 8 goal
scenarios then were executed (re-played) in counterbalanced
order on the robot. For each trajectory, we tasked the
subjects to observe the motion and predict the intended goal
(Figure 2, right) by verbally mentioning the “Object Name”
(e.g.,“cup”). The subjects could change their inference at
any time during the robot motion. They were also given the
option to express uncertainty about the intended goal, by
saying “not sure”. The inference was registered as uncertain
at the start of the trajectory motion, and the subject responses
were recorded by the experimenter via a button press.

Fig. 3. Task scenarios and associated grasp pose on goals used to evaluate
intent inference under novice teleoperation.

B. Autonomy Inference Study

Our second study aimed to evaluate how well the auton-
omy could infer the intent of a user under novice teleopera-
tion and how the inferred intent affected shared autonomy.
Design: We adopted a within-subjects experimental design to
evaluate how well the autonomy could infer the intent of the
user under novice teleoperation with and without assistance.
Four intent inference approaches were evaluated: (i) Amnesic
(ii) Memory-based (iii) RBII-1 and (iv) RBII-2. Four tasks
of varied complexity were used to evaluate the performance
(Figure 3). Three tasks involved object retrieval where the
goal was the approach grasp pose ∈ R6 on the objects. The
fourth task involved pouring and placing operations where
the goals were the pose of the initiation of the pour over the
bowls and placing in the dish rack.
Protocol: The subjects were given a training period in which
they got familiar using a 3-axis joystick to operate the robot.
First, the subjects teleoperated the robot without assistance.
They performed the tasks shown in Figure 3 and were
instructed to (i) complete each goal in every task setup and
(ii) for each task perform one additional trial in which they
change goal during the task execution. The change was
recorded with a time stamp via a button press. All four
approaches for intent inference computed the intent online
as the user teleoperated the robot. In the next stage, all the
trials were performed again but now with assistance under
shared autonomy, once with RBII-1 and then using RBII-2.

VI. ANALYSIS AND RESULTS

We first discuss performance measures and then present
the analysis with the results. For each performance measure,
one factor repeated measure ANOVA (Analysis of Variance)
was performed to determine significant differences (p <
0.05) between the intent inference approaches. Once the sig-
nificance was established, multiple post-hoc pairwise com-
parisons were performed by using Bonferroni Confidence
interval adjustments. For all figures, the notation ∗ implies
p < 0.05, ∗ ∗ implies p < 0.01, ∗ ∗ ∗ implies p < 0.001.

A. Performance Measures

Percentage of Correct Predictions: Percent correct predic-
tions is a metric commonly employed in machine learning
works. We compute percent correct as the percentage of time
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Fig. 4. Human and autonomy inference performance on the demonstration trajectories. Plots show mean and standard error. Left: Percentage of time
inference is correct and confident. Middle: Percentage of time inference is uncertain. Right: Percentage of time inference is incorrect and confident.

the inference identified the intended goal of the user both
correctly and with confidence (C(g) > 30%).
Cross-entropy Loss (log-loss): Assessing the uncertainty
of a prediction is an important indicator of performance
which is not captured by the percent correct metric. The
cross-entropy (or log-loss) considers prediction uncertainty
by including the classification probability in its calculation.
In the case of N goals, and given the true labels Y for the
intended goal and the probability estimates P , we calculate
the average log-loss across a trajectory as,

Llog(Y, P ) = − 1

M

M∑
i=1

N∑
j=1

yi,j log pi,j (13)

where M is the number of samples in the trajectory, yi,j is
a binary indicator of whether or not the prediction j is the
correct classification at time step i, and pi,j is the probability
associated with the goal j at timestep i. Note that a perfect
inference model would have a log-loss of 0. Log-loss is
unable to be computed for amnesic inference, as it is not
a probabilistic method.
Assistance Onset Time: In shared autonomy it is important
to consider how early the autonomy can assist the user
towards the intended goal. The initial onset of assistance
depends on how quickly the confidence (Equation 10) in the
intended goal rises and exceeds the lower bound threshold
δ1 on the confidence.
Task Completion Time: Our intuition is that the intent
inference affects the shared autonomy and thus will indirectly
affect the task completion time. That is, better inference will
result in correct, earlier, and stronger assistance.
Number of Control Mode Switches: Teleoperation of
robotic arms using lower-dimensional control interfaces (e.g.
3-axis joystick to operate a 6-DoF arm), requires the user
to switch between one of several control modes (mode
switching) that are subsets of the full control space. Our
intuition is that the intent inference will affect the number

of mode switches required to complete tasks, if earlier
assistance results in fewer mode switches.
B. Human Inference

Figure 4 shows the performance of human intent inference
and comparison with the autonomy intent inference. The
percentage of time predictions were (i) correct with confi-
dence (C(g) > 30%), (ii) uncertain (C(g) < 30%) and (iii)
incorrect with confidence (C(g) > 30%) are analyzed.

The results show that inferring the intended goal of robotic
arm motion is a challenging task, even for humans. The
human subjects made fewer incorrect predictions as com-
pared to correct predictions, but also were inclined to indicate
more uncertainty. The percentage of correct predictions were
comparatively lower in the case of the change-of-intent
trajectories. Interestingly, the percentage of time uncertain
was unaffected by whether there was a change-of-intent—
both for the human subjects and all inference algorithms.

In the case of the autonomy inference, overall RBII-2
performed better than all other methods with higher per-
centage of time correct and more confident predictions—
in the case of trajectories both with and without a change-
of-intent. Interestingly, RBII-2 was more often correct than
were the human subjects. This finding could be attributed
to the result that the human subjects tend to indicate more
uncertainty rather than be incorrect. The memory-based
inference expressed uncertainty a smaller percentage of the
time, with the result of both higher percent correct but also
higher percent incorrect. Amnesic inference by far expressed
the highest amount of uncertainty (typically until the very
end of an execution), resulting in the lowest percent correct
but, somewhat surprisingly, also the lowest percent incorrect.

C. Autonomy Inference

Novice Teleoperation: Figure 5 shows the performance of
the autonomy intent inference methods, during novice teleop-
eration without autonomy assistance. For percentage of time
correct, the amnesic inference failed to get the prediction
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Fig. 5. Performance of different autonomy inferences on novice teleoperation (without assistance). Plots show mean and standard errors. Left: Percentage of
time autonomy inferences are correct. Middle: Average Log Loss for goal inferences. Right: Normalized initial assistance onset time, for correct predictions.

Fig. 6. Performance of intent inference and effect on shared autonomy
assistance. Plots show mean and standard errors. Left: Average task com-
pletion time. Right: Total average number of control mode switches.

correct for a higher percentage of time as compared to other
methods (p < 0.001). Memory-based performed better in
the case of no-change-of-intent trajectories and RBII-2 in
the case of the change-of-intent trajectories, however, the
results were not significant. For log-loss, the memory-based
method resulted in wrong predictions with high probabilities
in the case of change-of-intent trajectories and thus was
penalized by the log-loss performance metric. Overall, RBII-
2 was better at identifying the correct goal with higher
probabilities, and was significantly better than the memory-
based method in the case of change-of-intent trajectories (p
< 0.01). Figure 5 (right) shows the initial onset of assistance
in the case of correct predictions. The amnesic inference
was significantly slower than other methods (p < 0.001) for
the onset of assistance in all cases. Overall, the memory-
based method was able to infer the intended goal earlier than
others methods. Interestingly, all methods except memory-
based experienced a delay in providing assistance when there
was a change-of-intent. Our further analysis of RBII-1 and
RBII-2 under shared control however confirmed that even
with this delay, both methods were able to recover from
a change-of-intent early enough to provide assistance that
improved task performance (Figure 6).
Effect of Inference on Shared Autonomy Performance:
Figure 6 shows the overall comparative performance of the
RBII-1 and RBII-2 intent inference approaches with shared
autonomy assistance. For the task completion time, both
RBII-1 and RBII-2 were significantly better than teleoper-

ation (p < 0.001). Furthermore, RBII-2 resulted in signif-
icantly lower task completion time as compared to RBII-1
approach (p < 0.05), indicating better assistance in shared
autonomy operation. For the average number of control mode
switches, teleoperation without assistance had significantly
higher numbers of mode switches (p < 0.001) than RBII-1
and RBII-2, showing that assistance resulted in fewer mode
switches. RBII-2 resulted in fewer average number of mode
switches than RBII-1, but this result was not significant.

VII. DISCUSSION

The results indicated that inferring the intended goal
of a robot is a challenging task, even for humans. One
important takeaway from our study is that humans tend both
to make fewer incorrect predictions but also indicate more
uncertainty. This has important implications for assistive
domains, since most often providing the wrong assistance
is worse than providing no assistance. Thus, there is worth
in knowing when the autonomy inference is uncertain and
to what extent. The human subjects were also quickly able
to switch their prediction in the case of change-of-intent,
though with comparatively more incorrect predictions.

The autonomy intent inference methods were evaluated
both on demonstrated trajectories and on novice teleoperation
(with and without shared autonomy assistance). The amnesic
inference failed to get the prediction correct for a higher
percentage of time, as it tended to switch to the correct
prediction at the end of trajectories. Memory-based inference
resulted in comparatively faster onset of assistance. However
interestingly, it was often wrong in its predictions with high
probabilities when the user expressed a change-of-intent.
Some other limitations of the memory-based method are rec-
ognized in an exploratory experiment [8]. RBII-1, although
comparatively slower, made correct predictions more often.
RBII-2 outperformed other approaches in terms of faster
correct predictions with higher probabilities, indicating that
a fusion of observations improved performance. RBII-2 also
responded well to changing user goals, thus enabling the sys-
tem to dynamically adjust its assistance to new predictions.

We have shown that with the probabilistic modeling of
human actions as observations the robotics autonomy can
take advantage of indirect signals that the user implicitly
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provides during shared-control operation, even with lower
dimensional interfaces controlling higher-DoF robot systems.
The inclusion of adjustable rationality in our model can
account for sub-optimal behavior in user actions due to any
number of reasons inherent to assistive domains. In future
work, we intend to tune a customized value of rationality
index for each user and also will explore performance in
the case of more limited interfaces (e.g. Sip-N-Puff) that
are available to people with motor-impairments. We note
that other observations, such as spatial goal orientations
and L1 distance could further be explored. Eye gaze could
also be utilized to reveal intent, however the data quality
depend on the calibration and projection method errors of
eye trackers [13], [14]. The effect of priors (initial goal
probability distribution) and the goal transition probability
are also interesting directions for future.

Our results further verified that the underlying intent
inference approach directly affects the assistance provided
and the overall shared-autonomy performance. RBII-2 re-
sulted in significantly faster task completion times and a
reduced number of control mode switches, which is of
critical importance in assistive domains. For better shared-
autonomy performance, the inference approach should reason
about the uncertainty in its predictions and should provide
correct predictions with high probabilities earlier in task
executions. To this end, we emphasize the importance of
thoroughly evaluating any intent inference scheme used in
shared autonomy operation.

VIII. CONCLUSIONS

In this work we presented a formalism for human intent
recognition that models the uncertainty over the user’s goal in
a recursive Bayesian algorithm. In user studies, we examined
human inference on robot motion and furthermore compared
the performance of our algorithm to existing intent infer-
ence approaches (both with and without shared autonomy
assistance). We furthermore demonstrated the effect of intent
inference on assistance in shared autonomy. Results validated
that our algorithm was able to provide more correct and
confident predictions in comparison to existing approaches,
under different task and goal scenarios and it also responds
well to changing user goals. Furthermore, the fusion of
multiple observations and probabilistic modeling of human
actions improved prediction accuracy, resulting in faster
assistance. Our future work will evaluate our approach within
a larger study involving more limited control interfaces and
motor-impaired subjects.
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